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1 Introduction
Let M,(C) be the space of complex matrices of size # x n matrices. A € M[,(C) is said to

be accretive-dissipative, if, in its Toeplitz decomposition
A=B+iC, B =P8, c=C", (1.1)

both matrices B and C are Hermitian positive definite. For simplicity, let A, B, C be parti-

tioned as

An  Anp Bn B fCu Cio
=\, +i| ) (12)

A21 A22 Blz BZ2 C12 C22
such that the diagonal blocks Aj; and Ay, are of order k and [ (k >0, />0 and k + [ = n),

respectively, and let m = min{k, [}.
If A € M,(C) is partitioned as

An  An

Ay An)’
where A;; is a nonsingular submatrix, then the matrix A/Ay := Ay — A21A1‘11A12 is called
the Schur complement of the submatrix Ay; in A.

If A € M,(C) is positive definite and partitioned as in (1.2), then the inequalities [1,
Lemma 6] hold:

|detA| = |det(B + iC)| < |det(B + C)| < 2% |det(B +iC)|. 1.3)
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If A € M,,(C) is positive definite and partitioned as in (1.2), then the famous Fischer-type
determinantal inequality is proved [2, p.478]:

detA < detAj; detAss. (14)

If A € M[,(C) is an accretive-dissipative matrix and partitioned as in (1.2), Ikramov [3]

first proved the determinantal inequality for A:
|detA| <3™|detAy|detAs]. (1.5)

Lin [1, Theorem 8] got a stronger result than (1.5) as follows:
If A € M[,(C) is an accretive-dissipative matrix, then

|det A| < 22| det Ay || detAss. (1.6)

The purpose of this paper is to give some generalizations of (1.3) and (1.6). Our main

results can be stated as follows.

Theorem 1 Let B, C € M,(C) be positive definite and x, y be positive real numbers. Then

det(E + LE)‘ 1.7)
x 0y

When x = y, the inequality det(B + C) < 2% |det(B + iC)| is a special case of Theorem 1.
Thus (1.5) is a generalization of the inequality | det(B + iC)| < det(B+ C) < 27| det(B + iC)|
[1, Lemma 6].

|det(B +iC)| < det(B+ C) < (* +?) !

Theorem 2 Let A € M,,(C) be accretive-dissipative and partitioned as in (1.2), and let x,

y be positive real numbers. Then

B C B C
det(—11 +iﬁ>Hdet<£ +i£)’. (1.8)
x x

|detA| < (xz +y2)g
y y

When x = y, we get the inequality |detA| < 2% |det Ay || detAy,| [1, (3.1)], which is a spe-
cial case of Theorem 2.

Theorem 3 Let A € M,,(C) be accretive-dissipative and partitioned as in (1.2), and let x,

y be positive real numbers. Then

|detA| <2™ (x2 +y2) % |det Ay

By C
det(ﬁ +i£>‘. (1.9)
x oy

When x = y, we get the inequality [1, (3.2)]
|det A < 22™| det Agy|| det Ay,

which is a special case of (1.7).
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2 Proofs of main results
To achieve the proofs of Theorem 1, Theorem 2 and Theorem 3, we need the following

lemmas.

Lemma 4 [4, Property 6] Let A € M,,(C) be accretive-dissipative and partitioned as
in(1.2). Then A/A1 := Ay —AZIAIIIAH, the Schur complement of A1y in A, is also accretive-

dissipative.

Lemma 5 [3, Lemma 1] Let A € M,,(C) be accretive-dissipative and partitioned as in (1.2).
Then A" =E — iF withE = (B+ CB'C)™ and F = (C + BC™'B)™..

Lemma 6 [3, Lemma 4] Let B,C € M,,(C) be Hermitian and assume that B > 0. Then
B+CB'C>2C. (2.1)

Remark1 A stronger inequality than (2.4) was given in Lin [5, Lemma 2.2]: Let A > 0 and
any Hermitian B. Then A#(BA™B) > B.

Proof of Theorem 1 Let A;, j =1,...,n, be the eigenvalues of B 2CB~?, where B? means
the unique positive definite square root of B. Then we have

1 A
il (2.2)
X

[L+id] <142 < Va2 +9?

The first inequality follows from [6, Theorem 2.2], while the second one we prove is as

follows:
{det(B + iC)| < |det(B + C)|
- |detB (I + B 3CB%)B?|

= |detB?||det B3| |det(I + B2 CB 2|

- |detB|‘li[|1+kj|

j=1

< |detB]| ‘ 1_[\/962 +y?
j=1

Aj
y

I
det(— + iB’% CB%> ’
x )y

B i
det(— + —C)‘.
x Yy

The proof is completed. d

(by (2.2))

L.
—+i
x

= (#* +y2)% | det B|

- (24’

Proof of Theorem 2

|detA| < det(B+ C) (by Theorem 1)

< det(By + Ci1) - det(Byy + Coz)  (by (1.3))
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B ,
det on + iCvu
x oy

k

<(**+y)? (»* +y2)% (by (1.6))

B i
det o2 + —Cyy
X Jy

n

- (2!

B ,
det 21 + iCu
x Y

B ,
det 222 + isz
x )

The proof is completed. d

Proof of Theorem 3 By Lemma 4, we obtain

AlAy = Ay - A21A1_11A12
= 322 + isz - (BTZ + ICTZ)(BH + iCu)_l(Bu + iClz)
= Bzg + iCZZ - (BTZ + lCTZ)(Ek - iFk)(Bu + iclz).

Furthermore, by Lemma 5, we have
_ -1 _ -1
E = (Bu + CuBul Cu) ’ Fy= (Cu + B CulBu) ’

where E; and Fy are positive definite.
By a simple computation, we obtain

A/AH =R +iS.
By Lemma 4, it is easy to know that R, S are positive definite and we have

R =By — Bl,E(Bi + C},ExCiy — B, FxCia — Ci5,FkBia,

S = Cy + B, FxB1a — C}, FxCip — Cly ExB1y — B, ExCha.
By the inequalities
(Bfy £ Cjy) Fe(Bia £ C12) > 0, (Bl £ C}y)Ex(By2 £ C1p) = 0,
it can be proved that

+(Bj,FxCrz + CiyFxBia) < B},FBiy + C,FiCia,

+(C},ExBua + Bj,ExCr2) < Bj,ExBia + C1EcCha.
Thus
R+ S < Byy + 2B}, FiBiz + Cyz + 2C1, Ex Cyo. (2.3)
By Lemma 6 and the operator reverse monotonicity of the inverse, we get
1 5 -1
Er < 5Cu, Fr<=Bj. (2.4)

As B, C are positive definite, we also have

By >Bj,B!Bn,  Cyn>ChHCH Ch. (2.5)
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Without loss of generality, assume m = [. Then we have

|detA/Ay| = |detR + iS|
<det(R+S) (by(1.7))
< det(By, + 2B}, FiBiy + Cyp + 2C1,ExC13)  (by (2.3))
< det(Bay + B},B{ Bis + Coy + Cj,Ci' C12)  (by (2.4))

< det(2(322 + C22)) (by (25))

m B C
< 2m(x2 +y2)7 det<ﬁ + zﬁ)‘ (by (1.6)).
X J

By noting
|detA| = |det Ay ||det(A/An)|,
the proof is completed. d

3 Numerical examples
There are many upper bounds for the determinant of the accretive-dissipative matrices
which are due to (1.6), (1.8) and (1.9). However, these bounds are incomparable.

In this section, we give some numerical examples to show that (1.8) and (1.9) are better

than (1.6) in some cases.

Example 3.1 Let

1.01 -1 1.01 1
A=B+ixC= +i%
-1 101 1 1.01
_ 1.01 + 1.01{ -1+
\ -1+ 1o01+101i)°
We calculate that |detA| = 4.0402.
By the upper bound of |detA| in (1.6), we have

237 det Ay || det Agy| = 5.7706,

where A;; =1.01 + 1.014, Ayp = 1.01 + 1.01.
Let x = 4, y = 5. From the upper bound of | detA| in (1.8), we have

By, .C B C
det(j + i&)Hdet(ﬁ + 1£>‘ =4.2870,
x X v

x2+2%
(x* +5°) )

where Bu = 1.01, Bzz = 1.01, Cu = 1.01, C22 =1.01.
Meanwhile, by the upper bound of |detA| in (1.9), we get

m
2

2" (x* +y%) 2 | detAy|

By C
det(ﬁ + zﬁ)’ - 5.9148.
x y
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Example 3.2 Let

5 -1 3 5 3
A=B+ixC=]-1 2 =2|+ix|3 2
3 -2 3 1 1 4

5+5i -1+3i 3+i
=|-1+3i 2+2i -2+i
3+1 -2+i 3+4i

We calculate that |detA| = 119.0378.
By the upper bound of | detA| in (1.6), we have

23| det Ay || det Asy | = 384.7077,

where Au = ( 5450 _1+3i), A22 =3+ 4i.

—1+3i 2+2i

Let x =4, y = 5. Then, by the upper bound of |detA]| in (1.8), we have

(2 +5?)?

By C By C
det(i + il)Hdet(ﬁ + zﬁ)‘ = 403.3473,
x y X J

where By = (i _21), Cn= (g ;), By =3, Cyy = 4.

Meanwhile, by the upper bound of |detA| in (1.9), we get

m
2

2" (x* +y%) 2 | detAy|

B C
det(ﬁ + lﬁ)’ - 382.0149.
x y

From the two examples above, we can obtain that (1.8) and (1.9) are better than (1.6) in

some cases.
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