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Abstract

In this paper, we introduce a system of generalized nonlinear mixed variational
inequalities and obtain the approximate solvability by using the resolvent parallel
technique. Our results may be viewed as an extension and improvement of the
previously known results for variational inequalities.
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1 Introduction and preliminaries
Variational inequality theory, which was introduced by Stampacchia [1] in 1964, has been
witnessed as an interesting branch of mathematical and engineering sciences with a wide
range of applications in industry, finance, economics and pure and applied sciences. In
2001, Verma [2] introduced a new system of strongly monotonic variational inequalities
and studied the approximation solvability of the system based on the application of a pro-
jection method. The main and basic idea in this technique is to establish the equivalence
between variational inequalities and fixed point problems. This alternative equivalence
has been used to develop several projection iterative methods for solving variational in-
equalities and related optimization problems. Several extensions and generalizations of
the system of strongly monotonic variational inequalities have been considered by many
authors [3-12]. Inspired and motivated by research in this area, we introduce a system
of generalized nonlinear mixed variational inequalities problem involving two different
nonlinear operators. It is well known that if the nonlinear term in the mixed variational
inequality is a proper, convex, and lower semicontinuous, then one can establish the equiv-
alence between the mixed variational inequality and the fixed point problem. Using the
parallel algorithm considered in [12], we suggest and analyze a parallel iterative method
for solving this system. Our result may be viewed as an extension and improvement of the
recent results.

Let H be a real Hilbert space whose inner product and norm are denoted by (-, -) and
| - ||, respectively. Let K be a nonempty closed convex subset of H.Let 71, T, : K x K — H
be two nonlinear operators. Let ¢1, ¢, : H — R U {+00} be proper convex lower semi-
continuous functions on . We consider a system of generalized nonlinear mixed varia-
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tional inequalities (abbreviated as SMNVI) as follows: Find (x*, y*) € K x K such that

(pTi(y*, x*) + g(x*) — g(*), g(x) — g(x¥)) + @1 (g(x)) — @1 (g(x*))
>0, Vgx)eKk,

(nTor(x*, ") + gO") — g(x¥), g(x) — g(x™)) + (g (%)) — 02(g(¥"))
>0, Vgx)eKk,

(11)

where g: K — K is a mapping and p,n > 0.
Note that if ¢; = ¢ = 8k, and g = I, where [ is the identity operator, 8k is the indicator
function of K defined by

0 ifxeK,
Sk (x) =
+00 otherwise,

then problem (1.1) reduces to the following system of nonlinear variational inequalities
(SNVI) considered in [3] of finding (x*, y*) € K x K such that

(pT1(y*,x*) +x* —y*,x —x*) >0, VxeKk, w2
(nTh(x*,y%) +y* —x*,x—x*) >0, VxeK. '

If T} = T, = T and g = I, where [ is the identity operator, then problem (1.1) is equivalent
to the following system of nonlinear mixed variational inequalities (SN'VI) considered in
[7, 8] of finding (x*,y*) € K x K such that

(T x*) +x* =y, x—x") + o1 (%) —1(x*) > 0, VxeK, 13)
(T, y") +y* = a%,2 = 2%) + ¢2(x) - 20") = 0, VaeK. '

If 1 = 93 = 8k and T}, T : K — ‘H are univariate mappings, then problem (1.1) is reduced
to the following system of nonlinear variational inequalities (SNVI) considered in [12] of
finding (x*,y*) € K x K such that

(pT1(y*) + gx*) — g(r"), g(x) — g(x*)) = 0, Vg(x) €K,
(nTo(x*) +g(y*) — g(x*), g(x) — g(x*)) = 0, Vg(x) € K,

where g: K — K is a mapping.

T =T,=T,g=1and ¢ = ¢ = 8¢, where T is a univariate mapping defined by T :
K — H, then problem (1.1) reduces to the following system of variational inequalities (SVI)
considered in [2] of finding (x*,y*) € K x K such that

(pT(*) +x* —y*,x—x*) >0, VxeKk,
(T (x*) +y* —x*,x—x*) >0, VxeK.

(1.5)

We also need the following well-known results.
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Definition 1.1 Define the norm || - || on H x H by
[Ga) | = el + 170, W) € H x M,

Definition 1.2 For any maximal monotone operator T, the resolvent operator associated
with T, for any A > 0, is defined by

]%(u) = +2T)Yu), VYueH.
Remark 1.1 It is well known that the subdifferential d¢ of a proper convex lower semi-

continuous function ¢ : H — R U {+00} is a maximal monotone operator. We can define
its resolvent operator by

]g(u) = +23¢) Y u), YueH,
where A > 0 and J,, is defined everywhere.

Lemma 1.1 [13] For a given u,z € H satisfies the inequality
(u—z,0—u) + rpx) —rp(u) >0, VxeH,
ifand only if u = J(2), where J;(u) = (I + 10¢9) ™ () is the resolvent operator and } > 0.

If ¢ is the indicator function of a closed convex set K € H, then the resolvent operator
](;(~) reduces to the projection operator Pk (). It is well known that fé is nonexpansive, i.e.,

||];(M)—/(2(V)|| <lu-v|, VYu,veH.

Based on Lemma 1.1, similar to that in [8] and [7], the following statement gives equiv-
alent characterization of problem (1.1).

Lemma 1.2 Problem (1.1) is equivalent to finding (x*,y*) € K x K such that
g(x*) = ](};1 Lg()/*) - ,OTI()’*,»’C*)],
g0) =7, [g(x") = nTa(x*,y)),

where J;, = (I +3¢;)™", i=1,2.

Proof Suppose that (x*,y*) € K x K is a solution of the following generalized nonlinear

mixed variational inequalities (abbreviated as SNMVI):

(pTi(y*,x*) + g(x*) — g(y*), g(x) — g(x*)) + p'p1(g(x)) — o' o1(g(x™))
>0, Vegx) ek,

(nTo(x*, y%) + g(*) — g(x%), g(x) — g(x*)) + n'pa(g(x)) — n'p2(g(¥*))
>0, Vgx)eKk,
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where g: K — K is a mapping and p > 0, p’ >0, n > 0, ' > 0. Using Lemma 1.1, we can

easily show that problem (1.7) is equivalent to

g(x*) =]£1/ 0" - pTh(y*,x")], (18)
g0*) =J [g*) - nTa(x*, 5],

where ]51/ =+ p/agol)’l,]g; =(I +n'd¢;y)L. Let p’ =1’ = 1. Then problem (1.7) reduces to

problem (1.1) and J} = (I + d¢;)™", i = 1,2. This completes the proof. O

Remark 1.2 If 77 = T, = T and g = I, where [ is the identity operator, then Lemma 1.2

reduces to Lemma 1.2 in [7].

Definition 1.3 A mapping T : K x K — H is said to be
(1) relaxed g-(y,r)-cocoercive if there exist constants y > 0 and r > 0 such that for all
x,y €K,

2
)

(T, u) - T, v),8(0)-g») = (=) T, )= T ) |* + 7] g@) - g0

Yu,v € K;

(2) g-p-Lipschitz continuous in the first variable if there exists a constant x> 0 such
that for all x,y € K,

| TG u) = T, v)| < 1] g®) - g(7)

, Yu,vek.

Remark 1.3 If T is a univariate mapping and g = I, where [ is the identity operator, then
Definition 1.3 reduces to the standard definition of relaxed (y, r)-cocoercive and Lipschitz

continuous, respectively.

Definition 1.4 A mapping g: K — H is said to be o-expansive if there exists a constant
a > 0 such that for all x,y € H,

lg@) - g()| = allx - yll.

Lemma 1.3 [14] Suppose that {8,} is a nonnegative sequence satisfying the following in-
equality:

Spi1 < (1 - )‘n)(sn +0, Vn>nyg,

where ng is a nonnegative number, 1, € [0,1] with Y .2 A, = 00, and o, = o(A,). Then
lim,,— o 8, = 0.

2 Algorithms

In this section, we suggest a parallel algorithm associated with the resolvent operator for
solving the system of SNMVI Our results extend and improve the corresponding results
in [2, 3, 7, 11, 12]. In fact, using Lemma 1.2, we suggest the following iterative method for
solving problem (1.1).
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Algorithm 2.1 For arbitrarily chosen initial points xg, yo € K (and g(xo),2(yo) € K), com-
pute the sequences {x,} and {y,} such that

g(erl) =(1- an)g Xn) + anll [g(yn) pTIO/mxn)]

(2.1)
g()/nﬂ) =(1- ﬂn)g(yn) + lgn]éz k(xn) - UTZ(xnryn)];
where ];i =(I +3¢;)7}, i = 1,2, is the resolvent operator, p,n >0, a,, € [0,1] and B, € [0,1]
forall n > 0.

As reported in [12], one of the attractive features of Algorithm 2.1 is that it is suitable
for implementing on two different processor computers. In other words, x,,,; and y,,,1 are
solved in parallel, and Algorithm 2.1 is the so-called parallel resolvent method. We refer
the interested reader to papers [15-17] and references therein for more examples and ideas
of parallel iterative methods.

If 91 = 92 = 6k, and g = I, 8k is the indicator function of K, then Algorithm 2.1 reduces
to the following algorithm.

Algorithm 2.2 For arbitrarily chosen initial points xy, yo € K, compute the sequences {x,}
and {y,} such that

Xn+l = (1 - an)xn + anPK [,yn - IOTl(yn:xn)]; (2 2)

Yns1 = (L= Bu)yn + BuPr[xn = T2 (X, y)]
where p,n >0, o, € [0,1] and B, € [0,1] for all # > 0.
If T} = T, = T and g = I, then Algorithm 2.1 reduces to the following algorithm.

Algorithm 2.3 For arbitrarily chosen initial points xy, y9 € K, compute the sequences {x,,}
and {y,} such that

Xn+l = (1 - O[n)xn + Oln]‘llq [_)/n - IOT(yn:xn)]:

(2.3)
Vn+l = 1- ﬂn)yn + lgn](};z [, — UT(xmyn)L

where ];l, =(I +3¢;)7}, i =1,2, is the resolvent operator, p,n >0, a,, € [0,1] and B, € [0,1]
forall n > 0.

If o1 = 9o =8k and T, T, : K — H are univariate mappings, then Algorithm 2.1 reduces
to the following algorithm.

Algorithm 2.4 For arbitrarily chosen initial points %o,y € K (and g(xo),g(y0) € K), com-
pute the sequences {x,} and {y,} such that

g(xrﬁ—l) = (1 - arz)g(xn) + anPKLg(yn) - /OT1(}’n)],
g(yn+1 (1- By g(yrl + ﬂnPK[g(xn) nTa(x)],

(2.4)

where p,n >0, «, € [0,1] and B, € [0,1] for all # > 0.
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If T =T,=T,g=1and ¢; = ¢, = 8k, where T is a univariate mapping defined by T :
K — H, then Algorithm 2.1 reduces to the following algorithm.

Algorithm 2.5 For arbitrarily chosen initial points xo, yo € K (and g(x0),2(y0) € K), com-
pute the sequences {x,} and {y,} such that

Xntl = (1 - an)xn + anPK[yn - ,OT()’n)],
Vnr1 = (L= Bu)yn + BuPri [0 — T (x,)],

(2.5)

where p,n >0, «, € [0,1] and B, € [0,1] for all # > 0.

3 Main results
In this section, based on Algorithm 2.1, we now present the approximation solvability of
problem (1.1) involving relaxed g-(y,r)-cocoercive and g-u-Lipschitz continuous in the

first variable mappings in Hilbert settings.

Theorem 3.1 Let H be a real Hilbert space. Let K be a nonempty closed convex subset of H,
andlet T;: K x K — H be relaxed g-(y;, r;)-cocoercive and g-u;-Lipschitz continuous in the
first variable for i =1,2. Let g : K — K be an a-expansive mapping. Suppose that (x*,y*) €
K x K is the unique solution to problem (1.1) and {x,}, {y,} are generated by Algorithm 2.1.
If {a,} and {B,} are two sequences in [0,1] satisfying the following conditions:

(i) oy =028, >0 and B, — b1, > 0 such that -y — 628, = 00,

Y o Bn — b1, = 00,
(i) 6; = \/1 + 21112 —2pr1 + p2py such that 0 <6 <1,

(iii) 6, = \/1 +20yaho® — 201y + 021y such that 0 < 6, < 1,
then the sequences {x,} and {y,} converge to x* and y*, respectively.

Proof Since (x*,y*) € K x K is the unique solution to problem (1.1), from Lemma 1.2 it
follows that

g*) =1, lg") - pTL( ),

(3.1)
g0") =T, [g(*) = nTo(x*, )]

We first evaluate ||g(x,41) — g(x*)|| for all # > 0. From (2.1) and the nonexpansive property

of the resolvent operator, we have

|l gin) - ()|
= (1 - g (@) + @l [€0n) = PT1(Ty %)
— (- a)g(x") — oy, [g(r7) - Ta (7,5 ]|
< (1 -a,)|g,) - g(x*) |
+ ull /g, [80m) = pT10m 2n) | = T, [€ (") = P T2 ("5 ]|
<(1-a,)|gben) —g(x) | + | gtn) —g(0*) = p(T1m x0) = T (V%)) (B.2)
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Notice that T is relaxed g-(y1,r1)-cocoercive and g-u;-Lipschitz continuous in the first
variable. Then we have

I

lgn) —g(7*) = p(T2 0 2n) — Ta (", 5%))

= g0 -20")|” - 20(g0) — £(*), Ty %) - Ta (5,%))
+0*| T - To (%, 2) |

< g0) —g() | + 207 T mra) = Ti (v 57) |

=201 |glm) = 2()|* + 0°| T ) = Ti(v,57) |

<6%g) - g (")

2

2 (3.3)

where 6; = \/1 +2py11?2 —2pr + p2py < 1 in view of assumption (ii). Substituting (3.3)
into (3.2), we have

lgGenin) —g(x*) | < @ - an) | gn) = g(x*) || + cur | gm) g (") |- (3.4)

Similarly, since T is relaxed g-(ys,7;)-cocoercive and g-u,-Lipschitz continuous in the
first variable, we have

||g(yn+l) _g(y*) “ <(1- Bn) ”g(yn) —g()’*) ” + Bub Hg(xn) _g(x*)

) (3.5)

where 0, = \/1 +2nYaa® — 211y + N2y < 1in view of assumption (iii). It follows from (3.4)
and (3.5) that

” (g(xn+1):g(yn+1)) - (g(x*)’g(y*)) “
< [1- (on = 6280 €) - g(x*) | + [1 = (B — 1) ][ €3) ~ 2 (") |
= max{wi, waa) (| (€6en), g0)) — (2(x*), (7)) ), (3.6)

where wy,, =1 — (a0, — 6,8,) and wo,, =1 — (B, — 61,,).

From assumption (i) and Lemma 1.3, we can obtain

nli)nolo” (g(xml)vg()’ml)) - (g(x*)’g(y*)) ” =0,

and so

Jim [gGes1) —g(x") | =0 and  tim [Gm) - g ()] =0,

which implies that sequences {g(x,)} and {g(y,)} converge to g(x*) and g(y*), respectively.
Since g is «-expansive, it follows that {x,} and {y,} converge to x* and y*, respectively. This
completes the proof. d

The following theorems can be obtained from Theorem 3.1 immediately.

Theorem 3.2 [3] Let H be a real Hilbert space. Let K be a nonempty closed convex subset
of H, and let T; : K x K — H be relaxed (y;, r;)-cocoercive and ;-Lipschitz continuous in
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the first variable for i = 1,2. Suppose that (x*,y*) € K x K is the unique solution to problem
(1.2) and {x,}, {y.} are generated by Algorithm 2.2. If {o,,} and {B,} are two sequences in
[0,1] satisfying the following conditions:
(1) oy =628, > 0and B, — 61, > 0 such thaty ooty =602, =00, > oo B — b1ty = 00,
(2) 6, = \/1 +2p1 1% —2pr1 + p2 g such that 0 < 6 <1,
(3) 02 = /1 + 2021002 — 201y + 21y such that 0 < 6, < 1,
then the sequences {x,} and {y,} converge to x* and y*, respectively.

Theorem 3.3 [12] Let H be a real Hilbert space. Let K be a nonempty closed convex subset
of H, and let T; : K — H be relaxed g-(y;, r;)-cocoercive and g-v;-Lipschitz continuous for
i=12. Let g: K — K be an a-expansive mapping. Suppose that (x*,y*) € K x K is the
unique solution to problem (1.4) and {x,}, {y,} are generated by Algorithm 2.4. If {«,} and
{B.} are two sequences in [0,1] satisfying the following conditions:

(1) 0<auBu <1, a,-0:B,>0and B, — o, >0 such that y - ot — 028, = 00,

ZZZ() Bn — b1, = 00,

(2) 61 =/1+2py112 —2pry + p2uy such that 0 <6, <1,

(3) 62 = /1 +20y2109% — 201y + 2y such that 0 < 6 < 1,
then the sequences {x,} and {y,} converge to x* and y*, respectively.
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