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Abstract

In this paper, we obtain some sufficient conditions for Slepian’s inequality for
Gaussian processes with respect to weak majorization. For our results, we also provide
an application example.
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1 Introduction and main results
Gaussian processes are natural extensions of multivariate Gaussian random variables to
infinite (countably or continuous) index sets. For Gaussian processes, strong and weak
stationarity are the same concept. Gaussian processes are by far the most accessible and
well-understood processes (on uncountable index sets), which are important in statistical
modeling because of properties inherited from the normal one, and many deep theoretical
analyses of various properties are available.

Let X = (X,...,X,,) and X* = (X],...,X) be two centered Gaussian random vectors
with covariance matrices X = (o) and £* = (o), respectively. The well-known Slepian

inequality [1] states that if 0;; = 0} and o < al;f for every i,j=1,...,n, then for any x € R,

P( min X; Zx) §P< min X} zx), P(maxXi < x) sP(max X §x>.

1<i<n 1<i<n 1<i<n 1<i<n

Slepian’s inequality and its modifications are an essential ingredient in the proofs of many
results being concerned with sample path properties of Gaussian processes. See, e.g., Adler
and Taylor [2] and Maurer [3]. Some sufficient conditions for Slepian’s inequality with
respect to majorization for two Gaussian random vectors have been given in Fang and
Zhang [4].

Majorization is a pre-ordering on vectors by sorting all components in nonincreasing
order, which is a very interesting topic in various fields of mathematics and statistics. The
history of investigating majorization should date back to Schur [5] and Hardy et al. [6].
The reader can find that majorization has been connected with combinatorics, analytic
inequalities, numerical analysis, matrix theory, probability and statistics in Marshall and
Olkin [7]. Recent research on majorization with respect to matrix inequalities and norm
inequalities has been carried out by Ando [8].
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In this paper, we establish four Slepian’s inequalities for Gaussian processes with respect
to weak majorization, with their proofs and an application given in Section 2. Firstly, we

recall the definitions of majorization and weak majorization.

Definition 1.1 (Marshall and Olkin [7]) Let A = (A, A2,...,4,4), A% = (A}, A3, .. .,)C';,) denote
two n-dimensional real vectors. Let Ajj) > Ay > -+ > A[n] and Ajy = Ay = -+ = A, de-
note the components of A and A* in decreasing order respectively. Slmllarly, let Ay <
M) =+ = A and A < AQ) < -+ < A(, denote the components of A and A* in increas-
ing order respectively.

(1) A* is said to be majorized by A, in symbols A >, A%, if

m m
DI
i=1

form=1,2,...,n-1,and Y/ A; =Y 1 AL
(2) A* is said to be weak lower majorized by A, in symbols A >, 1%, if

m m
EDIR
i=1 i=1

form=1,2,..,n-Land > ;A > Y i AL
(3) 1™ is said to be weak upper majorized by A, in symbols A =" 1%, if

m m
PRED IS
i=1 i=1

form=1,2,..,n-Land > ;A <Y i A%
The main results of the paper are stated as follows.

Theorem 1.2 Let X(t) and X*(t) be separable Gaussian processes where t € [0, T]. We

assume that the two processes have the same covariance function, i.e.,
cov(X(s),X(t)) = cov(X*(s),X*(t))
Joralls,t € [0, T]. Denote u = infie(o, r){EX(£), EX*(£)}, v = sup,(o, 1) {EX(¢), EX*(£)}. Let 0 <
h <ty <---<t, <T bea sequence of arbitrary partitions of [0, T]. Let f : [u,v] - R be a
strictly monotone function, and denote py = (f(EX(t1)), ..., f(EX(£4))), /1,}‘ = (f(EX*(t1)), .-,
FEX(5,))).
W Iff'(y)>0,f"(y) = 0 forall y € [u,v], and p; =" /L}‘, then

p( inf X(2) Zx) 5P< inf X*(t) zx)
te[0,T] te[0,T]

forallx e R;
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@) Iff'(y) <0, f"(y) = 0 for all y € [u,v], and ps =, pf, then

P( inf X(t)zx) §P< inf X*(t)zx)
te[0,T] te[0,T]

forallx e R;

G)Iff'(y)>0,f"(y) =0 forall y € [u,v], and p; =, u;, then

P( sup X(¢) §x> §P< sup X*(¢) §x)
te0,T] te[0,T]

forallx e R;

(4) Iff'() <0,f"(y) = 0 for all y € [u,v], and p; =" p, then

P( sup X(t) §x> §P< sup X*(¢) §x)
te[0,T] te[0,T]

forallx e R.
In Theorem 1.2, after setting f(x) = x, we can easily get the following result.

Corollary 1.3 Under the same conditions on X(t), X*(t) and {t;,1 <i < n} as in Theo-
rem 1.2, the following statements hold.
W) If (EX(1), ..., EX(tn)) =" (EX*(t1), ..., EX*(t4)), then

p( inf X(t)zx) §P< inf X*(t)2x>
t€[0,T) t€[0,T]

forallx € R;
(2) If (EX(tr), ..., EX(t,)) =w (EX*(tr), ..., EX*(¢,)), then

P( sup X(¢) §x> §P< sup X*(¢) §x)
te[0,T] te[0,T]

forallx e R.
2 Proof and application

Proof of Theorem 1.2 Each of the four conclusions in Theorem 1.2 can be proved by the
similar ideas. So, we only give the detailed proof of part (3) here. Let 0 <, <, <--- <
t, < T be a sequence of partitions of [0, T], and T = max;<;<, A¢;, SO we can obtain Gaus-
sian random variables X(t1),...,X(t,) and X*(%;),...,X*(¢,), respectively. Thus

sup X(f) = lim max X(¢;), sup X*(¢) = lim max X*(z,).

te[0,T] T—>01<i<n te[0,T] t—01<i<n
By using the conditions of Theorem 1.2, we know

cov(X(t:), X(5)) = cov(X*(6:), X*(t;))
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foralli,j=1,...,n. And
(F(EX(8))s.. o f (EX(80))) =w (f(EX*(&1))s ... f (EX*(t4))).
From Fang and Zhang [4], we have
P(lrgai); X(t) < x) < P(gaﬁx X(t) < x)
Since

P( sup X(¢) < x) = P(lim max X(t;) < x) = lim P(max X() < x),

te[0,T] t—01<i<n 7—0 1<i<n

and

P( sup X*(¢) < x) =P(lim max X*(¢;) §x) = lim P(max X*(t) §x).

te[0,T] t—01<i<n 7—0 1<i<nmn

According to the above three expressions, we have

P( sup X(¢) §x> < P( sup X*(¢) < x) 0
tel0,T] tel0,T]
An application
Let X(t) = £2 + BYK(¢) and X*(¢) = 3 + B*K(¢t) be Gaussian processes, where B7K(¢),
i=1,2,H €(0,1), K € (0,1], are centered Gaussian processes such that

E(Bi,H,K(t)Bi,H,K(S)) _ 2%[(32]{ + tZH)K _ |t_s|2H1<]

for all s, t € [0,1].
It is easy to check that X(¢) and X*(¢) satisfy the conditions in Theorem 1.2.

Let0 <t <t <---<t, <1be asequence of partitions of [0,1], then
(Grenty) = (5, 8) =" (8., 8).
From Corollary 1.3, we have, for all x € R,

P( inf [+ B ()] = x) = P( inf [+ B**X(0)] z x),
te[0,1] t€[0,1]

P( sup [t2 +Bl’H’K(t)] < x) < P( sup [t3 +BZ’H’K(t)] < x)
te[0,1] t€(0,1]
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