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1 Introduction
Gurland [] proved that for all integers n ∈N := {, , , . . .},

n + 
(n + )

(
(n)!!

(n – )!!

)

< π <


n + 

(
(n)!!

(n – )!!

)

. (.)

Recently, Mortici [, Theorem ] improved Gurland’s result and obtained the following
inequality:

αn < π < βn, (.)

where

αn =
( n + 



n + 
n +




+


,n
–


,n

)(
(n)!!

(n – )!!

)

(.)

and

βn =
( n + 



n + 
n +




+


,n

)(
(n)!!

(n – )!!

)

. (.)

In this paper, we establish more accurate formulas for approximating π which refine the
results due to Gurland and Mortici.
Before stating and proving the main theorems, we first introduce the gamma function

and some known results.
The familiar gamma function defined by Euler,

�(z) =
∫ ∞


tz–e–t dt

(�(z) > 
)
,
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is one of the most important functions in mathematical analysis and applications in vari-
ous diverse areas. The logarithmic derivative of �(z), denoted by ψ(z) = �′(z)

�(z) , is called the
psi (or digamma) function.
The following lemmas are required in the sequel.

Lemma . ([, ]) If the sequence (λn)n∈N converges to zero and if the following limit:

lim
n→∞nk(λn – λn+) = l ∈R (k > )

exists, then

lim
n→∞nk–λn =

l
k – 

(k > ),

where R denotes the set of real numbers.

Lemma . is useful for accelerating some convergences or in constructing some better
asymptotic expansions.

Lemma . For x > ,


x

–

x

+


x
–


x

< ψ(x + ) –ψ

(
x +




)
<


x

–

x

+


x
. (.)

Proof The lower bound in (.) is obtained by considering the function F(x) defined for
x >  by

F(x) = ψ(x + ) –ψ

(
x +




)
–


x

+

x

–


x
+


x

.

Using the following representations:

ψ(x) =
∫ ∞



(
e–t

t
–

e–xt

 – e–t

)
dt (.)

in [, p., ..] and


xr

=


�(r)

∫ ∞


tr–e–xt dt (.)

in [, p., ..], we find (for r >  and x > ) that

F(x) =
∫ ∞




 + et/

e–xt dt –
∫ ∞



(


–


t +




t –


,
t

)
e–xt dt

=
∫ ∞



p(t)
 + et/

e–xt dt (.)

with

p(t) =  –
(


–


t +




t –


,
t

)(
 + et/

)

=  –
(


–


t +




t –


,
t

)(
 +

∞∑
n=


nn!

tn
)
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=
∞∑
n=

(



+



(n – ) +



(n – ) +



(n – )

+



(n – ) +



(n – )

)
tn

n+ · n!
>  for t > ,

so that (.) implies F(x) >  for x > . Hence, the first inequality in (.) holds for x > .
The upper bound in (.) is obtained by considering the function G(x) defined for x > 

by

G(x) =

x

–

x

+


x
–

[
ψ(x + ) –ψ

(
x +




)]
.

Using the above representations (.) and (.), we find that

G(x) =
∫ ∞



(


–


t +




t
)
e–xt dt –

∫ ∞




 + et/

e–xt dt =
∫ ∞



q(t)
 + et/

e–xt dt (.)

with

q(t) =
(


–


t +




t
)(

 + et/
)
– 

=
(


–


t +




t
)(

 +
∞∑
n=


nn!

tn
)
– 

=
∞∑
n=

(
 +




(n – ) + (n – ) +



(n – )
)

tn

n+ · n!
>  for t > ,

so that (.) impliesG(x) >  for x > . Hence, the second inequality in (.) holds for x > .
This completes the proof of Lemma .. �

Remark . A function f is said to be completely monotonic on an interval I if it has
derivatives of all orders on I and satisfies the following inequality:

(–)nf (n)(x)≥ 
(
x ∈ I;n ∈N :=N∪ {}). (.)

Dubourdieu [, p.] pointed out that if a non-constant function f is completely mono-
tonic on I = (a,∞), then a strict inequality holds true in (.). See also [] for a simpler
proof of this result.
From (.) and (.), we obtain

(–)nF (n)(x) =
∫ ∞



tnp(t)
 + et/

e–xt dt >  (x > ;n ∈N)

and

(–)nG(n)(x) =
∫ ∞



tnq(t)
 + et/

e–xt dt >  (x > ;n ∈N).

Hence, the functions F(x) and G(x) are both completely monotonic on (,∞).
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2 Main results
The famous Wallis sequence (Wn)n≥ is defined by

Wn =
n∏
k=

k

k – 
(
n ∈N := {, , , . . .}).

Wallis () showed thatW∞ = π/.
It is known (see [–]) that

Wn =
π


+O

(

n

)
(n→ ∞). (.)

The convergence of Wn is very slow, so it is not suitable for approximating π . The Wallis
sequence can be expressed as (see [–])

Wn =


n + 

(
(n)!!

(n – )!!

)

=


n + 

(√
π

�(n + )
�(n + 

 )

)

.

Now we define the sequence (un)n∈N by

un =


n + 

(
(n)!!

(n – )!!

)(
 +

a
n
+

b
n

+
c
n

+
p
n

+
q
n

+
r
n

)
. (.)

We are interested in finding fixed parameters a,b, c,p,q and r such that (un)n∈N converges
as fast as possible to the constant π . Our study is based on Lemma ..

Theorem . Let the sequence (un)n∈N be defined by (.). Then for

a =


, b = –




, c =



,

p =


,
, q = –


,

, r = –


,
,

(.)

we have

lim
n→∞n(un – un+) = –

,π
,

and lim
n→∞n(un – π ) = –

π
,

. (.)

The speed of convergence of the sequence (un)n∈N is given by the order estimate O(n–).

Proof We write the difference un – un+ as the following power series in n–:

un – un+ =
π (a – )

n
+

π (b – a + )
n

+
π (c – b + a – )

n

+
π (,b – ,a +  – ,c + ,p)

n

+
π (,q – ,p – , + ,a + ,c – ,b)

,n

+ π (, – ,a – ,c + ,p – ,q
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+ ,b + ,r)/(,n)

+ π (,,q – ,,r – ,,p + ,,a + ,,c

– ,,b – ,,)/(,n) +O
(


n

)
.

The fastest sequence (un)n∈N is obtained when the first six coefficients of this power series
vanish. In this case, a = 

 , b = – 
 , c =


 , p =


, , q = – 

, and r = – 
, , we have

un – un+ = –
,π

,n
+O

(

n

)
.

Finally, by using Lemma ., we obtain assertion (.) of Theorem .. �

Solutions (.) provide the following approximation for π :

(
 +


n

–


n
+


n

+


,n
–


,n

–


,n

)


n + 

(
(n)!!

(n – )!!

)

= π +O
(


n

)
. (.)

This fact motivated us to observe the following theorem.

Theorem . For all n ∈ N, we have

λn < π < μn, (.)

where

λn =
(
 +


n

–


n
+


n

+


,n
–


,n

–


,n

)

· 
n + 

(
(n)!!

(n – )!!

)

(.)

and

μn =
(
 +


n

–


n
+


n

+


,n

)


n + 

(
(n)!!

(n – )!!

)

. (.)

Proof Inequality (.) can be rewritten as

α(n) <
�(n + )
�(n + 

 )
< β(n), (.)

where

α(x) =
((

 +

x

–


x
+


x

+


,x

)


n + 

)–/

=
(

,x(x + )
,x + x – x + x + 

)/
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and

β(x) =
((

 +

x

–


x
+


x

+


,x
–


,x

–


,x

)


x + 

)–/

=
(

,x(x + )
,x + ,x – ,x + ,x + x – x – 

)/

.

The lower bound in (.) is obtained by considering the function f (x) defined for x ≥  by

f (x) = ln�(x + ) – ln�

(
x +




)
–


ln

(
,x(x + )

,x + x – x + x + 

)
.

Using the asymptotic expansion [, p., ..]

ln�(x) ∼
(
x –




)
lnx – x + ln

√
π +


x

–


x

+


,x
–


,x

+ · · · (x → ∞), (.)

we find

lim
x→∞ f (x) = .

Differentiating f (x) and applying the second inequality in (.), we find that, for x ≥ ,

f ′(x) = ψ(x + ) –ψ

(
x +




)
–

,x + ,x – x + x + 
x(x + )(,x + x – x + x + )

<

x

–

x

+


x
–

,x + ,x – x + x + 
x(x + )(,x + x – x + x + )

= –
x + x – x – 

x(x + )(,x + x – x + x + )
< .

Consequently, the sequence (f (n))n∈N is strictly decreasing. This leads to

f (n) > lim
n→∞ f (n) =  (n ∈N),

which means that the first inequality in (.) is valid for n ∈N.
The upper bound in (.) is obtained by considering the function g(x) defined for x ≥ 

by

g(x) = ln�(x + ) – ln�

(
x +




)

–


ln

(
,x(x + )

,x + ,x – ,x + ,x + x – x – 

)
.

We conclude from the asymptotic expansion (.) that

lim
x→∞ g(x) = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/48


Lin Journal of Inequalities and Applications 2013, 2013:48 Page 7 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/48

Differentiating g(x) and applying the first inequality in (.) yields, for x ≥ ,

g ′(x) = ψ(x + ) –ψ

(
x +




)

–
,x + ,x – ,x + ,x – ,x – x – 

x(x + )(,x + ,x – ,x + ,x + x – x – )

>

x

–

x

+


x
–


x

–
,x + ,x – ,x + ,x – ,x – x – 

x(x + )(,x + ,x – ,x + ,x + x – x – )

=
x + ,x + x + ,x – ,x + 

x(x + )(,x + ,x – ,x + ,x + x – x – )
> .

Consequently, the sequence (g(n))n∈N is strictly increasing. This leads to

g(n) < lim
n→∞ g(n) =  (n ∈N),

which means that the second inequality in (.) is valid for n ∈ N. The proof of Theo-
rem . is complete. �

Remark . Let αn, βn, λn and μn be defined by (.), (.), (.) and (.), respectively.
Direct computation would yield

λn – αn =
(,n + n + )

,n(n + )(n + n + )

(
(n)!!

(n – )!!

)

> 

and

μn – βn = –
(n + n + )

,n(n + )(n + n + )

(
(n)!!

(n – )!!

)

< ,

which show that inequality (.) is sharper than inequality (.).
By using Lemma ., we find that

αn = π +O
(


n

)
, βn = π +O

(

n

)
,

λn = π +O
(


n

)
, μn = π +O

(

n

)
.

Among sequences αn, βn, λn and μn, the sequence λn is the best in the sense that it is the
fastest sequence which would approximate the constant π .

The logarithm of the gamma function has the asymptotic expansion (see [, p.]):

ln�(x + t) ∼
(
x + t –




)
lnx – x +



ln(π )

+
∞∑
n=

(–)n+Bn+(t)
n(n + )


xn

(x → ∞). (.)
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Here Bn(t) denote the Bernoulli polynomials defined by the following generating function:

xetx

ex – 
=

∞∑
n=

Bn(t)
xn

n!
. (.)

Note that the Bernoulli numbers Bn (n ∈ N) are defined by Bn := Bn() in (.).
From (.) we easily obtain

�(x + t)
�(x + s)

∼ xt–s exp

( ∞∑
j=

(–)j+(Bj+(t) – Bj+(s))
j(j + )


xj

)
(x → ∞). (.)

Taking (s, t) = (,  ) in (.) and noting that

Bn() = (–)nBn() = Bn and Bn

(



)
=

(
–n – 

)
Bn (n ∈ N)

(see [, p.]), we obtain

[
�(x + 

 )
�(x + )

]

∼ 
x
exp

( ∞∑
j=

((–)j( – –j) – )Bj+

j(j + )

xj

)
(x → ∞), (.)

namely,

[
�(x + 

 )
�(x + )

]

∼ 
x
exp

(
–


x

+


x
–


x

+


,x
–


,x

+


,x
–

,
,x

+
,

,,x
– · · ·

)
(x → ∞). (.)

From (.) we imply

(
(n – )!!
(n)!!

)

=

π

(
�(n + 

 )
�(n + )

)

∼ 
nπ

exp

(
–


n

+


n
–


n

+


,n
–


,n

+


,n
–

,
,n

+
,

,,n
– · · ·

)
, (.)

which implies the following asymptotic expansion for π :

π ∼
(

(n)!!
(n – )!!

) 
n
exp

(
–


n

+


n
–


n

+


,n

–


,n
+


,n

–
,

,n
+

,
,,n

– · · ·
)
. (.)

The formula (.) motivated us to observe the following theorem.

Theorem . For all n ∈N, we have

δn < π < ωn, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/48


Lin Journal of Inequalities and Applications 2013, 2013:48 Page 9 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/48

where

δn =
(

(n)!!
(n – )!!

) 
n
exp

(
–


n

+


n
–


n

+


,n
–


,n

)
(.)

and

ωn =
(

(n)!!
(n – )!!

) 
n
exp

(
–


n

+


n
–


n

+


,n

)
. (.)

Proof Inequality (.) can be rewritten as

a(n) <
�(n + )
�(n + 

 )
< b(n), (.)

where

a(x) =
√
x exp

(

x

–


x
+


n

–


,x

)

and

b(x) =
√
x exp

(

x

–


x
+


n

–


,x
+


,x

)
.

The lower bound in (.) is obtained by considering the function F(x) defined for x ≥ 
by

F(x) = ln�(x + ) – ln�

(
x +




)
–


lnx – ln

(

x

–


x
+


n

–


,x

)
.

Differentiating F(x) and applying the first inequality in (.) yields, for x≥ ,

F ′(x) = ψ(x + ) –ψ

(
x +




)
–


x

+
(x – x + x – )

x(,x – ,x + x – )

> –

x

+


x
–


x

+
(x – x + x – )

x(,x – ,x + x – )

=
c(x)

x(,x – ,x + x – )

with

c(x) = ,, + ,,(x – ) + ,,(x – )

+ ,,(x – ) + ,,,(x – ) + ,,,(x – )

+ ,,,(x – ) + ,,,(x – ) + ,,(x – )

+ ,,(x – ) + ,,(x – ) + ,,(x – ).
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Hence, F ′(x) >  for x≥ , and therefore, the sequence (F(n))n∈N is strictly increasing. This
leads to

F(n) ≥ F() = ln

(
,
,

)
–


lnπ = . . . . >  (n ∈ N),

which means that the first inequality in (.) is valid for n ∈N.
The upper bound in (.) is obtained by considering the functionG(x) defined for x ≥ 

by

G(x) = ln�(x + ) – ln�

(
x +




)

–


lnx – ln

(

x

–


x
+


n

–


,x
+


,x

)
.

We conclude from the asymptotic expansion (.) that

lim
x→∞G(x) = .

Differentiating G(x) and applying the first inequality in (.) yields, for x ≥ ,

G′(x) = ψ(x + ) –ψ

(
x +




)
–


x

+
(x – x + x – x + )

x(,x – ,x + ,x – x + ,)

> –

x

+


x
–


x

+
(x – x + x – x + )

x(,x – ,x + ,x – x + ,)

=
d(x)

x(,x – ,x + ,x – x + ,)

with

d(x) = ,, + ,,(x – ) + ,,(x – )

+ ,,,(x – ) + ,,,(x – )

+ ,,,(x – ) + ,,,(x – )

+ ,,,(x – ) + ,,,(x – )

+ ,,,(x – ) + ,,,(x – )

+ ,,(x – ) + ,,(x – ) + ,,(x – ).

Hence,G′(x) >  for x ≥ , and therefore, the sequence (G(n))n∈N is strictly increasing. This
leads to

G(n) < lim
n→∞G(n) =  (n ∈ N),
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Table 1 Comparison between inequalities (2.6) and (2.18)

n δn – λn μn –ωn

2 0.00004326 0.00032062
10 8.22562801× 10–10 1.24569373× 10–7

100 8.37118328× 10–17 1.26417115× 10–12

1,000 8.64864687× 10–24 1.26540403× 10–17

10,000 8.37692558× 10–31 1.2655212× 10–22

which means that the second inequality in (.) is valid for n ∈ N. The proof of Theo-
rem . is complete. �

Remark . The following numerical computations (see Table ) would show that, for
n ∈N \ {}, inequality (.) is sharper than inequality (.).
By using Lemma ., we find that

δn = π +O
(


n

)
and ωn = π +O

(

n

)
,

which provide the higher-order estimates for the constant π .

Remark . Some calculations in this work were performed by using theMaple software
for symbolic calculations.
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