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Abstract

In this paper, we present a sharpened and generalized version of Aczél-Vasi¢-Pecari¢
inequality. As an application, an integral type of Aczél-Vasi¢-Pecari¢ inequality is
obtained.

MSC: Primary 26D15; secondary 26D10

Keywords: Aczél's inequality; Aczél-Vasi¢-Pecari¢ inequality; Holder's inequality

1 Introduction
In 1956, Aczél [1] established the following inequality, which is of wide application in the
theory of functional equations in non-Euclidean geometry.

Theorem A If a;, b; (i = 1,2,...,n) are positive numbers such that a; — Y ., a? > 0 or
b? -3, b? >0, then
n n n 2
(af - Zaf) <bf - be) < (a1b1 - Zaibl) . 1)
2 i=2 i=2

Later, in 1959, Popoviciu [2] gave a generalization of the above inequality.

Theorem B Letp>1,g>1, % + %1 =1,andleta;, b; (i=1,2,...,n) be positive numbers such
thata) -7 ,a" >0and bl -7, b? > 0. Then

1 1
n 2 n q n
(ﬂzf - Zﬂf) (b? - Z b?) <ab; - Z a;b;. (2)
i=2 i=2 i=2
In 1982, Vasi¢ and Pecari¢ [3] presented the following reversed version of inequality (2).

Theorem C Letp <1 (p #0), 1% + % =1, and let a;, b; (i =1,2,...,n) be positive numbers
such thataf =% ", al >0 and bl -7, b7 > 0. Then

i

1 1
(-3 (st-300) 2= 3o ®
i=2 i=2 i=2
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Recently inequalities (2) and (3) were generalized and refined in many different ways;
see, for example, [4-10] and [11]. In [12], Wu established an interesting generalization of
Aczél-Popoviciu inequality (2) as follows.

Theorem D Letp,g>0,a;,b;>0(i=1,2,...,n), let k (1 < k < n) be a positive integer such
that Zz 14 Zl k+1 a[’ >0 and Zl lb? Z;’:kﬂ b? >0. Then

(S (- £)

i=k+1 i=k+1

] . k }7 k ﬁ n [ly n %
cmiio(Sa) (L) -(4) (S
i=1 i=1 i=k+1 i=k+1

max{l-1-1 k : k
_ 2" Zap ! qu ( i= k+1‘11; Zz k+1 bzq>2 (4)
max{p,q,1} i=1 l l Zf{ 1“5’7 Zz -19;

and equality holds if and only if

Zf:laf Zz 1 z

=2
Z:‘q:k-*—l df Zi:k+1 btq

fort+lc1,or
pa

k k
Zi:l ﬂf’ — Zz 1 b?
Z?:lwl ﬂliy Zl =k+1 bzq

for—+—:

The main purpose of this work is to give a sharpened and generalized version of Aczél-
Vasi¢-Pecari¢ inequality (3). Moreover, a new Aczél-Vasi¢-Pecari¢ type integral inequality
is established.

2 Asharpened and generalized version of Aczél-Vasi¢-Pecaric inequality
We begin this section with some lemmas, which will be used in the sequel.

Lemma 2.1 [13] Ifx>-1,a >1ora <0, then
(1+%)*>1+ax. (5)

The inequality is reversed for 0 < a < 1. The sign of equality holds if and only if x = 0 or

a=1.

Lemma 2.2 [14] Leta,, >0(r=12,...,mj=12,...,m),let \y #0,1; <0 (j=2,3,...,m),

and let T = max{zl 1 L.1). Then

Zn:ﬁar,-znl‘ H(Za ) j. (6)

r=1 j=1 j=1
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The sign of equality holds if and only if the m sets (a1), (a,2), ..., (a@ym) are proportional for
Z;”” <L oray=ay=- :anj,j:1,2,...,m,for21m1%>1

Lemma 2.3 Letx>1,y>1,andletp<0,q<0. Then

S
Q=

xy+ (1=a?)? (1-y7)7 = 2™ 0570 (1 —min{p™, g7} (+ —yq)z), (7)
and equality holds if and only if x =

Proof Case (I). When p < g <0, it implies that % <0, 1% —150. By applying Lemma 2.2
and Lemma 2.1, we have

xy+ (1-a)”

S
—~
—_
|
<
R
~
Q=

_ 2mln{l—;—g—%,o}(1 _ (xp _yq)Z)%

i 1_1
> me{l—p ,0

T(1-g7 (- 5)). (®)
Case (II). When ¢ < p < 0, it implies that 1% <0, é - 150. By using Lemma 2.2 and
Lemma 2.1, we obtain
w4 (12?7 (1- )4
1 1, 1.1 1 1 11
= (7)) 1)1+ (1) (L) (1)
> Zmi“{l_l_é’O}(yq +(1 —x”))}’ (*+(1 —yq))}’
mm 1—1%—% O}(1 ( ) )[1,

50 (1= p (o - 1)),

S

1
»

N

07+ (1-97))

©)
Case (III). When p = ¢, p < 0, g < 0. From Lemma 2.2 and Lemma 2.1 we have

xy+ (1=2)7 (1 yqﬁ

(10)
Combining inequalities (8)-(10) yields inequality (7). The condition of equality in (7) fol-

lows immediately from Lemma 2.2 and Lemma 2.1. The proof of Lemma 2.3 is com-
pleted.

O
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Lemma2.4 LetO<x<1,y>1,andletp>0,q<0. Then

S

1 .
xy+ (1=a?)P (1= y9)7 > 20530 (1 _min{p, 71} (x# - 7)), (1)
and equality holds if and only if x¥ = y1 = %fori + %1 <1, ora :yqfor}y + é =1

Proof By using Lemma 2.2 and Lemma 2.1, we have

7 %'0}(1—min{p_l,q_l}(xp—yq)2)' (12)

In addition, the condition of equality for inequality (11) can easily be obtained by

Lemma 2.1 and Lemma 2.2. The proof of Lemma 2.4 is completed. g
Theorem 2.5 Let a; >0, b; >0 (i ,n) let p #0, q<0 and let k (1 <k < n) bea
positive integer such that Y a’ =" @ >0and Y5 b7 - 3", b7 >0. Then

(éaf—ia‘f)é(zw qu)

i=k+1 i=k+1

. 1.1, K }7 k %I 1 min[l_ll?_tli‘ol "
Z2mm{l—}—7—q, } § ai’ § bzq _( k) § :aibi
n_
i=1 i=1 i

i=k+1
S 11 k 11; k a
=20 minfp,q7') (Z ﬁ) (Z b?>

i=1

n p g\ 2
% (Zi:kﬂ a; > ik b )
)

X 7 (13)
Yad  YiLb
and equalzty holds if and only if 2n - 260 Y d’ =l =d} = = d} and (2n -
2k)7 Z =b! —bqfor +—<1,0r2i:1a€:ag“:ag*2:~~:£éfor
i=1 z k+1 k2 T q Y bl by biyo by,
L,1_1
Pty

Proof Case (I). When p > 0, g < 0. From the hypotheses of Theorem 2.5, we find that
A S AN
0< <Zz-1 i - Zz:kﬂ i ) <1,
P

<Zflb§: Zl k+1b?> s1.
i=1 1
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Thus, by using Lemma 2.4 with a substitution

n 1
x = (Zf:laf_Zizkﬂaf)p’ y= (Zl 1% Zl =k+1 bq)
Zi'(:l ai? ZiZI blq

in (11), we have
<zf_1a5’—Z?_k+1af>%<zf_1b7—z, h) . (2?_k+1aé’)%<z, b)
Zf:l d‘f Zl 1%

,0}

inf1-1_1
22mm[l 774

k n k 14 q\ 2
% |:1_min{p—l,q—1}<2i_l “;; Z;:kﬂaf _ Dinl blz— ik b ) :|, (14)
i-14%; i1 b;

which implies

1

(o2 (5 (2

i=k+1 i=k+1 i=k+1

X 1
Z mmlé ;O (Za) (Zb;]>q
i=1

. 1 -1 Z:qlﬁlap Zz =k+1 L)]
X[l mintea }< shd o yb )T "

NS

(et

i=k+1

ST

Hence, we obtain

(2 —Zaf) (ib?—ib?);

i=k+1 i=1 i=k+1

o) () - ($4) (5)

min {p’l, q’1 }
Y. & Y b\
> af bq ( i=k+1 _ i=k+1 ) , (16)
<zz=1: ) (Z ) Zz lap Zi:l b?

a
where the equality holds if and only if ZZL,kIIatpl = Zzlszlb?l = % for 1 y+g<Lor ZL:—II”I;I;’ =
i

—”‘*“for—+——1
k! r o q

On the other hand, by using Lemma 2.2, we obtain

n 3/ on i 1 \mini-i-Loy /
P b1 b, 17
(Z “;) <i§1 l) = (n—k) (z‘:kzua ) 1)

%
[N}
El
=X
T
=
|
k)
P
TR
\/
|

10}

: 1
_ 2mm{l—I;— 7’

Q

i=k+1
where the equality holds if and only if a1 = axy2 = --- = a, and by = bgya = - -+ = b, for
a& a
111, 0r kel = ki =~--=£§f0r1+1=1.
pa oI, o, Bl pq
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Combining the above two inequalities gives the desired result.

Case (II). When p < 0, g < 0. By the same method as in the above case (I) and using
Lemma 2.3 and Lemma 2.2, we get that inequality (13) is also valid. The proof of Theo-
rem 2.5 is completed. O
Yiod, _ Yi,bf

=1,and % = ==L in Theorem 2.5, then inequality
1

Remark 2.6 Ifwesetk =1, }7 + -
1

1
q
(13) reduces to inequality (3).

If we set k = 1, then from Theorem 2.5 we obtain the following sharpened and general-
ized version of Aczél-Vasi¢-Pecari¢ inequality (3).

Corollary 2.7 Let p #0, <0, and let a; >0, b; >0, a =Y ", a’ >0, b - >, b7 >0
(i=1,2,...,n). Then

s NB/ o A\
i=2 i=2
. 1.1
) 11 1 mm{l—l;—q,O} n
> gminll=;-g0 5 p, — (ﬁ) Zaibi

i=2

1.1 " ﬂp bq 2
min{l-+-=,0} . -1 -1 i i
—2 rd mm{p ,q }a1b1|: E (_ap — _b;]):| , (18)

=2 N1
1 1
and equality holds ifand only if 2n-2) Pay =ay = --- =a,and 2n-2) Pby=by=---=b,
1,1 4 % .l 1
forp+q<1,0rh,1,-b,21- -bzforp+q—1.

In particular, if we set }j + % <1, then from Corollary 2.7 we get the sharpened version
of Aczél-Vasic¢-Pecari¢ inequality (3) as follows.

Corollary 2.8 Let p >0, g <0, }7 +
Yr,bT>0(i=1,2,...,n). Then

)
i=2 i=2

2
" tllbl " tll»’ hq)
>ab - ab; | - — <—l -1, (19)
(o) [

and equality holds if and only if Z’—g =
2

%151, and let a; >0, b;>0,d) - Y " ,a >0, b1 -

q
b3

3 Application
As application of the above results, we establish here an integral type of Aczél-Vasi¢-
Pecari¢ inequality.

Theorem 3.1 Letp>0,g<0, % + %1 =1,let A>0,B>0, and let f(x), g(x) be positive Rie-
mann integrable functions on [a, b] such that AP — fabfl"(x) dx > 0 and BT — f:gq(x) dx > 0.
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Then

b i b :
(Ap— / fp(x)dx> (Bq— / gq(x)dx)

2
> AB - / fx)g(x)dx — —[/ (f;(: gz;)>dx] . (20)

Proof For any positive integer #, we choose an equidistant partition of [a, b] as

b- b- -
a<---<a+ ak<--~<a+ a(n—1)<b,
n n

a<a+

a, | b-a
i, 1=0,1,...,m, Axp=——, k=12,...,n.
n

Xi=a-+

Since

b b
—/f"(x)dx>0, Bq—/ glx)dx >0,

we have
k(b a)
r_ 1 4 0,
nzgto( ) ks
and
L k(b-a)\ b
B"—JEEOZk_Ig"(“ St

Hence, there exists a positive integer N such that

S LTI T

and

>0 foralln>N.

k(b a) )

qu<

By using Corollary 2.8, we obtain that for any # > N, the following inequality holds:

b-a " kb-—a)\b-a i
) [ )]

k=1

1.1

k(b a) k(b -a) b—a\rta
=48 pr( e (e ) (55)
2
AB{Z[APIW< k(b - a)) igq(a+k(b—a))b;a”. o

n B1
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ko= a1’ 6-a)\b-a

AP — pr( ) p BT _ qu( ) -
- k(b—a) kb-a)\ (b-a
s (o e () ()
2

_@ Z[Apfzv(M (b- “)>_% (a+’<(bn‘“))}<”;“) L@

In view of the hypotheses that f(x), g(x) are positive Riemann integrable functions on

[a, b], we conclude that f(x)g(x), f(x) and g9(x) are also integrable on [a, b]. Passing the
limit as # — oo in both sides of inequality (22), we obtain inequality (20). The proof of

Theorem 3.1 is completed. O
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