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1 Introduction
The calculus on time scales has been introduced in order to unify the theories of contin-
uous and discrete processes and in order to extend those theories to a more general class
of the so-called dynamic equations. In recent years there has been much research activity
concerning the oscillation and non-oscillation of solutions of neutral dynamic equations
on time scales.
In this paper we consider the higher-order nonlinear dynamic equation

[
y(t) + P(t)y

(
τ (t)

)]�n
+

m∑
i=

Qi(t)fi
(
y
(
φi(t)

))
= , (.)

where n ≥ , P(t),Qi(t) ∈ Crd [t,∞)T for i = , , . . . ,m; P(t) is an oscillating func-
tion (P(t) : T →R), Qi(t) are positive real-valued functions for i = , , . . . ,m; φi(t) ∈
Crd [t,∞)T, φ�

i (t) > , the variable delays τ ,φi : [t,∞)T → T with τ (t),φi(t) < t for all
t ∈ [t,∞)T, φi(t) → ∞ as t → ∞ for i = , , . . . ,m; τ (t) → ∞ as t → ∞; fi(u) ∈ C(R,R)
are nondecreasing functions, ufi(u) >  for u �=  and i = , , . . . ,m.
The purpose of the paper is to study oscillatory behaviour of solutions of equation (.).

For the sake of convenience, the function z(t) is defined by

z(t) = y(t) + P(t)y
(
τ (t)

)
. (.)

2 Basic definitions and some auxiliary lemmas
A time scale T is an arbitrary nonempty closed subset of the real numbers R. For t ∈ T,
we define the forward jump operator σ : T→ T by

σ (t) := inf{s ∈ T : s > t}
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while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

If σ (t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered.
Also, if σ (t) = t, then t is called right-dense, and if ρ(t) = t, then t is called left-dense. The
graininess function μ : T→[,∞) is defined by

μ(t) := σ (t) – t.

We introduce the set Tκ which is derived from the time scale T as follows. If T has left-
scattered maximumm, then T

κ = T – {m}, otherwise Tκ = T.

Definition  [] The function f : T→R is called rd-continuous provided it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense points in T.

Theorem  [] Assume that ν : T → R is strictly increasing and T̃ := ν(T) is a time scale.
Let w : T̃ →R. If ν�(t) and w�̃(ν(t)) exist for t ∈ T

κ , then

(w ◦ ν)� =
(
w�̃ ◦ ν

)
ν�,

where we denote the derivative on T̃ by �̃.

Definition  [] Let f : T→R be a function. If there exists a function F : T→ R such that
F�(t) = f (t) for all t ∈ T

κ , then F is said to be an antiderivative of f . We define the Cauchy
integral by

∫ b

a
f (τ )�(τ ) = F(b) – F(a) for a,b ∈ T.

Theorem  [] Let u and v be continuous functions on [a,b] that are �-differentiable on
[a,b). If u� and v� are integrable from a to b, then

∫ b

a
u�(t)v(t)�(t) +

∫ b

a
uσ (t)v�(t)�(t) = u(b)v(b) – u(a)v(a).

Let T̃ = T∪{supT}∪{infT}. If∞ ∈ T̃, we call∞ left-dense, and –∞ is called right-dense
provided –∞ ∈ T̃. For any left-dense t ∈ T̃ and any ε > , the set

Lε(t) = {t ∈ T :  < t – t < ε}

is nonempty, and so is Lε(∞) = {t ∈ T : t > 
ε
} if ∞ ∈ T̃.

Lemma  [] Let n ∈N and f be n-times differentiable onT.Assume∞ ∈ T̃. Suppose there
exists ε >  such that

f (t) > , sgn
(
f �n

(t)
) ≡ s ∈ {–,+} for all t ∈ Lε(∞)
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and f �n (t) �=  on Lδ(∞) for any δ > . Then there exists p ∈ [,n] ∩ N such that n + p is
even for s =  and odd for s = – with{

(–)p+jf �j (t) >  for all t ∈ Lε(∞), j ∈ [p,n – ]∩N,
f �j (t) >  for all t ∈ Lδj (∞) (with δj ∈ (, ε)), j ∈ [,p – ]∩N.

Lemma  [] Let f be n-times differentiable on T
κn , t ∈ T, and α ∈ T

κn . Then with the
functions hk defined as hn(t, s) = (–)ngn(s, t),

h(r, s)≡  and hk+(r, s) =
∫ r

s
hk(τ , s)�s for k ∈N,

we have

f (t) =
n–∑
k=

hk(t,α)f �k
(α) +

∫ ρn–(t)

α

hn–
(
t,σ (τ )

)
f �n

(τ )�τ .

Lemma  [] Let f be n-times differentiable on T
κn and m ∈N with m < n. Then we have,

for all α ∈ T
κn–+m and t ∈ T

κm ,

f �m
(t) =

n–m–∑
k=

hk(t,α)f �k+m
(α) +

∫ ρn–m–(t)

α

hn–m–
(
t,σ (τ )

)
f �n

(τ )�τ .

Lemma  [] Suppose f is n-times differentiable and gk ,  ≤ k ≤ n – , are differentiable
at t ∈ T

κn with

g�
k+(t) = gk

(
σ (t)

)
for all  ≤ k ≤ n – .

Then we have[ n–∑
k=

(–)kf �k
gk

]�

= fg�
 + (–)n–f �n

gσ
n–.

3 Main results
Lemma  Let f be n-times differentiable on T

κn . If f � > , then for every λ,  < λ < , we
have

f (t)≥ λ(–)n–gn–
(
σ
(
T∗), t)f �n–

(t). (.)

Proof Let p,  ≤ p≤ n–, be the integer assigned to the function f as in Lemma . Because
of f � > , we always have p > . Furthermore, let T∗ ≥ T be assigned to f by Lemma .
Then, by using the Taylor formula on time scales, for every ρn–(t) ≥ T∗, we obtain

f (t)≥
∫ ρn–(t)

T∗
(–)n–gn–

(
σ (τ ), t

)
f �n

(τ )�τ . (.)

By using Theorem  and (.), we have

f (t)≥ (–)n–gn–
(
σ (t), t

)
f �n–

(t) –
∫ ρn–(t)

T∗
(–)n–gn–

(
σ (τ ), t

)
f �n–

(τ )�τ .
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Since f is n-times differentiable on T
κn and m ∈ N with m < n, we have with n and f sub-

stituted by n –m and f �m , respectively

f �m
(t)≥

∫ ρn–m–(t)

T∗
(–)n–m–gn–m–

(
σ (τ ), t

)
f �n

(τ )�τ .

Also, for every ρn–(t), s with ρn–(t) ≥ T∗ and T∗ ≤ s≤ t, we have

f �m
(s)≥ (–)n–m–gn–m–

(
σ
(
T∗), t)f �n

(t).

This is obvious form = n–  and, whenm < n– , it can be derived by applying the Taylor
formula. Thus, for all t ≥ T∗, we get

f (t)≥ (–)n–gn–
(
σ
(
T∗), t)f �n–

(t)

and therefore the proof of the lemma can be immediately completed. �

The result of Lemma  is an extension of studies in [] and []. In order that the reader
sees how the results in [] (..) and [] (Lemma ) follow from (.), it is at this point
only necessary to know that in the case T = Z, we have ρ(t) = t – , σ (t) = t +  and

gn–
(
σ
(
T∗), t) = (t – T∗ – )(n–)

(n – )!
,

then we get the inequality in []

u(t) ≥ 
(n – )!

(n – n)(n–)�n–u
(
n–m–n

)
;

and in the case T =R, we have ρ(t) = σ (t) = t and

gn–
(
σ
(
T∗), t) = (t – T∗)(n–)

(n – )!
,

then we get the inequality in []

u(t) ≥ ϑ

(n – )!
(t)n–un–(t).

For the cases T = Z and T = R, some sufficient criterias for oscillatory behaviour of the
solutions of the equation (.) were obtained by Bolat and Akın in [] and [], respectively.
Furthermore, there might be other time scales that we cannot appreciate at this time due
to our current lack of ‘real-world’ examples.

Theorem  Assume that n is odd and

(C) limt→∞ P(t) = ,
(C)

∫ ∞
t

sn–
∑m

i=Qi(s)�s = ∞.

Then every bounded solution of equation (.) is either oscillatory or tends to zero as
t → ∞.
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Proof Assume that equation (.) has a bounded non-oscillatory solution y(t). Without
loss of generality, assume that y(t) is eventually positive (the proof is similar when y(t)
is eventually negative). That is, y(t) > , y(τ (t)) >  and y(φi(t)) >  for t ≥ t ≥ t and
i = , , . . . ,m. Assume further that y(t) does not tend to zero as t → ∞. By (.), (.), we
have for t ≥ t

z�n (t) = –
m∑
i=

Qi(t)fi
(
y
(
φi(t)

))
< . (.)

It follows that z�j (t) (j ∈ [,n – ] ∩ N) is strictly monotone and eventually of constant
sign. Since P(t) is an oscillatory function, there exists a t ≥ t such that if t ≥ t, then
z(t) > . Since y(t) is bounded, by virtue of (C) and (.), there is a t ≥ t such that z(t)
is also bounded for t ≥ t. Because n is odd and z(t) is bounded, by Lemma , when p = 
(otherwise z(t) is not bounded), there exists t ≥ t such that for t ≥ t we have (–)jz�j (t) >
, j ∈ [,n – ]∩N.
In particular, since z�(t) <  for t ≥ t, z(t) is decreasing. Since z(t) is bounded, we

write limt→∞ z(t) = L (–∞ < L < ∞). Assume that  ≤ L < ∞. Let L > . Then there ex-
ists a constant c >  and a t ≥ t such that z(t) > c >  for t ≥ t. Since y(t) is bounded,
limt→∞ P(t)y(τ (t)) =  by (C). Therefore, there exists a constant c >  and a t ≥ t such
that y(t) = z(t) –P(t)y(τ (t)) > c >  for t ≥ t. So that we can find a t with t ≥ t such that
y(φi(t)) > c >  for t ≥ t. From (.) we have

z�n
(t) = –

m∑
i=

Qi(t)fi(c) <  (.)

for t ≥ t. If we multiply (.) by tn– and integrate it from t to t, we obtain

F(t) – F(t) ≤ –f (c)
∫ t

t

m∑
i=

Qi(s)sn–�s, (.)

where

F(t) =
n–∑
i=

(–)i+
(
tn–

)�i
z�n–i(

σ i(t)
)

and

σ i(t) = σ
(
σ i–(t)

)
.

Since (–)kz�k (t) >  for k = , , , . . . ,n –  and t ≥ t, we have F(t) >  for t ≥ t. From
(.) we have

–F(t) ≤ –f (c)
∫ t

t

m∑
i=

Qi(s)sn–�s.
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By (C) we obtain

–F(t) ≤ –f (c)
∫ t

t

m∑
i=

Qi(s)sn–�s = –∞

as t → ∞. This is a contradiction. So, L >  is impossible. Therefore, L =  is the only
possible case. That is, limt→∞ z(t) = . Since y(t) is bounded, by (C) we obtain

lim
t→∞ y(t) = lim

t→∞ z(t) – lim
t→∞P(t)y(t) = 

from (.).
Now let us consider the case of y(t) <  for t ≥ t. By (.) and (.),

z�n (t) = –
m∑
i=

Qi(t)fi
(
y
(
φi(t)

))
> 

for t ≥ t. That is, z�n > . It follows that z�j (t) (j ∈ [,n – ] ∩ N) is strictly monotone
and eventually of constant sign. Since P(t) is an oscillatory function, there exists a t ≥ t
such that if t ≥ t, then z(t) < . Since y(t) is bounded, by (C) and (.), there is a t ≥ t
such that z(t) is also bounded for t ≥ t. Assume that x(t) = –z(t). Then x�n (t) = –z�n (t).
Therefore, x(t) >  and x�n (t) <  for t ≥ t. Hence, we observe that x(t) is bounded. Since
n is odd, by Lemma , there exists a t ≥ t and p =  (otherwise x(t) is not bounded) such
that (–)jx�j (t) > , j ∈ [,n – ]∩N and t ≥ t. That is, (–)jz�j (t) < , j ∈ [,n – ] ∩N

and t ≥ t. In particular, for t ≥ t we have z�(t) > . Therefore, z(t) is increasing. So, we
can assume that limt→∞ z(t) = L (–∞ < L ≤ ). As in the proof of y(t) > , we may prove
that L = . As for the rest, it is similar to the case of y(t) > . That is, limt→∞ y(t) = . This
contradicts our assumption. Hence the proof is completed. �

Theorem  Assume that n is even and (C) holds. If the following condition is satisfied:

(C) There is a function ϕ(t) such that ϕ(t) ∈ C
rd [t,∞)T.Moreover,

lim
t→∞ sup

∫ t

t
ϕ(s)

m∑
i=

Qi(s)�s = ∞

and

lim
t→∞ sup

∫ t

t

[ϕ�(s)]

ϕ(s)gσ
n–(σ (φi(s)),φi(s))

�s < ∞

for ϕ(t) and i = , , . . . ,m. Then every bounded solution of equation (.) is oscillatory.

Proof Assume that equation (.) has a bounded non-oscillatory solution y(t). Without
loss of generality, assume that y(t) is eventually positive (the proof is similar when y(t) is
eventually negative). That is, y(t) > , y(τ (t)) >  and y(φi(t)) >  for t ≥ t ≥ t. By (.)
and (.), we have (.) for t ≥ t. Then z�n (t) < . It follows that z�j (t) (j ∈ [,n– ]∩N)
is strictly monotone and eventually of constant sign. Since P(t) is an oscillatory function,
there exists a t ≥ t such that for t ≥ t, we have z(t) > . Since y(t) is bounded, by (C)

http://www.journalofinequalitiesandapplications.com/content/2013/1/52
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and (.), there is a t ≥ t, such that z(t) is also bounded for t ≥ t. Because n is even,
by Lemma  when p =  (otherwise z(t) is not bounded), there exists t ≥ t such that for
t ≥ t we have

(–)j+z�j
(t) > , j ∈ [,n – ]∩N. (.)

In particular, since z�(t) >  for t ≥ t, z(t) is increasing. Since y(t) is bounded,

lim
t→∞P(t)y

(
τ (t)

)
= 

by (C). Let δ > ; i.e., there exists a t ≥ t such that by (.)

y(t) = z(t) – P(t)y
(
τ (t)

)
>

δ
z(t) > 

for t ≥ t. We may find a t ≥ t such that for t ≥ t and i = , , . . . ,m,

y
(
φi(t)

)
>

δ
z
(
φi(t)

)
> . (.)

From (.), (.) and the properties of f , we have

z�n
(t)≤ –

m∑
i=

Qi(t)fi
(

δ
z
(
φi(t)

))

= –
m∑
i=

Qi(t)
fi( δ z(φi(t)))
z(φi(t))

z
(
φi(t)

)
(.)

for t ≥ t. Since z(t) >  is bounded and increasing, limt→∞ z(t) = L ( < L < ∞). By the
continuity of f , we have

lim
t→∞

fi( δ z(φi(t)))
z(φi(t))

=
fi( Lδ )
L

> .

Then there is a t ≥ t such that for t ≥ t, i = , , . . . ,m, we have

fi( δ z(φi(t)))
z(φi(t))

≥ fi( Lδ )
L

= α > . (.)

By (.), (.),

z�n
(t)≤ –α

m∑
i=

Qi(t)z
(
φi(t)

)
for t ≥ t. (.)

Set

w(t) =
z�n– (t)
z( 

δ
φi(t))

. (.)

We know from (.) that there is a t ≥ t such that for a sufficiently large t ≥ t, w(t) > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/52
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Therefore, �-derivating (.) we obtain

w�(t) =
z�n (t)

z(δ–φi(t))
+ z�n–(

σ (t)
)( 

z(δ–φi(t))

)�

=
z�n (t)

z(δ–φi(t))
–

δ–φ�
i (t)z�n– (σ (t))z�(δ–φi(t))
z(δ–φi(t))z(δ–φi(σ (t)))

(.)

≤ z�n (t)
z(δ–φi(t))

–
δ–φ�

i (t)z�n– (σ (t))z�(δ–φi(t))
z(δ–φi(σ (t)))

=
z�n (t)

z(δ–φi(t))
– δ–wσ (t)

φ�
i (t)z�(δ–φi(t))
z(δ–φi(σ (t)))

. (.)

We know from (.) that there is a t ≥ t such that z�(t) >  and z�n– (t) >  for an
even n. Since z(t) >  is increasing z(δ–φi(σ (t)))≥ z(δ–φi(t)) for i = , , . . . ,m. Therefore,
by Lemma ,

z
(
δ–φi(t)

) ≥ λ(–)n–gn–
(
σ
(
φi(t)

)
,φi(t)

)
z�n–(

φi(t)
)
. (.)

Then by �-derivating (.) and using g�
n–(σ (t), t) = gσ

n–(σ (t), t), we get

[
z
(
δ–φi(t)

)]� ≥ λ(–)n–g�
n–

(
σ
(
φi(t)

)
,φi(t)

)
z�n–(

φi(t)
)

≥ λ(–)n–gσ
n–

(
σ
(
φi(t)

)
,φi(t)

)
z�n–(

φi(t)
)

by Lemma 

z�
(
δ–φi(t)

)
δ–φ�

i (t)≥ λ(–)n–gσ
n–

(
σ
(
φi(t)

)
,φi(t)

)
z�n–(

φi(t)
)
.

Since φi(t)≤ t, we obtain

z�
(
δ–φi(t)

) ≥ δλ(–)n–gσ
n–(σ (φi(t)),φi(t))z�n– (t)

φ�
i (t)

. (.)

Hence by (.), (.) and (.), we have

w�(t) ≤ –α
∑m

i=Qi(t)z(φi(t))
z(δ–φi(t))

– δ–wσ (t)
δλ(–)n–gσ

n–(σ (φi(t)),φi(t))z�n– (t)
φ�
i (t)

φ�
i (t)

z(δ–φi(σ (t)))

≤ –α
∑m

i=Qi(t)z(φi(t))
z(δ–φi(t))

– δ–wσ (t)
δλ(–)n–gσ

n–(σ (φi(t)),φi(t))φ�
i (t)

φ�
i (t)

z�n– (σ (t))
z(δ–φi(σ (t)))

≤ – α

m∑
i=

Qi(t) – λ(–)n–gσ
n–

(
σ
(
φi(t)

)
,φi(t)

)(
wσ (t)

),

http://www.journalofinequalitiesandapplications.com/content/2013/1/52
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and then

α

m∑
i=

Qi(t) ≤ –w�(t) – λ(–)n–w(t)gσ
n–

(
σ
(
φi(t)

)
,φi(t)

)
(.)

for t ≥ t. If we multiply (.) by ϕ(t) and integrate it from t to t, we obtain by Theo-
rem 

α

∫ t

t
ϕ(s)

m∑
i=

Qi(s)�s≤ –
∫ t

t
ϕ(s)w�(s)�s

–
∫ t

t
λ(–)n–ϕ(s)w(s)gσ

n–
(
σ
(
φi(s)

)
,φi(s)

)
�s

≤ –
[
ϕ(t)w(t) – ϕ(t)w(t) –

∫ t

t
ϕ�(s)wσ (t)�s

]

–
∫ t

t
λ(–)n–ϕ(s)w(s)gσ

n–
(
σ
(
φi(s)

)
,φi(s)

)
�s

≤ ϕ(t)w(t) +
∫ t

t
ϕ�(s)wσ (t)�s

– λ

∫ t

t
ϕ(s)w(s)gσ

n–
(
σ
(
φi(s)

)
,φi(s)

)
�s

≤ ϕ(t)w(t) – λ

∫ t

t
ϕ(s)gσ

n–
(
σ
(
φi(s)

)
,φi(s)

)
×

[
w(s) –

ϕ�(s)
λϕ(s)gσ

n–(σ (φi(s)),φi(s))

]

�s

+
∫ t

t

[ϕ�(s)]

λϕ(s)gσ
n–(σ (φi(s)),φi(s))

�s

≤ ϕ(t)w(t) +
∫ t

t

[ϕ�(s)]

λϕ(s)gσ
n–(σ (φi(s)),φi(s))

�s.

Therefore by (C),

∞ = α lim
t→∞ sup

∫ t

t
ϕ(s)

m∑
i=

Qi(s)�s

≤ ϕ(t)w(t) +

λ

lim
t→∞ sup

∫ t

t

[ϕ�(s)]

ϕ(s)gσ
n–(σ (φi(s)),φi(s))

�s

< ∞.

This is a contradiction.
Now let us consider the case of y(t) <  for t ≥ t. By (.) and (.), we have

z�n
(t) = –

m∑
i=

Qi(t)fi
(
y
(
φi(t)

))
> 
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for t ≥ t. That is, z�n > . It follows that z�j (t) (j ∈ [,n–]∩N) is strictly monotone and
eventually of constant sign. Since P(t) is an oscillatory function, there exists a t ≥ t such
that z(t) <  for t ≥ t. Since y(t) is bounded, by (C) and (.), there is a t ≥ t such that
z(t) is also bounded for t ≥ t. Assume that x(t) = –z(t). Then x�n (t) = –z�n (t). Therefore,
x(t) >  and x�n (t) <  for t ≥ t. Hence, we observe that x(t) is bounded. Since n is odd,
by Lemma , there exists a t ≥ t and p =  (otherwise x(t) is not bounded) such that
(–)kx�k (t) > , k ∈ [,n – ] ∩ N and t ≥ t. That is, (–)kz�k (t) < , k ∈ [,n – ] ∩ N

and t ≥ t. In particular, for t ≥ t we have z�(t) > . Therefore, z(t) is increasing. For the
rest of the proof, we can proceed the proof similarly to the case of y(t) > . Hence, the
proof is completed. �
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