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Abstract
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1 Introduction
A mapping f : X −→ Y is called an isometry if f satisfies

dY
(
f (x), f (y)

)
= dX(x, y)

for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the spaces X and Y , respec-
tively.
The theory of isometric mappings originated in the classical paper [] by Mazur and

Ulam in .

Mazur-Ulam theorem Every isometry f of a normed real linear space X onto a normed
real linear space is a linear mapping up to translation, that is, x �→ f (x) – f () is linear,
which amounts to the definition that f is affine.

The Mazur-Ulam theorem is not true for a normed complex vector space. In addition,
the onto assumption is also essential. Without this assumption, Baker [] proved that an
isometry from a normed real linear space into a strictly convex normed real linear space
is affine.
Gähler [, ] introduced a new approach for a theory of -norm and n-norm on a lin-

ear space. Chu [] studied the Mazur-Ulam theorem in linear -normed spaces. Recently,
Moslehian and Sadeghi [] introduced theMazur-Ulam theorem in the non-Archimedean
strictly convex normed spaces. Moreover, Mirmostafaee and Moslehian [] introduced a
non-Archimedean fuzzy norm on a linear space over a non-Archimedean field. In partic-
ular, Amyari and Sadeghi [] proved Mazur-Ulam theorem under the condition of strict
convexity in non-Archimedean -normed spaces.
In , Katsaras [] and Wu and Fang [] introduced the notion of fuzzy norm, and

also Wu and Fang gave the generalization of the Kolmogoroff normalized theorem for a
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fuzzy topological linear space. In addition, fuzzy n-normed linear spaces were studied by
Narayanan and Vijayabalaji; see [].
In this paper, we investigate the notion of non-Archimedean fuzzy -normed space over

a linear ordered non-Archimedean field and prove thatMazur-Ulam theoremholds under
some conditions in the non-Archimedean fuzzy -normed space.

Definition . A non-Archimedean field is a fieldK equipped with a (valuation) function
from K into [,∞) satisfying the following properties:
() |a| ≥  and equality holds if and only if a = ,
() |ab| = |a||b|,
() |a + b| ≤max{|a|, |b|}

for all a,b ∈K.

Clearly, || = |–| =  and |n| ≤  for all n ∈ N. An example of a non-Archimedean val-
uation is the function | · | taking everything except  into  and || = ; see []. We
call it a non-Archimedean trivial valuation. Also, the most important examples of non-
Archimedean spaces are p-adic numbers; see [].

Definition . Let X be a linear space over a field K with a non-Archimedean valuation
| · |. A function ‖ ·‖ : X×X −→ [,∞) is said to be a non-Archimedean -norm if it satisfies
the following properties:
() ‖x, y‖ =  if and only if x, y are linearly dependent,
() ‖x, y‖ = ‖y,x‖,
() ‖cx, y‖ = |c|‖x, y‖,
() ‖x, y + z‖ ≤max{‖x, y‖,‖x, z‖}

for all x, y, z ∈ X and c ∈K. Then (X,‖ · ‖) is called a non-Archimedean -normed space.

Definition . Let X be a linear space over a field K with a non-Archimedean valuation
| · |. A function N : X × R −→ [, ] is said to be a non-Archimedean fuzzy -norm on X
if for all x, y ∈ X and all s, t ∈R,
(N) N(x, y, t) =  for t ≤ ,
(N) for t > , N(x, y, t) =  if and only if x and y are linearly dependent,
(N) N(x, y, t) =N(y,x, t),
(N) N(x, cy, t) =N(y,x, t

|c| ) for c 	= ,
(N) N(x, y + z,max{s, t})≥min{N(x, y, s),N(x, z, t)},
(N) N(x, y,∗) is a nondecreasing function of R and limt→∞ N(x, y, t) = .

The pair (X,N) is called a non-Archimedean fuzzy -normed space.

The property (N) implies that N(–x, y, t) = N(x, y, t) for all x, y ∈ X and t > . It is easy
to show that (N) is equivalent to the following condition:

N(x, y + z, t) ≥min
{
N(x, y, t),N(x, z, t)

}
for all x, y, z ∈ X and t ∈R.

Example . Let (X,‖·, ·‖) be a non-Archimedean -normed space. Define

N(x, y, t) =

⎧⎨
⎩

t
t+‖x,y‖ when t > , t ∈R,

 when t ≤ ,

where x, y ∈ X. Then (X,N) is a non-Archimedean fuzzy -normed space.
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Definition . A non-Archimedean fuzzy -normed space is said to be strictly convex
if N(x, y + z,max{s, t}) = min{N(x, y, s),N(x, z, t)} and N(x, y, s) = N(x, z, t) imply y = z and
s = t.

Definition . Let (X,N) and (Y ,N) be two non-Archimedean fuzzy -normed spaces.
We call f : (X,N) −→ (Y ,N) a fuzzy -isometry if N(a – c,b – c, t) = N(f (a) – f (c), f (b) –
f (c), t) for all a,b, c ∈ X and t > .

Definition . Let X be a non-Archimedean fuzzy -normed space, and let a,b, c be mu-
tually disjoint elements of X. Then a, b and c are said to be collinear if b – c = r(a – c) for
some real number r.

We denote the set of all elements of K whose norms are  by C , that is,

C =
{
r ∈K||r| = 

}
.

2 Main results
Lemma . Let (X,N) be a non-Archimedean fuzzy -normed space over a linear ordered
non-Archimedean field K. Then

N(x, y, t) =N(x, y + rx, t) for all r ∈K.

Proof Let x, y ∈ X and let r ∈K. Without loss of generality, we may assume t > . Then

N(x, y + rx, t)≥min
{
N(x, y, t),N(x, rx, t)

}
=N(x, y, t).

Conversely,

N(x, y, t) = N(x, y + rx – rx, t)≥min
{
N(x, y + rx, t),N(x, rx, t)

}
= N(x, y + rx, t).

Thus N(x, y, t) =N(x, y + rx, t) for all r ∈K. �

Lemma . Let (X,N) be a non-Archimedean fuzzy -normed space over a linear ordered
non-Archimedean field K with C = {n|n ∈ Z}, and let a,b, c ∈ X and t > . Suppose that X
is strictly convex. Then α = a+b

 is the unique element of X such that

N(a – c,a – α, t) =N(b – α,b – c, t) =N(a – c,b – c, t),

where a, b and α are collinear.

Proof Let α = a+b
 ∈ X and t > . By Lemma ., we have

N(a – c,a – α, t) = N
(
a – c,a –

a + b


, t
)

= N
(
a – c,

a – b


, t
)

http://www.journalofinequalitiesandapplications.com/content/2013/1/507


Koh and Kang Journal of Inequalities and Applications 2013, 2013:507 Page 4 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/507

= N
(
a – c,a – b, ||t)

= N(a – c,a – b, t)

= N(a – c,b – c, t).

Similarly,

N(b – α,b – c, t) = N
(
b –

a + b


,b – c, t
)
=N(b – a,b – c, t)

= N(a – c,b – c, t).

Hence we haveN(a– c,a–α, t) =N(a– c,b– c, t) =N(b–α,b– c, t), that is, the existence
part holds. To show the uniqueness part, assume that β is an element of X such that

N(a – c,a – β , t) =N(b – β ,b – c, t) =N(a – c,b – c, t),

where a, b and β are collinear. Since a, b and β are collinear, there exists a real number s
such that

β = sa + ( – s)b.

We may assume s 	=  and s 	= .

N(a – c,b – c, t) = N(a – c,a – β , t) =N
(
a – c,a –

(
sa + ( – s)b

)
, t

)

= N
(
a – c,a – b,

t
| – s|

)

= N
(
a – c,b – c,

t
| – s|

)
.

Similarly, we have

N(a – c,b – c, t) =N
(
a – c,b – c,

t
|s|

)
,

that is,

N(a – c,b – c, t) =N
(
a – c,b – c,

t
| – s|

)
=N

(
a – c,b – c,

t
|s|

)
.

We note that

N
(
a – c + a – c,b – c,max

{
t
|s| ,

t
| – s|

})

≥min

{
N

(
a – c,b – c,

t
|s|

)
,N

(
a – c,b – c,

t
| – s|

)}

=N
(
a – c,b – c,

t
|s|

)
=N

(
a – c,b – c,

t
| – s|

)
,
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and

N
(
a – c + a – c,b – c,max

{
t
|s| ,

t
| – s|

})

=N
(
(a – c),b – c,max

{
t
|s| ,

t
| – s|

})

=N
(
a – c,b – c,max

{
t
|s| ,

t
| – s|

})
.

The previous note implies that

N(a – c,b – c, t) =N
(
a – c,b – c,

t
|s|

)
=N

(
a – c,b – c,

t
| – s|

)
.

The strict convexity of X implies that |s| = |– s| = . Then there exist elements t and t in
Z such that  – s = t and s = t . Since t + t = , we know that t, t < . Without loss
of generality, we let  – s = –n and s = –n with n ≥ n. If n � n, then

 = –n + –n = –n
(
 + n–n

)
.

Hence n = +n–n . This is a contradiction. Thus n = n, that is, s = 
 . This implies that

β = a+b
 = α. Therefore the proof is completed. �

Theorem . Let X and Y be non-Archimedean fuzzy -normed spaces over a linear or-
dered non-Archimedean fieldK with C = {n|n ∈ Z}. Let X and Y be strict convexities. Sup-
pose that f : X −→ Y is a fuzzy -isometry satisfying that f (a), f (b) and f (c) are collinear
when a, b and c are collinear. Then f (x) – f () is additive.

Proof Let g(x) = f (x) – f (). Since f is a fuzzy -isometry, so is g . It is easy to show that if
a, b and c are collinear, then g(a), g(b) and g(c) are collinear. Since g : X −→ Y is a fuzzy
-isometry, we have

N
(
g(a) – g(c), g(a) – g

(
a + b


)
, t

)
=N

(
a – c,a –

a + b


, t
)

=N(a – c,a – b, t) =N(a – c,b – c, t)

=N
(
g(a) – g(c), g(b) – g(c), t

)
.

Similarly, we get N(g(b) – g( a+b ), g(b) – g(c), t) =N(g(a) – g(c), g(b) – g(c), t). Hence

N
(
g(a) – g(c), g(a) – g

(
a + b


)
, t

)
= N

(
g(b) – g

(
a + b


)
, g(b) – g(c), t

)

= N
(
g(a) – g(c), g(b) – g(c), t

)
.

By the uniqueness of Lemma ., we have g( a+b ) = g(a)+g(b)
 for all a,b ∈ X. Thus f (x) – f ()

is additive, as desired. �

Example . Let K = Z, where Z = {, , }. Suppose that the field K has a non-
Archimedean trivial valuation | · |. Then || = , that is, C = {n|n ∈ Z}.
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