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1 Introduction
One interesting problem in extreme value theory is to consider the convergence rate of
some extremes. For the uniform convergence rate of extremes under the second-order
regular variation conditions, see Falk [], Balkema and de Haan [], de Haan and Resnick
[] and Cheng and Jiang []. For the extreme value distributions and their associated uni-
form convergence rates for given distributions, see Hall and Wellner [], Hall [], Peng et
al. [], Lin and Peng [] and Lin et al. [].
In this note, we discuss the uniform convergence rate of extremes from a sequence of

independent and identically distributed (iid) random variables with Maxwell distribution
(MD). The probability density function of MD is given by

f (x) =
√


π

x

σ  exp

(
–

x

σ 

)
, x > . (.)

The MD and the convergence rate of extremes from Maxwell sample have been widely
used in the field of physics.We establish the uniform convergence rate of its distribution to
the extreme value distribution and give an improved proof for the pointwise convergence
rate of MD.
Throughout this paper, let (ξn,n ≥ ) be a sequence of iid random variables with com-

mon distribution F(x) =
∫ x
 f (t)dt with a probability density function f (x) given by (.),

and letMn =max≤k≤n ξk be the partial maximum. Liu and Fu [] proved that

lim
n→∞P

(
α–
n (Mn – βn) ≤ x

)
= exp

(
– exp(–x)

)
:=�(x)

with the normalizing constants αn and βn given by

αn =
σ

( logn) 
, βn =

(
σ  logn

) 
 +

σ log( logn) + σ log 
π

( logn) 
. (.)
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By arguments similar to those of Hall [], Peng et al. [] and Lin et al. [], the appropriate
normalizing constants an and bn can be given by the following equations:

an = σ b–n (.)

and
√

π


bn
σ

exp

(
bn
σ 

)
= n. (.)

By arguments similar to those of Example  of Resnick [], we have

bn =
(
σ  logn

) 
 +

σ log( logn) + σ log 
π

( logn) 
+ o

(
(logn)–/

)
.

Hence

αn/an → , (βn – bn)/an → ,

implying

lim
n→∞P(Mn ≤ anx + bn) = lim

n→∞Fn(anx + bn) = �(x),

cf. Leadbetter et al. [] or Resnick [].
This paper is organized as follows. Section  gives some auxiliary results. In Section ,

we present the main result. Related proofs are given in Section .

2 Auxiliary results
To establish the uniform convergence of Fn(anx + bn) to its extreme value distribution
�(x), we need some auxiliary results. The first result is the decomposition of F(x), which
is the following result.

Lemma  Let F(x) be the Maxwell distribution function. Then, for x > , we have

 – F(x) =
√


π

x
σ

(
 +

σ 

x

)
exp

(
–

x

σ 

)
– r(x) (.)

with

 < r(x) =
√


π

∫ ∞

x

σ

y
exp

(
–

y

σ 

)
dy <

√

π

σ 

x
exp

(
–

x

σ 

)
. (.)

For simplicity, throughout this paper, let C be a generic positive constant whose value
may change from line to line, and let Ci, Cij (i ∈N , j ∈N ) be absolute positive constants.
For the normalizing constants an, bn defined by (.) and (.), respectively, let

a∗
n = anrn, b∗

n = bn + anδn, (.)

where rn → , δn → , n→ ∞. So, a∗
n/an → , (b∗

n – bn)/an → , implying Fn(a∗
nx + b∗

n) →
�(x). For large n, we have the following result.

http://www.journalofinequalitiesandapplications.com/content/2013/1/477


Liu and Liu Journal of Inequalities and Applications 2013, 2013:477 Page 3 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/477

Lemma  Let a∗
n, b∗

n be defined by (.). For fixed x ∈ R and sufficiently large n, we have

Fn(a∗
nx + b∗

n
)
–�(x) =�(x)e–x

((
x


– x – 

)
anb–n + (rn – )x

+ δn +O
[(
anb–n

) + (rn – ) + δn
])

. (.)

Proof Note that bn ∼ σ ( logn)  , which means

anb–n ∼ 
 logn

→ .

For large n, we have

√

π

a∗
nx + b∗

n
σ

exp

(
–
(a∗

nx + b∗
n)

σ 

)

=
√


π

bn
σ

(
 + anb–n (rnx + δn)

)
exp

(
–

bn
σ 

)

× exp

(
–
an(rnx + δn + rnδnx)

σ  – (rn – )x – x – δn

)

= n–e–x
(
 –

(
x


– x

)
anb–n – (rn – )x – δn +O

[(
anb–n

) + (rn – ) + δn
])

.

Since

σ 

(a∗
nx + b∗

n)
= anb–n – x

(
anb–n

) +O
((
anb–n

)),

we have

σ 

(a∗
nx + b∗

n)
=

(
anb–n

) +O
((
anb–n

)).

Similarly,

σ 

(a∗
nx + b∗

n)
exp

(
–
(a∗

nx + b∗
n)

σ 

)
=O

(
n–

(
anb–n

)).

Hence,

 – F
(
a∗
nx + b∗

n
)
= n–e–x

(
 –

(
x


– x – 

)
anb–n – (rn – )x

– δn +O
[(
anb–n

) + (rn – ) + δn
])

. (.)

So,

Fn(a∗
nx + b∗

n
)
–�(x)

=
(
 – n–e–x

(
 –

(
x


– x – 

)
anb–n – (rn – )x
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– δn +O
[(
anb–n

) + (rn – ) + δn
]))n

–�(x)

=�(x)e–x
((

x


– x – 

)
anb–n + (rn – )x + δn +O

[(
anb–n

) + (rn – ) + δn
])

,

which is the desired result. �

3 Main results
In this section we present the pointwise convergence rate and the uniform convergence
rate of Fn(·) to its extreme value distribution under different normalizing constants. The
first result is the pointwise convergence of extremes under the normalizing constants
given by (.).

Theorem  Let {ξn,n ≥ } be a sequence of independent identically distributed random
variables with common distribution MD. Then

Fn(αnx + βn) –�(x)∼ �(x)e–x
(log( logn))

 logn
, (.)

for large n, where αn, βn are defined in (.).

Recently Liu and Fu [] proved the result, we present an improved proof for the point-
wise convergence rate in Section .
The following is the uniform convergence rate of extremes under the appropriate nor-

malizing constants an and bn given by (.) and (.), which shows that the optimal con-
vergence rate is proportional to / logn.

Theorem  Let (ξn,n ≥ ) be a sequence of independent identically distributed random
variables with common distribution MD. For large n, there exist absolute constants  <
d < d such that

d
logn

< sup
x∈R

∣∣Fn(anx + bn) –�(x)
∣∣ < d

logn
, (.)

where an and bn are defined by (.) and (.), respectively.

4 Proofs
Proof of Theorem  Firstly, we derive the following asymptotic expansions of bn defined
by (.)

bn = βn + o
(
(logn)–



)

(.)

and

bn = βn –
σ (log( logn) + log 

π
)


√
(logn) 

+
(

σ log
 logn + log( logn) + log 

π

 logn

)/
( logn)


 +O

(
(log( logn))

(logn) 

)
. (.)
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Setting bn = βn + θn and substituting into (.), we obtain by taking logarithms that

log
π


+ logσ – log(βn + θn) +

β
n

σ  +
βnθn

σ  +
θ
n

σ  = logn.

So,

(log( logn) + log 
π
)

 logn
– log

 logn + log( logn) + log 
π

 logn

+
βnθn

σ  +
θ
n

σ  – log

(
 +

θn

βn

)
= , (.)

therefore

βnθn

σ  ∼ –
(log( logn) + log 

π
)

 logn
+ log

 logn + log( logn) + log 
π

 logn
, (.)

which implies

θn ∼ –
σ (log( logn) + log 

π
)


√
(logn) 

+
(

σ log
 logn + log( logn) + log 

π

 logn

)/
( logn)


 . (.)

Once again let

θn = –
σ (log( logn) + log 

π
)


√
(logn) 

+
(

σ log
 logn + log( logn) + log 

π

 logn

)/
( logn)


 +νn,

where νn = o( (log( logn))


(logn)



). By similar arguments, we can obtain (.).

Note that an = σ

bn , we have

rn –  =
αn

an
–  ∼ log( logn)

 logn
, δn =

βn – bn
an

∼ (log( logn))

 logn
.

Noting anb–n ∼ 
 logn , by Lemma , we have

Fn(αnx + βn) –�(x)∼ �(x)e–x
(log( logn))

 logn
.

The proof is complete. �

Proof of Theorem  Letting rn = , δn =  in (.) and noting anb–n ∼ 
 logn , and by

Lemma , there exists an absolute constant d >  such that

sup
x∈R

∣∣Fn(anx + bn) –�(x)
∣∣ > d

logn
. (.)
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Thus, in order to obtain the upper bound, we need to prove

(a) sup
–cn≤x<

∣∣Fn(anx + bn) –�(x)
∣∣ <Danb–n , (.)

(b) sup
≤x≤dn

∣∣Fn(anx + bn) –�(x)
∣∣ <Danb–n , (.)

(c) sup
dn≤x<∞

∣∣Fn(anx + bn) –�(x)
∣∣ <Danb–n , (.)

(d) sup
–∞<x≤–cn

∣∣Fn(anx + bn) –�(x)
∣∣ <Danb–n , (.)

where Di >  (i = , , , ), and

cn =: log log
bn
σ  > , dn =: – log log

bn
bn – σ  > .

Obviously,

σ ( logn)

 < bn < σ ( logn)


 ( +C)

and

bn – ancn = bn
(
 –

σ 

bn
cn

)
= bn

(
 –

σ 

bn
log log

bn
σ 

)
> .

Define �n(x) =  – F(anx + bn), then

n log
(
 – F(anx + bn)

)
= –n�n(x) + n�n(x) + n log

(
 –�n(x)

)
= –n�n(x) – Rn(x). (.)

By the following inequality

–x –
x

( – x)
< log( – x) < –x ( < x < ),

we have

 < Rn(x) = –
(
n�n(x) + n log

(
 –�n(x)

))
<

n�
n(x)

( –�n(x))
.

First, suppose that x ≥ –cn. By (.), we have

�n(x) ≤ �n(–cn) =  – F(bn – ancn)

<
√


π

bn – ancn
σ

(
 +

σ 

(bn – ancn)

)
exp

(
–
(bn – ancn)

σ 

)

< 
√


π

bn
σ

(
 – anb–n cn

)
exp

(
–
(bn)

σ  + cn –
anb–n cn



)

< n–ecn = n– log
bn
σ 

< sup
n≥n

 log(C logn)
n

< C < 

http://www.journalofinequalitiesandapplications.com/content/2013/1/477
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with C = ( +C), implying

inf
x≥–cn

(
 –�n(x)

)
>  – C > .

Therefore,

 < Rn(x)≤ n�
n (x)

( – C)
≤ n�

n(–cn)
( – C)

<
n–(log(C logn))

( – C)
=
n–(log(C logn))anb–n

( – C)anb–n

<
n–(log(C logn))

( – C) logn
anb–n

< Canb–n .

By  – e–x < x, x > , we have

∣∣exp(–Rn(x)
)
– 

∣∣ < Rn(x) < Canb–n .

Setting An(x) = exp(–n�n(x) + e–x), Bn(x) = exp(–Rn(x)), we obtain

∣∣Fn(anx + bn) –�(x)
∣∣ = �(x)

∣∣An(x)Bn(x) – 
∣∣

= �(x)
∣∣An(x)Bn(x) – Bn(x) + Bn(x) – 

∣∣
≤ �(x)

∣∣An(x) – 
∣∣ + ∣∣Bn(x) – 

∣∣
< �(x)

∣∣An(x) – 
∣∣ +Canb–n . (.)

By (.) and (.), we have

–n�n(x) + e–x = –n
[√


π

bn + anx
σ

(
 +

σ 

(bn + anx)

)
exp

(
–
(bn + anx)

σ 

)

– r(anx + bn)
]
+ e–x

=
(
 + anb–n x

)
e–xCn(x),

where

Cn(x) =
(
––

σ 

(bn + anx)
+

σ 

(bn + anx)
δn(anx+bn)

)
exp

(
–
anb–n x



)
+

(
+anb–n x

)–

with  < δn(anx+ bn) < . To prove (.), we consider the case of –cn ≤ x < . By e–x > – x,
x > , we have

Cn(x) <
(
 –

anb–n x



)((
– +

σ 

(bn + anx)

)
δn(anx + bn)

)
+

(
 + anb–n x

)–

<
(
 –

anb–n x



){
– +

(
anb–n

)( + anb–n x
)–} + (

 + anb–n x
)–

=
((

 + anb–n x
)– + x


– x

(
 + anb–n x

)–)anb–n (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/477
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and

Cn(x) >
(
– –

σ 

(bn + anx)

)
exp

(
–
anb–n x



)
+

(
 + anb–n x

)–

>
(
– –

σ 

(bn + anx)

)
+

(
 + anb–n x

)–

>
(
–
(
 + anb–n x

)– – x
(
 + anb–n x

)–)anb–n
> –

(
 + anb–n x

)–. (.)

Hence, for –cn ≤ x < , by combining (.) and (.) together, we have

∣∣Cn(x)
∣∣ <

((
 + anb–n x

)– + x


– x

(
 + anb–n x

)– + (
 + anb–n x

)–)anb–n
<

((
 – anb–n cn

)– + cn

+ cn

(
 – anb–n cn

)– + (
 – anb–n cn

)–)anb–n
< C.

Furthermore, for –cn ≤ x < , we have

∣∣–n�n(x) + e–x
∣∣ < (

 + anb–n x
)
e–x

∣∣Cn(x)
∣∣

<
((

 + anb–n x
)– + x


– x

(
 + anb–n x

)– + (
 + anb–n x

)–)e–xanb–n
<

((
 – anb–n cn

)– + cn

+ cn

(
 – anb–n cn

)–

+
(
 – anb–n cn

)–)ecnanb–n
< C.

Noting that  < |ex – | < |x|(ex + ), x ∈ R and e–x >  – x + x/ for –cn ≤ x < , we have

�(x)
∣∣An(x) – 

∣∣ = �(x)
∣∣exp(–n�n(x) + e–x

)
– 

∣∣
< �(x)

∣∣–n�n(x) + e–x
∣∣(exp(–n�n(x) + e–x

)
+ 

)

<
(
eC + 

)((
 + anb–n x

)– + x


– x

(
 + anb–n x

)– + (
 + anb–n x

)–)

× anb–n exp
(
–e–x – x

)
< Canb–n .

Together with (.), we establish (.).
Second, we prove (.). Note that

Cn(x) <
(
– +

σ 

(bn + anx)
δn(anx + bn)

)(
 –

anb–n x



)
+

(
 + anb–n x

)–

<
(
anb–n

)( + anb–n x
)– + x


anb–n – anb–n x

(
 + anb–n x

)–
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<
(
anb–n

)( + anb–n x
)– + x


anb–n

<
(
 +

x



)
anb–n (.)

and

Cn(x) >
(
–
(
 + anb–n x

)– – x
(
 + anb–n x

)–)anb–n . (.)

By (.) and (.), for  ≤ x < dn, we have

∣∣Cn(x)
∣∣ <

(
 +

x


+

(
 + anb–n x

)– + x
(
 + anb–n x

)–)anb–n
<

(
 + x +

x



)
anb–n .

Hence,

∣∣–n�n(x) + e–x
∣∣ < (

 + anb–n x
)
e–x

∣∣Cn(x)
∣∣

<
(
 + anb–n x

)
e–x

(
 + x +

x



)
anb–n

< Canb–n < C.

Therefore

�(x)
∣∣An(x) – 

∣∣ < �(x)
∣∣–n�n(x) + e–x

∣∣(exp(–n�n(x) + e–x
)
+ 

)
< C

(
eC + 

)
�(dn)anb–n

< Canb–n . (.)

Combining (.) and (.) together, we can derive that

sup
≤x≤dn

∣∣Fn(anx + bn) –�(x)
∣∣ < (C +C)anb–n =:Danb–n .

Hence (.) is proved.
Third, for x≥ dn, we have

sup
x≥dn

(
 –�(x)

) ≤  –�(dn) = anb–n . (.)

By  – ex < –x, x ∈ R, we have

 – Fn(andn + bn) =  – exp
(
n logF(andn + bn)

)
< –n logF(andn + bn)

= n�n(dn) + Rn(dn). (.)
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By (.) and log( + x) < x,  < x < , we have

n�n(dn) = n
(
 – F(andn + bn)

)
<

(
 + anb–n dn

)
e–dn

(
 + anb–n

(
 + anb–n dn

)–)

< 
(
 + anb–n dn

)
log

bn
bn – σ 

< 
(
dn + a–n bn

) σ 

bn – σ  anb
–
n

=
(
 +

σ 

bn – σ  –
σ 

bn – σ  log log

(
σ 

bn – σ 

))
anb–n

< Canb–n . (.)

Noting that Rn(dn) < Canb–n , and combining (.), (.), (.) and (.) together, we
have

sup
x≥dn

∣∣Fn(anx + bn) –�(x)
∣∣ < sup

x≥dn

(
 – Fn(anx + bn)

)
+ sup

x≥dn

(
 –�(x)

)

< n�n(dn) + Rn(dn) + anb–n

< (C +C + )anb–n =:Danb–n ,

which is (.).
Finally, consider the case of –∞ < x < –cn. If anx + bn ≤ , then Fn(anx + bn) = . By

�(–x) < 
x , x > , we have

sup
x≤–bn/an

∣∣Fn(anx + bn) –�(x)
∣∣ = sup

x≤–bn/an
�(x)≤ �

(
–bn/σ

) < σ 

bn
= anb–n .

So, we only need to consider the case of anx + bn > . By using the monotonicity of �(x),
we have

sup
x≤–cn

�(x)≤ �(–cn) = anb–n . (.)

Noting log( – x) < –x,  < x <  and e–x >  – x, x ∈ R, and combining (.) and (.) to-
gether, we have

sup
x≤–cn

Fn(anx + bn)

≤ Fn(bn – ancn)

<
(
 – n–

(
 – anb–n cn

)(
 –

(
anb–n

)( – anb–n cn
)–)

exp

(
cn –

anb–n cn


))n

< exp

(
–ecn

(
 – anb–n cn

)(
 –

(
anb–n

)( – anb–n cn
)–)

exp

(
–
anb–n cn



))

< exp

(
–ecn

(
 –

(
anb–n cn +

(
anb–n

)( – anb–n cn
)– + anb–n cn



)))
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< exp
(
–ecn

)
exp

((
anb–n cn +

(
anb–n

)( – anb–n cn
)– + anb–n cn



)
ecn

)

< Canb–n .

Together with (.), we have

sup
–∞<x≤–cn

∣∣Fn(anx + bn) –�(x)
∣∣ ≤ sup

–∞<x<–cn
Fn(anx + bn) + sup

–∞<x<–cn
�(x)

≤ Fn(bn – ancn) +�(–cn)

< (C + )anb–n =:Danb–n .

This is (.). The proof is complete. �
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