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Abstract
This article aims to obtain some determinantal inequalities for accretive-dissipative
matrices which are generalizations of the determinantal inequalities presented by Lin
(Linear Algebra Appl. 438:2808-2812, 2013). At the same time, we give some
numerical examples which show the effectiveness of our results.
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1 Introduction
Let Mn(C) be the space of complex matrices of size n × n matrices. A ∈ Mn(C) is said to
be accretive-dissipative, if, in its Toeplitz decomposition

A = B + iC, B = B∗, C = C∗, (.)

both matrices B and C are Hermitian positive definite. For simplicity, let A, B, C be parti-
tioned as

(
A A

A A

)
=

(
B B

B∗
 B

)
+ i

(
C C

C∗
 C

)
(.)

such that the diagonal blocks A and A are of order k and l (k > , l >  and k + l = n),
respectively, and letm =min{k, l}.
If A ∈Mn(C) is partitioned as

(
A A

A A

)
,

where A is a nonsingular submatrix, then the matrix A/A := A – AA–
A is called

the Schur complement of the submatrix A in A.
If A ∈ Mn(C) is positive definite and partitioned as in (.), then the inequalities [,

Lemma ] hold:

|detA| = ∣∣det(B + iC)
∣∣ ≤ ∣∣det(B +C)

∣∣ ≤ 
n

∣∣det(B + iC)

∣∣. (.)
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IfA ∈Mn(C) is positive definite and partitioned as in (.), then the famous Fischer-type
determinantal inequality is proved [, p.]:

detA≤ detA detA. (.)

If A ∈ Mn(C) is an accretive-dissipative matrix and partitioned as in (.), Ikramov []
first proved the determinantal inequality for A:

|detA| ≤ m|detA||detA|. (.)

Lin [, Theorem ] got a stronger result than (.) as follows:
If A ∈Mn(C) is an accretive-dissipative matrix, then

|detA| ≤ 

m|detA||detA|. (.)

The purpose of this paper is to give some generalizations of (.) and (.). Our main
results can be stated as follows.

Theorem  Let B,C ∈Mn(C) be positive definite and x, y be positive real numbers. Then

∣∣det(B + iC)
∣∣ ≤ det(B +C) ≤ (

x + y
) n


∣∣∣∣det
(
B
x
+ i

C
y

)∣∣∣∣. (.)

When x = y, the inequality det(B + C) ≤  n
 |det(B + iC)| is a special case of Theorem .

Thus (.) is a generalization of the inequality |det(B+ iC)| ≤ det(B+C) ≤  n
 |det(B+ iC)|

[, Lemma ].

Theorem  Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.), and let x,
y be positive real numbers. Then

|detA| ≤ (
x + y

) n


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣
∣∣∣∣det

(
B

x
+ i

C

y

)∣∣∣∣. (.)

When x = y, we get the inequality |detA| ≤  n
 |detA||detA| [, (.)], which is a spe-

cial case of Theorem .

Theorem  Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.), and let x,
y be positive real numbers. Then

|detA| ≤ m
(
x + y

)m
 |detA|

∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣. (.)

When x = y, we get the inequality [, (.)]

|detA| ≤ 

m|detA||detA|,

which is a special case of (.).
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2 Proofs of main results
To achieve the proofs of Theorem , Theorem  and Theorem , we need the following
lemmas.

Lemma  [, Property ] Let A ∈ Mn(C) be accretive-dissipative and partitioned as
in (.). Then A/A := A –AA–

A, the Schur complement of A in A, is also accretive-
dissipative.

Lemma  [, Lemma ] Let A ∈ Mn(C) be accretive-dissipative and partitioned as in (.).
Then A– = E – iF with E = (B +CB–C)– and F = (C + BC–B)–.

Lemma  [, Lemma ] Let B,C ∈Mn(C) be Hermitian and assume that B > . Then

B +CB–C ≥ C. (.)

Remark  A stronger inequality than (.) was given in Lin [, Lemma .]: Let A >  and
any Hermitian B. Then A�(BA–B) ≥ B.

Proof of Theorem  Let λj, j = , . . . ,n, be the eigenvalues of B– 
CB– 

 , where B 
 means

the unique positive definite square root of B. Then we have

| + iλj| ≤ | + λj| ≤
√
x + y

∣∣∣∣ x + i
λj

y

∣∣∣∣. (.)

The first inequality follows from [, Theorem .], while the second one we prove is as
follows:

∣∣det(B + iC)
∣∣ ≤ ∣∣det(B +C)

∣∣
=

∣∣detB 

(
I + B– 

CB– 

)
B



∣∣

=
∣∣detB 


∣∣∣∣detB 


∣∣∣∣det(I + B– 

CB– 

)∣∣

= |detB|
∣∣∣ n∏

j=

| + λj|

≤ |detB|
∣∣∣ n∏

j=

√
x + y

∣∣∣∣ x + i
λj

y

∣∣∣∣ (by (.))

=
(
x + y

) n
 |detB|

∣∣∣∣det
(
I
x
+
i
y
B– 

CB– 


)∣∣∣∣
=

(
x + y

) n


∣∣∣∣det
(
B
x
+
i
y
C

)∣∣∣∣.
The proof is completed. �

Proof of Theorem 

|detA| ≤ det(B +C) (by Theorem )

≤ det(B +C) · det(B +C) (by (.))

http://www.journalofinequalitiesandapplications.com/content/2013/1/512


Yang Journal of Inequalities and Applications 2013, 2013:512 Page 4 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/512

≤ (
x + y

) k


∣∣∣∣det B

x
+
i
y
C

∣∣∣∣(x + y
) l


∣∣∣∣det B

x
+
i
y
C

∣∣∣∣ (by (.))

=
(
x + y

) n


∣∣∣∣det B

x
+
i
y
C

∣∣∣∣
∣∣∣∣det B

x
+
i
y
C

∣∣∣∣.
The proof is completed. �

Proof of Theorem  By Lemma , we obtain

A/A = A –AA–
A

= B + iC –
(
B∗
 + iC∗


)
(B + iC)–(B + iC)

= B + iC –
(
B∗
 + iC∗


)
(Ek – iFk)(B + iC).

Furthermore, by Lemma , we have

Ek =
(
B +CB–

C
)–, Fk =

(
C + BC–

 B
)–,

where Ek and Fk are positive definite.
By a simple computation, we obtain

A/A = R + iS.

By Lemma , it is easy to know that R, S are positive definite and we have

R = B – B∗
EkB +C∗

EkC – B∗
FkC –C∗

FkB,

S = C + B∗
FkB –C∗

FkC –C∗
EkB – B∗

EkC.

By the inequalities

(
B∗
 ±C∗


)
Fk(B ±C) ≥ ,

(
B∗
 ±C∗


)
Ek(B ±C)≥ ,

it can be proved that

±(
B∗
FkC +C∗

FkB
) ≤ B∗

FkB +C∗
FkC,

±(
C∗
EkB + B∗

EkC
) ≤ B∗

EkB +C∗
EkC.

Thus

R + S ≤ B + B∗
FkB +C + C∗

EkC. (.)

By Lemma  and the operator reverse monotonicity of the inverse, we get

Ek ≤ 

C–
 , Fk ≤ 


B–
 . (.)

As B, C are positive definite, we also have

B > B∗
B

–
 B, C > C∗

C
–
 C. (.)
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Without loss of generality, assumem = l. Then we have

|detA/A| = |detR + iS|
≤ det(R + S) (by (.))

≤ det
(
B + B∗

FkB +C + C∗
EkC

)
(by (.))

≤ det
(
B + B∗

B
–
 B +C +C∗

C
–
 C

)
(by (.))

< det
(
(B +C)

)
(by (.))

≤ m
(
x + y

)m


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣ (by (.)).

By noting

|detA| = |detA|
∣∣det(A/A)

∣∣,
the proof is completed. �

3 Numerical examples
There are many upper bounds for the determinant of the accretive-dissipative matrices
which are due to (.), (.) and (.). However, these bounds are incomparable.
In this section, we give some numerical examples to show that (.) and (.) are better

than (.) in some cases.

Example . Let

A = B + i ∗C =

(
. –
– .

)
+ i ∗

(
. 
 .

)

=

(
. + .i – + i

– + i . + .i

)
.

We calculate that |detA| = ..
By the upper bound of |detA| in (.), we have



m|detA||detA| = .,

where A = . + .i, A = . + .i.
Let x = , y = . From the upper bound of |detA| in (.), we have

(
x + y

) n


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣
∣∣∣∣det

(
B

x
+ i

C

y

)∣∣∣∣ = .,

where B = ., B = ., C = ., C = ..
Meanwhile, by the upper bound of |detA| in (.), we get

m
(
x + y

)m
 |detA|

∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣ = ..
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Example . Let

A = B + i ∗C =

⎛
⎜⎝

 – 
–  –
 – 

⎞
⎟⎠ + i ∗

⎛
⎜⎝
  
  
  

⎞
⎟⎠

=

⎛
⎜⎝

 + i – + i  + i
– + i  + i – + i
 + i – + i  + i

⎞
⎟⎠ .

We calculate that |detA| = ..
By the upper bound of |detA| in (.), we have



m|detA||detA| = .,

where A =
( +i –+i
–+i +i

)
, A =  + i.

Let x = , y = . Then, by the upper bound of |detA| in (.), we have

(
x + y

) n


∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣
∣∣∣∣det

(
B

x
+ i

C

y

)∣∣∣∣ = .,

where B =
(  –
– 

)
, C =

(  
 

)
, B = , C = .

Meanwhile, by the upper bound of |detA| in (.), we get

m
(
x + y

)m
 |detA|

∣∣∣∣det
(
B

x
+ i

C

y

)∣∣∣∣ = ..

From the two examples above, we can obtain that (.) and (.) are better than (.) in
some cases.
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