Oscillatory behaviour of a higher-order dynamic equation

Deniz Uçar ${ }^{\text {* }}$ and Yaşar Bolat ${ }^{2}$

Correspondence:
deniz.ucar@usak.edu.tr
${ }^{1}$ Department of Mathematics, Faculty of Sciences and Arts, Usak University, 1 Eylul Campus, Usak, 64200, Turkey
Full list of author information is available at the end of the article

Abstract

In this paper we are concerned with the oscillation of solutions of a certain more general higher-order nonlinear neutral-type functional dynamic equation with oscillating coefficients. We obtain some sufficient criteria for oscillatory behaviour of its solutions. MSC: 34N05 Keywords: time scale; higher-order nonlinear neutral dynamic equation; oscillating coefficient

1 Introduction

The calculus on time scales has been introduced in order to unify the theories of continuous and discrete processes and in order to extend those theories to a more general class of the so-called dynamic equations. In recent years there has been much research activity concerning the oscillation and non-oscillation of solutions of neutral dynamic equations on time scales.

In this paper we consider the higher-order nonlinear dynamic equation

$$
\begin{equation*}
[y(t)+P(t) y(\tau(t))]^{\Delta^{n}}+\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(y\left(\phi_{i}(t)\right)\right)=0 \tag{1.1}
\end{equation*}
$$

where $n \geq 2, P(t), Q_{i}(t) \in C_{r d}\left[t_{0}, \infty\right)_{\mathbb{T}}$ for $i=1,2, \ldots, m ; P(t)$ is an oscillating function $(P(t): \mathbb{T} \rightarrow \mathbb{R}), Q_{i}(t)$ are positive real-valued functions for $i=1,2, \ldots, m ; \phi_{i}(t) \in$ $C_{r d}\left[t_{0}, \infty\right)_{\mathbb{T}}, \phi_{i}^{\Delta}(t)>0$, the variable delays $\tau, \phi_{i}:\left[t_{0}, \infty\right)_{\mathbb{T}} \rightarrow \mathbb{T}$ with $\tau(t), \phi_{i}(t)<t$ for all $t \in\left[t_{0}, \infty\right)_{\mathbb{T}}, \phi_{i}(t) \rightarrow \infty$ as $t \rightarrow \infty$ for $i=1,2, \ldots, m ; \tau(t) \rightarrow \infty$ as $t \rightarrow \infty ; f_{i}(u) \in C(\mathbb{R}, \mathbb{R})$ are nondecreasing functions, $u f_{i}(u)>0$ for $u \neq 0$ and $i=1,2, \ldots, m$.
The purpose of the paper is to study oscillatory behaviour of solutions of equation (1.1). For the sake of convenience, the function $z(t)$ is defined by

$$
\begin{equation*}
z(t)=y(t)+P(t) y(\tau(t)) . \tag{1.2}
\end{equation*}
$$

2 Basic definitions and some auxiliary lemmas

A time scale \mathbb{T} is an arbitrary nonempty closed subset of the real numbers \mathbb{R}. For $t \in \mathbb{T}$, we define the forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ by

$$
\sigma(t):=\inf \{s \in \mathbb{T}: s>t\}
$$

while the backward jump operator $\rho: \mathbb{T} \rightarrow \mathbb{T}$ is defined by

$$
\rho(t):=\sup \{s \in \mathbb{T}: s<t\}
$$

If $\sigma(t)>t$, we say that t is right-scattered, while if $\rho(t)<t$, we say that t is left-scattered. Also, if $\sigma(t)=t$, then t is called right-dense, and if $\rho(t)=t$, then t is called left-dense. The graininess function $\mu: \mathbb{T} \rightarrow[0, \infty)$ is defined by

$$
\mu(t):=\sigma(t)-t
$$

We introduce the set \mathbb{T}^{κ} which is derived from the time scale \mathbb{T} as follows. If \mathbb{T} has leftscattered maximum m, then $\mathbb{T}^{\kappa}=\mathbb{T}-\{m\}$, otherwise $\mathbb{T}^{\kappa}=\mathbb{T}$.

Definition 1 [1] The function $f: \mathbb{T} \rightarrow \mathbb{R}$ is called $r d$-continuous provided it is continuous at right-dense points in \mathbb{T} and its left-sided limits exist (finite) at left-dense points in \mathbb{T}.

Theorem 1 [1] Assume that $v: \mathbb{T} \rightarrow \mathbb{R}$ is strictly increasing and $\widetilde{\mathbb{T}}:=v(\mathbb{T})$ is a time scale. Let $w: \widetilde{\mathbb{T}} \rightarrow \mathbb{R}$. If $v^{\Delta}(t)$ and $w^{\widetilde{\Delta}}(v(t))$ exist for $t \in \mathbb{T}^{\kappa}$, then

$$
(w \circ v)^{\Delta}=\left(w^{\widetilde{\Delta}} \circ v\right) v^{\Delta}
$$

where we denote the derivative on $\widetilde{\mathbb{T}}$ by $\widetilde{\Delta}$.

Definition 2 [1] Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a function. If there exists a function $F: \mathbb{T} \rightarrow \mathbb{R}$ such that $F^{\Delta}(t)=f(t)$ for all $t \in \mathbb{T}^{\kappa}$, then F is said to be an antiderivative of f. We define the Cauchy integral by

$$
\int_{a}^{b} f(\tau) \Delta(\tau)=F(b)-F(a) \quad \text { for } a, b \in \mathbb{T}
$$

Theorem 2 [2] Let u and v be continuous functions on $[a, b]$ that are Δ-differentiable on $[a, b)$. If u^{Δ} and v^{Δ} are integrable from a to b, then

$$
\int_{a}^{b} u^{\Delta}(t) v(t) \Delta(t)+\int_{a}^{b} u^{\sigma}(t) v^{\Delta}(t) \Delta(t)=u(b) v(b)-u(a) v(a)
$$

Let $\widetilde{\mathbb{T}}=\mathbb{T} \cup\{\sup \mathbb{T}\} \cup\{\inf \mathbb{T}\}$. If $\infty \in \widetilde{\mathbb{T}}$, we call ∞ left-dense, and $-\infty$ is called right-dense provided $-\infty \in \widetilde{\mathbb{T}}$. For any left-dense $t_{0} \in \widetilde{\mathbb{T}}$ and any $\varepsilon>0$, the set

$$
L_{\varepsilon}\left(t_{0}\right)=\left\{t \in \mathbb{T}: 0<t_{0}-t<\varepsilon\right\}
$$

is nonempty, and so is $L_{\varepsilon}(\infty)=\left\{t \in \mathbb{T}: t>\frac{1}{\varepsilon}\right\}$ if $\infty \in \widetilde{\mathbb{T}}$.
Lemma 1 [3] Let $n \in \mathbb{N}$ and f be n-times differentiable on \mathbb{T}. Assume $\infty \in \widetilde{\mathbb{T}}$. Suppose there exists $\varepsilon>0$ such that

$$
f(t)>0, \quad \operatorname{sgn}\left(f^{\Delta^{n}}(t)\right) \equiv s \in\{-1,+1\} \quad \text { for all } t \in L_{\varepsilon}(\infty)
$$

and $f^{\Delta^{n}}(t) \neq 0$ on $L_{\delta}(\infty)$ for any $\delta>0$. Then there exists $p \in[0, n] \cap \mathbb{N}_{0}$ such that $n+p$ is even for $s=1$ and odd for $s=-1$ with

$$
\left\{\begin{array}{l}
(-1)^{p+j} f^{\Delta^{j}}(t)>0 \quad \text { for all } t \in L_{\varepsilon}(\infty), j \in[p, n-1] \cap \mathbb{N}_{0} \\
f^{\Delta^{j}}(t)>0 \quad \text { for all } t \in L_{\delta_{j}}(\infty)\left(\text { with } \delta_{j} \in(0, \varepsilon)\right), j \in[1, p-1] \cap \mathbb{N}_{0}
\end{array}\right.
$$

Lemma 2 [3] Let f be n-times differentiable on $\mathbb{T}^{\kappa^{n}}, t \in \mathbb{T}$, and $\alpha \in \mathbb{T}^{\kappa^{n}}$. Then with the functions h_{k} defined as $h_{n}(t, s)=(-1)^{n} g_{n}(s, t)$,

$$
h_{0}(r, s) \equiv 1 \quad \text { and } \quad h_{k+1}(r, s)=\int_{s}^{r} h_{k}(\tau, s) \Delta s \quad \text { for } k \in \mathbb{N}_{0}
$$

we have

$$
f(t)=\sum_{k=0}^{n-1} h_{k}(t, \alpha) f^{\Delta^{k}}(\alpha)+\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t, \sigma(\tau)) f^{\Delta^{n}}(\tau) \Delta \tau .
$$

Lemma 3 [3] Letf be n-times differentiable on $\mathbb{T}^{\kappa^{n}}$ and $m \in \mathbb{N}$ with $m<n$. Then we have, for all $\alpha \in \mathbb{T}^{\kappa^{n-1+m}}$ and $t \in \mathbb{T}^{\kappa^{m}}$,

$$
f^{\Delta^{m}}(t)=\sum_{k=0}^{n-m-1} h_{k}(t, \alpha) f^{\Delta^{k+m}}(\alpha)+\int_{\alpha}^{\rho^{n-m-1}(t)} h_{n-m-1}(t, \sigma(\tau)) f^{\Delta^{n}}(\tau) \Delta \tau .
$$

Lemma 4 [3] Suppose f is n-times differentiable and $g_{k}, 0 \leq k \leq n-1$, are differentiable at $t \in \mathbb{T}^{\kappa^{n}}$ with

$$
g_{k+1}^{\Delta}(t)=g_{k}(\sigma(t)) \quad \text { for all } 0 \leq k \leq n-2 .
$$

Then we have

$$
\left[\sum_{k=0}^{n-1}(-1)^{k} f^{\Delta^{k}} g_{k}\right]^{\Delta}=f g_{0}^{\Delta}+(-1)^{n-1} f^{\Delta^{n}} g_{n-1}^{\sigma} .
$$

3 Main results

Lemma 5 Letf be n-times differentiable on $\mathbb{T}^{\kappa^{n}}$. Iff ${ }^{\Delta}>0$, then for every $\lambda, 0<\lambda<1$, we have

$$
\begin{equation*}
f(t) \geq \lambda(-1)^{n-1} g_{n-1}\left(\sigma\left(T^{*}\right), t\right) f^{\Delta^{n-1}}(t) \tag{3.1}
\end{equation*}
$$

Proof Let $p, 0 \leq p \leq n-1$, be the integer assigned to the function f as in Lemma 1. Because of $f^{\Delta}>0$, we always have $p>0$. Furthermore, let $T^{*} \geq T$ be assigned to f by Lemma 1 . Then, by using the Taylor formula on time scales, for every $\rho^{n-1}(t) \geq T^{*}$, we obtain

$$
\begin{equation*}
f(t) \geq \int_{T^{*}}^{\rho^{n-1}(t)}(-1)^{n-1} g_{n-1}(\sigma(\tau), t) f^{\Delta^{n}}(\tau) \Delta \tau \tag{3.2}
\end{equation*}
$$

By using Theorem 2 and (3.2), we have

$$
f(t) \geq(-1)^{n-1} g_{n-1}(\sigma(t), t) f^{\Delta^{n-1}}(t)-\int_{T^{*}}^{\rho^{n-1}(t)}(-1)^{n-1} g_{n-1}(\sigma(\tau), t) f^{\Delta^{n-1}}(\tau) \Delta \tau
$$

Since f is n-times differentiable on $\mathbb{T}^{\kappa^{n}}$ and $m \in \mathbb{N}$ with $m<n$, we have with n and f substituted by $n-m$ and $f^{\Delta^{m}}$, respectively

$$
f^{\Delta^{m}}(t) \geq \int_{T^{*}}^{\rho^{n-m-1}(t)}(-1)^{n-m-1} g_{n-m-1}(\sigma(\tau), t) f^{\Delta^{n}}(\tau) \Delta \tau
$$

Also, for every $\rho^{n-1}(t)$, s with $\rho^{n-1}(t) \geq T^{*}$ and $T^{*} \leq s \leq t$, we have

$$
f^{\Delta^{m}}(s) \geq(-1)^{n-m-1} g_{n-m-1}\left(\sigma\left(T^{*}\right), t\right) f^{\Delta^{n}}(t) .
$$

This is obvious for $m=n-1$ and, when $m<n-1$, it can be derived by applying the Taylor formula. Thus, for all $t \geq T^{*}$, we get

$$
f(t) \geq(-1)^{n-1} g_{n-1}\left(\sigma\left(T^{*}\right), t\right) f^{\Delta^{n-1}}(t)
$$

and therefore the proof of the lemma can be immediately completed.

The result of Lemma 5 is an extension of studies in [4] and [5]. In order that the reader sees how the results in [4] (1.8.14) and [5] (Lemma 2) follow from (3.1), it is at this point only necessary to know that in the case $\mathbb{T}=\mathbb{Z}$, we have $\rho(t)=t-1, \sigma(t)=t+1$ and

$$
g_{n-1}\left(\sigma\left(T^{*}\right), t\right)=\frac{\left(t-T^{*}-1\right)^{(n-1)}}{(n-1)!}
$$

then we get the inequality in [4]

$$
u(t) \geq \frac{1}{(n-1)!}\left(n-n_{1}\right)^{(n-1)} \Delta^{n-1} u\left(2^{n-m-1} n\right)
$$

and in the case $\mathbb{T}=\mathbb{R}$, we have $\rho(t)=\sigma(t)=t$ and

$$
g_{n-1}\left(\sigma\left(T^{*}\right), t\right)=\frac{\left(t-T^{*}\right)^{(n-1)}}{(n-1)!}
$$

then we get the inequality in [5]

$$
u(t) \geq \frac{\vartheta}{(n-1)!}(t)^{n-1} u^{n-1}(t)
$$

For the cases $\mathbb{T}=\mathbb{Z}$ and $\mathbb{T}=\mathbb{R}$, some sufficient criterias for oscillatory behaviour of the solutions of the equation (1.1) were obtained by Bolat and Akın in [6] and [7], respectively. Furthermore, there might be other time scales that we cannot appreciate at this time due to our current lack of 'real-world' examples.

Theorem 3 Assume that n is odd and

(C1) $\lim _{t \rightarrow \infty} P(t)=0$,
(C2) $\int_{t_{0}}^{\infty} s^{n-1} \sum_{i=1}^{m} Q_{i}(s) \Delta s=\infty$.
Then every bounded solution of equation (1.1) is either oscillatory or tends to zero as $t \rightarrow \infty$.

Proof Assume that equation (1.1) has a bounded non-oscillatory solution $y(t)$. Without loss of generality, assume that $y(t)$ is eventually positive (the proof is similar when $y(t)$ is eventually negative). That is, $y(t)>0, y(\tau(t))>0$ and $y\left(\phi_{i}(t)\right)>0$ for $t \geq t_{1} \geq t_{0}$ and $i=1,2, \ldots, m$. Assume further that $y(t)$ does not tend to zero as $t \rightarrow \infty$. By (1.1), (1.2), we have for $t \geq t_{1}$

$$
\begin{equation*}
z^{\Delta^{n}}(t)=-\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(y\left(\phi_{i}(t)\right)\right)<0 . \tag{3.3}
\end{equation*}
$$

It follows that $z^{\Delta^{j}}(t)\left(j \in[0, n-1] \cap \mathbb{N}_{0}\right)$ is strictly monotone and eventually of constant sign. Since $P(t)$ is an oscillatory function, there exists a $t_{2} \geq t_{1}$ such that if $t \geq t_{2}$, then $z(t)>0$. Since $y(t)$ is bounded, by virtue of (C1) and (1.2), there is a $t_{3} \geq t_{2}$ such that $z(t)$ is also bounded for $t \geq t_{3}$. Because n is odd and $z(t)$ is bounded, by Lemma 1 , when $p=0$ (otherwise $z(t)$ is not bounded), there exists $t_{4} \geq t_{3}$ such that for $t \geq t_{4}$ we have $(-1)^{j} z^{\Delta^{j}}(t)>$ $0, j \in[0, n-1] \cap \mathbb{N}_{0}$.
In particular, since $z^{\Delta}(t)<0$ for $t \geq t_{4}, z(t)$ is decreasing. Since $z(t)$ is bounded, we write $\lim _{t \rightarrow \infty} z(t)=L(-\infty<L<\infty)$. Assume that $0 \leq L<\infty$. Let $L>0$. Then there exists a constant $c>0$ and a $t_{5} \geq t_{4}$ such that $z(t)>c>0$ for $t \geq t_{5}$. Since $y(t)$ is bounded, $\lim _{t \rightarrow \infty} P(t) y(\tau(t))=0$ by $(\mathrm{C} 1)$. Therefore, there exists a constant $c_{1}>0$ and a $t_{6} \geq t_{5}$ such that $y(t)=z(t)-P(t) y(\tau(t))>c_{1}>0$ for $t \geq t_{6}$. So that we can find a t_{7} with $t_{7} \geq t_{6}$ such that $y\left(\phi_{i}(t)\right)>c_{1}>0$ for $t \geq t_{7}$. From (3.3) we have

$$
\begin{equation*}
z^{\Delta^{n}}(t)=-\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(c_{1}\right)<0 \tag{3.4}
\end{equation*}
$$

for $t \geq t_{7}$. If we multiply (3.4) by t^{n-1} and integrate it from t_{7} to t, we obtain

$$
\begin{equation*}
F(t)-F\left(t_{7}\right) \leq-f\left(c_{1}\right) \int_{t_{7}}^{t} \sum_{i=1}^{m} Q_{i}(s) s^{n-1} \Delta s, \tag{3.5}
\end{equation*}
$$

where

$$
F(t)=\sum_{i=1}^{n-1}(-1)^{i+1}\left(t^{n-1}\right)^{\Delta^{i}} z^{\Delta^{n-i}}\left(\sigma^{i}(t)\right)
$$

and

$$
\sigma^{i}(t)=\sigma\left(\sigma^{i-1}(t)\right)
$$

Since $(-1)^{k} z^{\Delta^{k}}(t)>0$ for $k=0,1,2, \ldots, n-1$ and $t \geq t_{4}$, we have $F(t)>0$ for $t \geq t_{7}$. From (3.5) we have

$$
-F\left(t_{7}\right) \leq-f\left(c_{1}\right) \int_{t_{7}}^{t} \sum_{i=1}^{m} Q_{i}(s) s^{n-1} \Delta s
$$

By (C2) we obtain

$$
-F\left(t_{7}\right) \leq-f\left(c_{1}\right) \int_{t_{7}}^{t} \sum_{i=1}^{m} Q_{i}(s) s^{n-1} \Delta s=-\infty
$$

as $t \rightarrow \infty$. This is a contradiction. So, $L>0$ is impossible. Therefore, $L=0$ is the only possible case. That is, $\lim _{t \rightarrow \infty} z(t)=0$. Since $y(t)$ is bounded, by (C1) we obtain

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} z(t)-\lim _{t \rightarrow \infty} P(t) y(t)=0
$$

from (1.2).
Now let us consider the case of $y(t)<0$ for $t \geq t_{1}$. By (1.1) and (1.2),

$$
z^{\Delta^{n}}(t)=-\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(y\left(\phi_{i}(t)\right)\right)>0
$$

for $t \geq t_{1}$. That is, $z^{\Delta^{n}}>0$. It follows that $z^{\Delta^{j}}(t)\left(j \in[0, n-1] \cap \mathbb{N}_{0}\right)$ is strictly monotone and eventually of constant sign. Since $P(t)$ is an oscillatory function, there exists a $t_{2} \geq t_{1}$ such that if $t \geq t_{2}$, then $z(t)<0$. Since $y(t)$ is bounded, by (C 1$)$ and (1.2), there is a $t_{3} \geq t_{2}$ such that $z(t)$ is also bounded for $t \geq t_{3}$. Assume that $x(t)=-z(t)$. Then $x^{\Delta^{n}}(t)=-z^{\Delta^{n}}(t)$. Therefore, $x(t)>0$ and $x^{\Delta^{n}}(t)<0$ for $t \geq t_{3}$. Hence, we observe that $x(t)$ is bounded. Since n is odd, by Lemma 1 , there exists a $t_{4} \geq t_{3}$ and $p=0$ (otherwise $x(t)$ is not bounded) such that $(-1)^{j} x^{\Delta^{j}}(t)>0, j \in[0, n-1] \cap \mathbb{N}_{0}$ and $t \geq t_{4}$. That is, $(-1)^{j} z^{z^{j}}(t)<0, j \in[0, n-1] \cap \mathbb{N}_{0}$ and $t \geq t_{4}$. In particular, for $t \geq t_{4}$ we have $z^{\Delta}(t)>0$. Therefore, $z(t)$ is increasing. So, we can assume that $\lim _{t \rightarrow \infty} z(t)=L(-\infty<L \leq 0)$. As in the proof of $y(t)>0$, we may prove that $L=0$. As for the rest, it is similar to the case of $y(t)>0$. That is, $\lim _{t \rightarrow \infty} y(t)=0$. This contradicts our assumption. Hence the proof is completed.

Theorem 4 Assume that n is even and (C1) holds. If the following condition is satisfied:
(C3) There is a function $\varphi(t)$ such that $\varphi(t) \in C_{r d}^{1}\left[t_{0}, \infty\right)_{\mathbb{T}}$. Moreover,

$$
\lim _{t \rightarrow \infty} \sup \int_{t_{0}}^{t} \varphi(s) \sum_{i=1}^{m} Q_{i}(s) \Delta s=\infty
$$

and

$$
\lim _{t \rightarrow \infty} \sup \int_{t_{10}}^{t} \frac{\left[\varphi^{\Delta}(s)\right]^{2}}{\varphi(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right)} \Delta s<\infty
$$

for $\varphi(t)$ and $i=1,2, \ldots, m$. Then every bounded solution of equation (1.1) is oscillatory.

Proof Assume that equation (1.1) has a bounded non-oscillatory solution $y(t)$. Without loss of generality, assume that $y(t)$ is eventually positive (the proof is similar when $y(t)$ is eventually negative). That is, $y(t)>0, y(\tau(t))>0$ and $y\left(\phi_{i}(t)\right)>0$ for $t \geq t_{1} \geq t_{0}$. By (1.1) and (1.2), we have (3.3) for $t \geq t_{1}$. Then $z^{\Delta^{n}}(t)<0$. It follows that $z^{\Delta^{j}}(t)\left(j \in[0, n-1] \cap \mathbb{N}_{0}\right)$ is strictly monotone and eventually of constant sign. Since $P(t)$ is an oscillatory function, there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$, we have $z(t)>0$. Since $y(t)$ is bounded, by (C1)
and (1.2), there is a $t_{3} \geq t_{2}$, such that $z(t)$ is also bounded for $t \geq t_{3}$. Because n is even, by Lemma 1 when $p=1$ (otherwise $z(t)$ is not bounded), there exists $t_{4} \geq t_{3}$ such that for $t \geq t_{4}$ we have

$$
\begin{equation*}
(-1)^{j+1} z^{\Delta^{j}}(t)>0, \quad j \in[0, n-1] \cap \mathbb{N}_{0} . \tag{3.6}
\end{equation*}
$$

In particular, since $z^{\Delta}(t)>0$ for $t \geq t_{4}, z(t)$ is increasing. Since $y(t)$ is bounded,

$$
\lim _{t \rightarrow \infty} P(t) y(\tau(t))=0
$$

by (C1). Let $\delta>1$; i.e., there exists a $t_{5} \geq t_{4}$ such that by (1.2)

$$
y(t)=z(t)-P(t) y(\tau(t))>\frac{1}{\delta} z(t)>0
$$

for $t \geq t_{5}$. We may find a $t_{6} \geq t_{5}$ such that for $t \geq t_{6}$ and $i=1,2, \ldots, m$,

$$
\begin{equation*}
y\left(\phi_{i}(t)\right)>\frac{1}{\delta} z\left(\phi_{i}(t)\right)>0 . \tag{3.7}
\end{equation*}
$$

From (3.3), (3.7) and the properties of f, we have

$$
\begin{align*}
z^{\Delta^{n}}(t) & \leq-\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(\frac{1}{\delta} z\left(\phi_{i}(t)\right)\right) \\
& =-\sum_{i=1}^{m} Q_{i}(t) \frac{f_{i}\left(\frac{1}{\delta} z\left(\phi_{i}(t)\right)\right)}{z\left(\phi_{i}(t)\right)} z\left(\phi_{i}(t)\right) \tag{3.8}
\end{align*}
$$

for $t \geq t_{6}$. Since $z(t)>0$ is bounded and increasing, $\lim _{t \rightarrow \infty} z(t)=L(0<L<\infty)$. By the continuity of f, we have

$$
\lim _{t \rightarrow \infty} \frac{f_{i}\left(\frac{1}{\delta} z\left(\phi_{i}(t)\right)\right)}{z\left(\phi_{i}(t)\right)}=\frac{f_{i}\left(\frac{L}{\delta}\right)}{L}>0 .
$$

Then there is a $t_{7} \geq t_{6}$ such that for $t \geq t_{7}, i=1,2, \ldots, m$, we have

$$
\begin{equation*}
\frac{f_{i}\left(\frac{1}{\delta} z\left(\phi_{i}(t)\right)\right)}{z\left(\phi_{i}(t)\right)} \geq \frac{f_{i}\left(\frac{L}{\delta}\right)}{2 L}=\alpha>0 . \tag{3.9}
\end{equation*}
$$

By (3.8), (3.9),

$$
\begin{equation*}
z^{\Delta^{n}}(t) \leq-\alpha \sum_{i=1}^{m} Q_{i}(t) z\left(\phi_{i}(t)\right) \quad \text { for } t \geq t_{7} \tag{3.10}
\end{equation*}
$$

Set

$$
\begin{equation*}
w(t)=\frac{z^{\Delta^{n-1}}(t)}{z\left(\frac{1}{\delta} \phi_{i}(t)\right)} . \tag{3.11}
\end{equation*}
$$

We know from (3.6) that there is a $t_{8} \geq t_{7}$ such that for a sufficiently large $t \geq t_{8}, w(t)>0$.

Therefore, Δ-derivating (3.11) we obtain

$$
\begin{align*}
w^{\Delta}(t) & =\frac{z^{\Delta^{n}}(t)}{z\left(\delta^{-1} \phi_{i}(t)\right)}+z^{\Delta^{n-1}}(\sigma(t))\left(\frac{1}{z\left(\delta^{-1} \phi_{i}(t)\right)}\right)^{\Delta} \\
& =\frac{z^{\Delta^{n}}(t)}{z\left(\delta^{-1} \phi_{i}(t)\right)}-\frac{\delta^{-1} \phi_{i}^{\Delta}(t) z^{\Delta^{n-1}}(\sigma(t)) z^{\Delta}\left(\delta^{-1} \phi_{i}(t)\right)}{z\left(\delta^{-1} \phi_{i}(t)\right) z\left(\delta^{-1} \phi_{i}(\sigma(t))\right)} \tag{3.12}\\
& \leq \frac{z^{\Delta^{n}}(t)}{z\left(\delta^{-1} \phi_{i}(t)\right)}-\frac{\delta^{-1} \phi_{i}^{\Delta}(t) z^{\Delta^{n-1}}(\sigma(t)) z^{\Delta}\left(\delta^{-1} \phi_{i}(t)\right)}{z^{2}\left(\delta^{-1} \phi_{i}(\sigma(t))\right)} \\
& =\frac{z^{\Delta^{n}}(t)}{z\left(\delta^{-1} \phi_{i}(t)\right)}-\delta^{-1} w^{\sigma}(t) \frac{\phi_{i}^{\Delta}(t) z^{\Delta}\left(\delta^{-1} \phi_{i}(t)\right)}{z\left(\delta^{-1} \phi_{i}(\sigma(t))\right)} . \tag{3.13}
\end{align*}
$$

We know from (3.6) that there is a $t \geq t_{9}$ such that $z^{\Delta}(t)>0$ and $z^{\Delta^{n-1}}(t)>0$ for an even n. Since $z(t)>0$ is increasing $z\left(\delta^{-1} \phi_{i}(\sigma(t))\right) \geq z\left(\delta^{-1} \phi_{i}(t)\right)$ for $i=1,2, \ldots, m$. Therefore, by Lemma 5,

$$
\begin{equation*}
z\left(\delta^{-1} \phi_{i}(t)\right) \geq \lambda(-1)^{n-1} g_{n-1}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) z^{\Delta^{n-1}}\left(\phi_{i}(t)\right) \tag{3.14}
\end{equation*}
$$

Then by Δ-derivating (3.14) and using $g_{n-1}^{\Delta}(\sigma(t), t)=g_{n-2}^{\sigma}(\sigma(t), t)$, we get

$$
\begin{aligned}
{\left[z\left(\delta^{-1} \phi_{i}(t)\right)\right]^{\Delta} } & \geq \lambda(-1)^{n-2} g_{n-1}^{\Delta}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) z^{\Delta^{n-1}}\left(\phi_{i}(t)\right) \\
& \geq \lambda(-1)^{n-2} g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) z^{\Delta^{n-1}}\left(\phi_{i}(t)\right)
\end{aligned}
$$

by Lemma 2

$$
z^{\Delta}\left(\delta^{-1} \phi_{i}(t)\right) \delta^{-1} \phi_{i}^{\Delta}(t) \geq \lambda(-1)^{n-2} g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) z^{\Delta^{n-1}}\left(\phi_{i}(t)\right) .
$$

Since $\phi_{i}(t) \leq t$, we obtain

$$
\begin{equation*}
z^{\Delta}\left(\delta^{-1} \phi_{i}(t)\right) \geq \frac{\delta \lambda(-1)^{n-2} g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) z^{\Delta^{n-1}}(t)}{\phi_{i}^{\Delta}(t)} \tag{3.15}
\end{equation*}
$$

Hence by (3.10), (3.14) and (3.15), we have

$$
\begin{aligned}
w^{\Delta}(t) \leq & \frac{-\alpha \sum_{i=1}^{m} Q_{i}(t) z\left(\phi_{i}(t)\right)}{z\left(\delta^{-1} \phi_{i}(t)\right)} \\
& -\delta^{-1} w^{\sigma}(t) \frac{\delta \lambda(-1)^{n-2} g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) z^{\Delta^{n-1}}(t)}{\phi_{i}^{\Delta}(t)} \frac{\phi_{i}^{\Delta}(t)}{z\left(\delta^{-1} \phi_{i}(\sigma(t))\right)} \\
\leq & \frac{-\alpha \sum_{i=1}^{m} Q_{i}(t) z\left(\phi_{i}(t)\right)}{z\left(\delta^{-1} \phi_{i}(t)\right)} \\
& -\delta^{-1} w^{\sigma}(t) \frac{\delta \lambda(-1)^{n-2} g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) \phi_{i}^{\Delta}(t)}{\phi_{i}^{\Delta}(t)} \frac{z^{\Delta^{n-1}(\sigma(t))}}{z\left(\delta^{-1} \phi_{i}(\sigma(t))\right)} \\
\leq & -\alpha \sum_{i=1}^{m} Q_{i}(t)-\lambda(-1)^{n-2} g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right)\left(w^{\sigma}(t)\right)^{2},
\end{aligned}
$$

and then

$$
\begin{equation*}
\alpha \sum_{i=1}^{m} Q_{i}(t) \leq-w^{\Delta}(t)-\lambda(-1)^{n-2} w^{2}(t) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(t)\right), \phi_{i}(t)\right) \tag{3.16}
\end{equation*}
$$

for $t \geq t_{10}$. If we multiply (3.16) by $\varphi(t)$ and integrate it from t_{10} to t, we obtain by Theorem 2

$$
\begin{aligned}
\alpha \int_{t_{10}}^{t} \varphi(s) \sum_{i=1}^{m} Q_{i}(s) \Delta s \leq & -\int_{t_{10}}^{t} \varphi(s) w^{\Delta}(s) \Delta s \\
& -\int_{t_{10}}^{t} \lambda(-1)^{n-2} \varphi(s) w^{2}(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right) \Delta s \\
\leq & -\left[\varphi(t) w(t)-\varphi\left(t_{10}\right) w\left(t_{10}\right)-\int_{t_{10}}^{t} \varphi^{\Delta}(s) w^{\sigma}(t) \Delta s\right] \\
& -\int_{t_{10}}^{t} \lambda(-1)^{n-2} \varphi(s) w^{2}(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right) \Delta s \\
\leq & \varphi\left(t_{10}\right) w\left(t_{10}\right)+\int_{t_{10}}^{t} \varphi^{\Delta}(s) w^{\sigma}(t) \Delta s \\
& -\lambda \int_{t_{10}}^{t} \varphi(s) w^{2}(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right) \Delta s \\
\leq & \varphi\left(t_{10}\right) w\left(t_{10}\right)-\lambda \int_{t_{10}}^{t} \varphi(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right) \\
& \times\left[w(s)-\frac{\varphi^{\Delta}(s)}{2 \lambda \varphi(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right)}\right]^{2} \Delta s \\
& +\int_{t_{10}}^{t} \frac{\left[\varphi^{\Delta}(s)\right]^{2}}{4 \lambda \varphi(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right)} \Delta s \\
\leq & \varphi\left(t_{10}\right) w\left(t_{10}\right)+\int_{t_{10}}^{t} \frac{\left[\varphi^{\Delta}(s)\right]^{2}}{4 \lambda \varphi(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right)} \Delta s .
\end{aligned}
$$

Therefore by (C3),

$$
\begin{aligned}
\infty & =\alpha \lim _{t \rightarrow \infty} \sup \int_{t_{10}}^{t} \varphi(s) \sum_{i=1}^{m} Q_{i}(s) \Delta s \\
& \leq \varphi\left(t_{10}\right) w\left(t_{10}\right)+\frac{1}{4 \lambda} \lim _{t \rightarrow \infty} \sup \int_{t_{10}}^{t} \frac{\left[\varphi^{\Delta}(s)\right]^{2}}{\varphi(s) g_{n-2}^{\sigma}\left(\sigma\left(\phi_{i}(s)\right), \phi_{i}(s)\right)} \Delta s \\
& <\infty .
\end{aligned}
$$

This is a contradiction.
Now let us consider the case of $y(t)<0$ for $t \geq t_{1}$. By (1.1) and (1.2), we have

$$
z^{\Delta^{n}}(t)=-\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(y\left(\phi_{i}(t)\right)\right)>0
$$

for $t \geq t_{1}$. That is, $z^{\Delta^{n}}>0$. It follows that $z^{\Delta^{j}}(t)\left(j \in[0, n-1] \cap \mathbb{N}_{0}\right)$ is strictly monotone and eventually of constant sign. Since $P(t)$ is an oscillatory function, there exists a $t_{2} \geq t_{1}$ such that $z(t)<0$ for $t \geq t_{2}$. Since $y(t)$ is bounded, by (C1) and (1.2), there is a $t_{3} \geq t_{2}$ such that $z(t)$ is also bounded for $t \geq t_{3}$. Assume that $x(t)=-z(t)$. Then $x^{\Delta^{n}}(t)=-z^{\Delta^{n}}(t)$. Therefore, $x(t)>0$ and $x^{\Delta^{n}}(t)<0$ for $t \geq t_{3}$. Hence, we observe that $x(t)$ is bounded. Since n is odd, by Lemma 1 , there exists a $t_{4} \geq t_{3}$ and $p=1$ (otherwise $x(t)$ is not bounded) such that $(-1)^{k} x^{\Delta^{k}}(t)>0, k \in[0, n-1] \cap \mathbb{N}_{0}$ and $t \geq t_{4}$. That is, $(-1)^{k} z^{\Delta^{k}}(t)<0, k \in[0, n-1] \cap \mathbb{N}_{0}$ and $t \geq t_{4}$. In particular, for $t \geq t_{4}$ we have $z^{\Delta}(t)>0$. Therefore, $z(t)$ is increasing. For the rest of the proof, we can proceed the proof similarly to the case of $y(t)>0$. Hence, the proof is completed.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DU carried out the time scale studies, participated in the sequence alignment, drafted the manuscript, and have given final approval of the version to be published. YB carried out the preliminaries of the manuscript and participated in the sequence alignment. Each author have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Faculty of Sciences and Arts, Usak University, 1 Eylul Campus, Usak, 64200, Turkey.
${ }^{2}$ Department of Mathematics, Faculty of Sciences and Literatures, Kastamonu University, Kastamonu, Turkey.
Received: 26 September 2012 Accepted: 30 January 2013 Published: 15 February 2013

References

1. Bohner, M, Peterson, A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Boston (2001)
2. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
3. Bohner, M, Agarwal, RP: Basic calculus on time scales and some of its applications. Results Math. 35(1-2), 3-22 (1999)
4. Agarwall, RP: Difference Equations and Inequalities, Theory, Methods, and Applications. Dekker, New York (1992)
5. Philos, CG: A new criterion for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. 29, 7-8 (1981)
6. Bolat, Y, Akın, Ö: Oscillatory behaviour of a higher order nonlinear neutral type functional difference equation with oscillating coefficients. Appl. Math. Lett. 17, 1073-1078 (2004)
7. Bolat, Y, Akın, Ö: Oscillatory behaviour of a higher order nonlinear neutral delay type functional differential equation with oscillating coefficients. Czechoslov. Math. J. 55(130), 893-900 (2005)

doi:10.1186/1029-242X-2013-52

Cite this article as: Uçar and Bolat: Oscillatory behaviour of a higher-order dynamic equation. Journal of Inequalities and Applications 2013 2013:52.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

