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1 Introduction
Let Cn×n (Rn×n) denote the set of all n× n complex (real) matrices, A = (aij) ∈ Cn×n, N =
{, , . . . ,n}. We write A ≥  if aij ≥  for any i, j ∈ N . If A ≥ , A is called a nonnegative
matrix. The spectral radius of A is denoted by ρ(A).
We denote by Zn the class of all n× n real matrices, whose off-diagonal entries are non-

positive. A matrix A = (aij) ∈ Zn is called a nonsingularM-matrix if there exist a nonnega-
tive matrix B and a nonnegative real number s such that A = sI –Bwith s > ρ(B), where I is
the identity matrix.Mn will be used to denote the set of all n×n nonsingularM-matrices.
Let us denote τ (A) =min{Re(λ) : λ ∈ σ (A)}, where σ (A) denotes the spectrum of A.
The Hadamard product of two matrices A = (aij) ∈ C

n×n and B = (bij) ∈C
n×n is the ma-

trix A ◦ B = (aijbij) ∈C
n×n. If A,B ∈Mn, then B ◦A– is also anM-matrix (see []).

Let A = (aij) be an n× nmatrix with all diagonal entries being nonzero throughout. For
i, j,k ∈N , i �= j, denote

Ri =
∑
j �=i

|aij|, di =
Ri

|aii| ;

rji =
|aji|

|ajj| –∑
k �=j,i |ajk|

, ri =max
j �=i

{rji};

mji =
|aji| +∑

k �=j,i |ajk|ri
|ajj| , mi =max

j �=i
{mij};

uji =
|aji| +∑

k �=j,i |ajk|mki

|ajj| , ui =max
j �=i

{uij}.
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In , Zhou et al. [] obtained the following result: If A = (aij) ∈ Mn is a strictly row
diagonally dominant matrix, B = (bij) ∈Mn and A– = (αij), then

τ
(
B ◦A–) ≥min

i∈N

{bii –mi
∑

j �=i |bji|
aii

}
. ()

In , Cheng et al. [] presented the following result: If A = (aij) ∈ Mn and A– = (αij) is
a doubly stochastic matrix, then

τ
(
A ◦A–) ≥ min

≤i≤n

{aii – ui
∑

j �=i |aji|
 +

∑
j �=i uji

}
. ()

In this paper, we present some new lower bounds of τ (B ◦ A–) and τ (A ◦ A–), which
improve () and ().

2 Main results
In this section, we present our main results. Firstly, we give some lemmas.

Lemma  [] Let A = (aij) ∈ R
n×n. If A is a strictly row diagonally dominant matrix, then

A– = (αij) satisfies

|αji| ≤ dj|αii|, j, i ∈N , j �= i.

Lemma  Let A = (aij) ∈ R
n×n. If A is a strictly row diagonally dominant M-matrix, then

A– = (αij) satisfies

αji ≤ wjiαii, j, i ∈N , j �= i,

where

wji =
|aji| +∑

k �=j,i |ajk|mkihi
|ajj| , hi =max

j �=i

{ |aji|
|ajj|mji –

∑
k �=j,i |ajk|mki

}
.

Proof This proof is similar to the one of Lemma . in []. �

Lemma  If A = (aij) ∈Mn and A– = (αij) is a doubly stochastic matrix, then

αii ≥ 
 +

∑
j �=i wji

, i ∈N ,

where wji is defined as in Lemma .

Proof This proof is similar to the one of Lemma . in []. �

Lemma  [] If A = (aij) ∈R
n×n is a strictly row diagonally dominant M-matrix, then, for

A– = (αij),

αii ≥ 
aii

, i ∈N .
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Lemma  [] If A = (aij) ∈ C
n×n and x,x, . . . ,xn are positive real numbers, then all the

eigenvalues of A lie in the region

⋃
i�=j

{
z ∈C : |z – aii| ≤ xi

∑
k �=i


xk

|aki|, i ∈N
}
.

Lemma  [] If A = (aij) ∈ C
n×n and x,x, . . . ,xn are positive real numbers, then all the

eigenvalues of A lie in the region

⋃
i�=j

{
z ∈C : |z – aii||z – ajj| ≤

(
xi

∑
k �=i


xk

|aki|
)(

xj
∑
k �=j


xk

|akj|
)
, i, j ∈N

}
.

Theorem  If A = (aij), B = (bij) ∈Mn and A– = (αij), then

τ
(
B ◦A–) ≥ min

≤i≤n

{bii –wi
∑

j �=i |bji|
aii

}
, ()

where wi =maxj �=i{wij} and wij is defined as in Lemma .

Proof It is evident that the result holds with equality for n = .
We next assume that n≥ .
Since A is an M-matrix, there exists a positive diagonal matrix D such that D–AD is a

strictly row diagonally dominantM-matrix, and

τ
(
B ◦A–) = τ

(
D–(B ◦A–)D)

= τ
(
B ◦ (

D–AD
)–).

Therefore, for convenience and without loss of generality, we assume that A is a strictly
row diagonally dominant matrix.
(i) First, we assume that A and B are irreducible matrices. Then, for any i ∈ N , we have

 < wi < . Since τ (B ◦ A–) is an eigenvalue of B ◦ A–, then by Lemma  and Lemma ,
there exists an i such that

∣∣τ(
B ◦A–) – biiαii

∣∣ ≤ wi
∑
j �=i


wj

|bjiαji| ≤ wi
∑
j �=i


wj

|bji|wji|αii|

≤ wi
∑
j �=i


wj

|bji|wj|αii| = wi|αii|
∑
j �=i

|bji|.

By Lemma , the above inequality and  ≤ τ (B ◦A–) ≤ biiαii, for any i ∈ N , we obtain

∣∣τ(
B ◦A–)∣∣ ≥ biiαii –wi|αii|

∑
j �=i

|bji| ≥
bii –wi

∑
j �=i |bji|

aii
≥ min

≤i≤n

{bii –wi
∑

j �=i |bji|
aii

}
.

(ii) Now, assume that one of A and B is reducible. It is well known that a matrix in Zn is a
nonsingularM-matrix if and only if all its leading principal minors are positive (see []). If
we denote by T = (tij) the n×n permutationmatrix with t = t = · · · = tn–,n = tn = , the
remaining tij zero, then both A – εT and B – εT are irreducible nonsingular M-matrices
for any chosen positive real number ε sufficiently small such that all the leading principal
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minors of both A – εT and B – εT are positive. Now, we substitute A – εT and B – εT for
A and B, respectively, in the previous case, and then letting ε → , the result follows by
continuity. �

From Lemma  and Theorem , we can easily obtain the following corollaries.

Corollary  If A = (aij),B = (bij) ∈Mn and A– = (αij) is a doubly stochastic matrix, then

τ
(
B ◦A–) ≥ min

≤i≤n

{bii –wi
∑

j �=i |bji|
 +

∑
j �=i wji

}
.

Corollary  If A = (aij) ∈Mn and A– = (αij) is a doubly stochastic matrix, then

τ
(
A ◦A–) ≥ min

≤i≤n

{aii –wi
∑

j �=i |aji|
 +

∑
j �=i wji

}
. ()

Remark  Wenext give a simple comparison between () and (), () and (), respectively.
Since mjihi ≤ ri,  ≤ hi ≤ , j, i ∈ N , j �= i, then wji ≤ mji, wi ≤ mi and wji ≤ uji, wi ≤ ui for
any j, i ∈N , j �= i. Therefore,

τ
(
B ◦A–) ≥ min

≤i≤n

{bii –wi
∑

j �=i |bji|
aii

}
≥ min

≤i≤n

{bii –mi
∑

j �=i |bji|
aii

}
,

τ
(
A ◦A–) ≥ min

≤i≤n

{aii –wi
∑

j �=i |aji|
 +

∑
j �=i wji

}
≥ min

≤i≤n

{aii – ui
∑

j �=i |aji|
 +

∑
j �=i uji

}
.

So, the bound in () is bigger than the bound in () and the bound in () is bigger than the
bound in ().

Theorem  If A = (aij),B = (bij) ∈Mn and A– = (αij), then

τ
(
B ◦A–) ≥ min

i�=j



{
αiibii + αjjbjj –

[
(αiibii – αjjbjj)

+ 
(
wi

∑
k �=i

|bki|αii

)(
wj

∑
k �=j

|bkj|αjj

)] 

}
,

where wi (i ∈N ) is defined as in Theorem .

Proof It is evident that the result holds with equality for n = .
We next assume that n ≥ . For convenience and without loss of generality, we assume

that A is a strictly row diagonally dominant matrix.
(i) First, we assume that A and B are irreducible matrices. Let Rσ

j =
∑

k �=j |ajk|mkihi, j, i ∈
N , j �= i. Then, for any j, i ∈N , j �= i, we have

Rσ
j =

∑
k �=j

|ajk|mkihi ≤ |aji| +
∑
k �=j,i

|ajk|mkihi ≤ Rj < ajj.
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Therefore, there exists a real number zji (≤ zji ≤ ) such that

|aji| +
∑
k �=j,i

|ajk|mkihi = zjiRj + ( – zji)Rσ
j , j, i ∈N , j �= i.

Hence,

wji =
zjiRj + ( – zji)Rσ

j

ajj
, j ∈N .

Let zj =maxi�=j zji. Obviously,  < zj ≤  (if zj = , then A is reducible, which is a contra-
diction). Let

wj =max
i�=j

{wji} =
zjRj + ( – zj)Rσ

j

ajj
, j ∈N .

Since A is irreducible, then Rj > , Rσ
j ≥ , and  < wj < . Let τ (B ◦A–) = λ. By Lemma ,

there exist i, j ∈N , i �= j such that

|λ – αiibii ||λ – αjjbjj | ≤
(
wi

∑
k �=i


wk

|αkibki |
)(

wj

∑
k �=j


wk

|αkjbkj |
)
.

And by Lemma , we have

(
wi

∑
k �=i


wk

|αkibki |
)(

wj

∑
k �=j


wk

|αkjbkj |
)

≤
(
wi

∑
k �=i

|bki |αii

)(
wj

∑
k �=j

|bkj |αjj

)
.

Therefore,

|λ – αiibii ||λ – αjjbjj | ≤
(
wi

∑
k �=i

|bki |αii

)(
wj

∑
k �=j

|bkj |αjj

)
.

Furthermore, we obtain

λ ≥ 


{
αiibii + αjjbjj –

[
(αiibii – αjjbjj )



+ 
(
wi

∑
k �=i

|bki |αii

)(
wj

∑
k �=j

|bkj |αjj

)] 

}
,

that is,

τ
(
B ◦A–)

≥ 


{
αiibii + αjjbjj –

[
(αiibii – αjjbjj )



http://www.journalofinequalitiesandapplications.com/content/2013/1/480
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+ 
(
wi

∑
k �=i

|bki |αii

)(
wj

∑
k �=j

|bkj |αjj

)] 

}

≥min
i�=j




{
αiibii + αjjbjj –

[
(αiibii – αjjbjj) + 

(
wi

∑
k �=i

|bki|αii

)(
wj

∑
k �=j

|bkj|αjj

)] 

}
.

(ii) Now, assume that one of A and B is reducible. We substitute A – εT and B – εT for
A and B, respectively, in the previous case, and then letting ε → , the result follows by
continuity. �

Corollary  If A = (aij) ∈Mn and A– = (αij), then

τ
(
A ◦A–) ≥ min

i�=j



{
αiiaii + αjjajj –

[
(αiiaii – αjjajj)

+ 
(
wi

∑
k �=i

|aki|αii

)(
wj

∑
k �=j

|akj|αjj

)] 

}
.

Example  Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 – – – – – – – – 
–  – – – –  – – –
– –  – –  – – – –
– – –  –  – – – 
 – – –  – – – – –
– – – – –  – –  –
– – – – – –  – – –
– – – – – – –  – –
– –  – – – – –  –
– – – –  – – – – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 – – – – – – – – –
–  – – – – – – – –
– –  – – – – – – –
– – –   – – – – –
– – – –  – – – – –
– – – – –  – – – –
– – – – – –  – – –
– – – – – – –  – –
– – – – – – – –  –
– – – – – – – – – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easily proved that A and B are nonsingularM-matrices and A is a doubly stochastic
matrix.
(i) If we apply Theorem . of [], we have

τ
(
B ◦A–) ≥ min

≤i≤n

{bii –mi
∑

j �=i |bji|
aii

}
= ..

http://www.journalofinequalitiesandapplications.com/content/2013/1/480
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If we apply Theorem . of [], we have

τ
(
B ◦A–) ≥ (

 – ρ(JA)ρ(JB)
)
min
≤i≤n

aii
bii

= ..

But, if we apply Theorem , we have

τ
(
B ◦A–) ≥ min

≤i≤n

{bii –wi
∑

j �=i |bji|
aii

}
= ..

If we apply Corollary , we have

τ
(
B ◦A–) ≥ min

≤i≤n

{bii –wi
∑

j �=i |bji|
 +

∑
j �=i wji

}
= ..

If we apply Theorem , we have

τ
(
B ◦A–) ≥ min

i�=j



{
αiibii + αjjbjj –

[
(αiibii – αjjbjj)

+ 
(
wi

∑
k �=i

|bki|αii

)(
wj

∑
k �=j

|bkj|αjj

)] 

}

= ..

(ii) If we apply Theorem . of [], we get

τ
(
A ◦A–) ≥ min

≤i≤n

{aii – ui
∑

j �=i |aji|
 +

∑
j �=i uji

}
= ..

But, if we apply Corollary , we get

τ
(
A ◦A–) ≥ min

≤i≤n

{aii –wi
∑

j �=i |aji|
 +

∑
j �=i wji

}
= ..

If we apply Corollary , we get

τ
(
A ◦A–) ≥ min

i�=j



{
αiiaii + αjjajj –

[
(αiiaii – αjjajj)

+ 
(
wi

∑
k �=i

|bki|αii

)(
wj

∑
k �=j

|bkj|αjj

)] 

}

= ..
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