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*Correspondence:
e.yavuz@iku.edu.tr
1Department of Mathematics and
Computer Science, İstanbul Kültür
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Abstract
In the present paper, we give an extension of the idea which was introduced by
Sakaguchi (J. Math. Soc. Jpn. 11:72-75, 1959), and we give some applications of this
extended idea for the investigation of the class of harmonic mappings.
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1 Introduction
Let D = {z | |z| < } be the open unit disc in the complex plane C. A complex valued har-
monic function f :D →C has the representation

f = h(z) + g(z), (.)

where h(z) and g(z) are analytic in D and have the following power series expansions:

h(z) =
∞∑
n=

anzn, g(z) =
∞∑
n=

bnzn, z ∈D,

where an,bn ∈C, n = , , , . . . . Choose g() =  (i.e., b = ), so the representation (.) is
unique in D and is called the canonical representation of f in D. It is convenient to make
further normalization (without loss of generality) h() =  (i.e., a = ) and h′() =  (i.e.,
a = ). The family of such functions f is denoted by SH []. It is known that if f is a sense-
preserving harmonic mapping of D onto some other region, then by Lewy’s theorem its
Jacobian is strictly positive, i.e.,

Jf (z) =
∣∣h′(z)

∣∣ – ∣∣g ′(z)
∣∣ > .

Equivalently, the inequality |g ′(z)| < |h′(z)| holds for all z ∈ D. The family of all functions f ∈
SH with the additional property that g ′() =  (i.e., b = ) is denoted by S

H []. Observe
that the classical family of univalent functions S consists of all functions f ∈ S

H such that
g(z) =  for all z ∈ D. Thus, it is clear that S ⊂ S

H ⊂ SH.
Let � be the family of functions φ(z) regular in the open unit disc D and satisfy the

conditions φ() = , |φ(z)| <  for all z ∈D.
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Denote byP the family of functions p(z) = +pz+pz + · · · regular inD such that p(z)
in P if and only if

p(z) =
 + φ(z)
 – φ(z)

(.)

for some φ(z) ∈ � and every z ∈D.
If s(z) = z + cz + · · · is regular in the open unit disc D and satisfies the condition

Re

(
eiαz

s′(z)
s(z)

)
> , z ∈D (.)

for some real α, |α| < π/, then s(z) is said to be an α-spirallike function in D [, ]. Such
functions are known to be univalent []. The class of such functions is denoted by S∗

α .
Let F(z) = z+αz +αz + · · · and F(z) = z+βz +βz + · · · be analytic functions inD.

If there exists a function φ(z) ∈ � such that F(z) = F(φ(z)) for every z ∈ D, then we say
that F(z) is subordinate to F(z) and we write F ≺ F. We also note that if F ≺ F, then
F(D) ⊂ F(D) [, ]. We also note that w(z) = g ′(z)/h′(z) is the analytic second dilatation
of f and |w(z)| <  for every z ∈D.
In this paper we investigate the class of harmonic mappings defined by

SH(α) =
{
f = h(z) + g(z)

∣∣∣ w(z) ≺  + z
 – z

,h(z) ∈ S∗
α

}
.

For this aim we need the following theorems and lemmas.

Theorem . [] Let s(z) ∈ S∗
α , then

rF(cosα, –r) ≤ ∣∣s(z)∣∣ ≤ rF(cosα, r) (.)

and

[
( – r) cosα – ( + r) sinα

]
F(cosα, –r)

≤ ∣∣s′(z)∣∣ ≤ [
( + r) cosα + ( – r) sinα

]
F(cosα, r), (.)

where

F(cosα, r) =


( + r)cosα(cosα–)( – r)cosα(cosα+)
(.)

for all |z| = r <  and |α| < π/.

Lemma . [] Let φ(z) be regular in the unit disc D with φ() = , then if |φ(z)| attains
its maximum value on the circle |z| = r at the point z, one has zφ′(z) = kφ(z) for some
k ≥ .

Lemma . [] If s(z) and s(z) are regular in D, s() = s(), s(z) maps D onto a
many-sheeted region which is starlike with respect to the origin, and s′(z)/s′(z) ∈ P , then
s(z)/s(z) ∈P .
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Lemma . [] Let f = h(z) + g(z) be an element of SHPST (α)∗ , then

|b| – r
 – |b|r ≤

∣∣∣∣ g
′(z)

h′(z)

∣∣∣∣ ≤ |b| + r
 + |b|r (.)

for all |z| = r < . This inequality is sharp because the extremal function is

eiα
g ′(z)
h′(z)

=
z + b
 + b̄z

,

where b = eiαb.

2 Main results
Theorem . s(z) ∈ S∗

α if and only if

z
s′(z)
s(z)

–  ≺  cosαe–iαz
 – z

(.)

for all z ∈ D.

Proof Let s(z) in S∗
α , then we have

eiαz
s′(z)
s(z)

= cosα
 + φ(z)
 – φ(z)

+ i sinα

or

eiαz
s′(z)
s(z)

= eiα
 + φ(z)
 – φ(z)

for some φ(z) ∈ � and all z ∈ D. Thus

z
s′(z)
s(z)

–  =
 + e–iαφ(z)
 – φ(z)

– 

=
 + (cosα – i sinα)φ(z) –  + φ(z)

 – φ(z)

=
 cosαe–iαφ(z)

 – φ(z)

for some φ(z) ∈ � and all z ∈ D. Since φ(z) ∈ �, we have that (.) is true. The sufficient
part of the proof can be seen by following the above steps in the opposite direction by
considering the subordination principle. �

Theorem . Let f = h(z) + g(z) be an element of SH(α). If w(z) = g′(z)
h′(z) ∈ P , then g(z)

h(z) ∈ P
for all z ∈ D.

Proof A version of this theorem was proved by Sakaguchi for a univalent starlike func-
tion [, ]. Since f = h(z) + g(z) ∈ SH(α), then h(z) and g(z) are regular in D and h() =
g() = . On the other hand, we have

w(z) =
g ′(z)
h′(z)

∈P if and only if
g ′(z)
h′(z)

≺  + z
 + z

(.)
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for all z ∈D. Geometrically, this means that g′(z)
h′(z) maps D inside the open disc centered on

the real axis with diameter end points –r
+r and

+r
–r . Now we define a function φ(z) by

g(z)
h(z)

=
 + φ(z)
 – φ(z)

(z ∈D). (.)

Then φ(z) is analytic in D, and φ() = . On the other hand,

w(z) =
g ′(z)
h′(z)

=
zφ′(z)
 – φ(z)


eiα( + e–iα)φ(z)

+
 + φ(z)
 – φ(z)

(z ∈D). (.)

Now, it is easy to realize that the subordination (.) is equivalent to |φ(z)| <  in (.) for
all z ∈D. Indeed, assume to the contrary that there exists z ∈D such that |φ(z)| = . Then
by Jack’s lemma (Lemma .), zφ′(z) = kφ(z), k ≥ , for such z we have

w(z) =
g ′(z)
h′(z)

=
kφ(z)
 – φ(z)


eiα( + e–iα)φ(z)

+
 + φ(z)
 – φ(z)

= w
(
φ(z)

)
/∈ w(D),

since |φ(z)| =  and k ≥ . But this is a contradiction to the condition w(z) = g′(z)
h′(z) ≺ +z

–z ,
and so the assumption is wrong, i.e., |φ(z)| <  for all z ∈D. �

Remark . Theorem . is an extension of Lemma . to the harmonic mappings.

Corollary . Let f = h(z) + g(z) be an element of SH(α), then

r( – r)
 + r

F(cosα, –r) ≤ ∣∣g(z)∣∣ ≤ r( + r)
 – r

F(cosα, r) (.)

and

[
( – r) cosα – ( + r) sinα

] – r
 + r

F(cosα, –r)

≤ ∣∣g ′(z)
∣∣ ≤ [

( + r) cosα + ( – r) sinα
]  + r
 – r

F(cosα, r), (.)

where F(cosα, r) is given by (.) for all |z| = r <  and |α| < π/.

Proof The proof of this theorem is a simple consequence of Theorem . and Theorem .
since

Rew(z) = Re
g ′(z)
h′(z)

⇒ g ′(z)
h′(z)

≺  + z
 – z

⇒  – r
 + r

≤
∣∣∣∣ g

′(z)
h′(z)

∣∣∣∣ ≤  + r
 – r

,

then

∣∣h′(z)
∣∣ – r
 + r

≤ ∣∣g ′(z)
∣∣ ≤ ∣∣h′(z)

∣∣  + r
 – r

and

Re
g(z)
h(z)

>  ⇒ g(z)
h(z)

≺  + z
 – z

⇒  – r
 + r

≤
∣∣∣∣ g(z)h(z)

∣∣∣∣ ≤  + r
 – r

,
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then

∣∣h(z)∣∣ – r
 + r

≤ ∣∣g(z)∣∣ ≤ ∣∣h(z)∣∣  + r
 – r

. �

Corollary . Let f = h(z) + g(z) be an element of SH(α), then

[( – r) cosα – ( + r) sinα](F(cosα, –r))( – r)( – |b|)
( + |b|r)

≤ Jf (z) ≤ [( + r) cosα + ( – r) sinα](F(cosα, r))( – r)( – |b|)
( – |b|r) ,

where F(cosα, r) is given by (.) for all |z| = r < , |α| < π/ and Jf (z) is the Jacobian of f
defined by Jf (z) = |h′(z)| – |g ′(z)| for all z ∈D.

Proof The proof of this corollary is a simple consequence of Lemma . and Lemma ..
�
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