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Abstract

In this article, we introduce two concepts: the (i, 0)-type L,-mixed affine surface area
and (i, j)-type L,-mixed affine surface area in the set of convex bodies such that
Lp-affine surface area by Lutwak et al. is proposed in its special cases. Besides, applying
these concepts, we establish the extension results of the well-known L,-Petty affine
projection inequality, L,-Busemann centroid inequality and its dual inequality.
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1 Introduction
Let K" denote the set of convex bodies (compact, convex subsets with nonempty interi-
ors) in Euclidean space R”. For the set of convex bodies, which contain the origin in their
interiors, and the set of origin-symmetric convex bodies in K", we write K and 7, re-
spectively. Let S/ denote the set of star bodies (about the origin) in R”, and let S/ denote
the set of origin-symmetric star bodies in S”. Let S”~! denote the unit sphere in R”, and
let V(K) denote the n-dimensional volume of body K. If K is the standard unit ball B in
R”, then it is denoted by w, = V(B). Note that w, = r(%f/z) defines w,, for all non-negative
real # (not just the positive integers).

Abody K € K" is said to have a continuous ith curvature function f;(K, -) : "t — [0, 00)
ifand only if §;(K;, -) is absolutely continuous with respect to S and has the Radon-Nikodym
derivative (see [1])

dsiK,) ...
=g =S, 1.1)

Let F/" denote the subset of all bodies K" which have a positive continuous ith curvature
function. Let ‘F;'}:IO’ fl”e denote the set of all bodies in K}, K/, respectively, and both of them
have a positive continuous ith curvature function.

A convex body K € K" is said to have an L,-curvature function f,(K,-) : "' — R if
its L,-surface area measure S, (K -) is absolutely continuous with respect to the spherical
Lebesgue measure S, and it has the Radon-Nikodym derivative (see [2])

dS,(K,")
— e = F(K,-). (12)
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For p > 1, K € F}, then L,-affine surface area Q,(K) of K by (see [3-5])

Q,(K) = /S B w) " dS(u). 1.3)

For each K € K" and p > 1, the L,-projection body, IT,K, of K is an origin-symmetric
convex body whose support function is given by (see [6])

1 .
o) = e /5 P s, forallues™, (1.4)
where ¢, = wzi:;l;,l . When p =1, (1.4) is the notion of projection body (see [7]).
It is easy to show that if E is an ellipsoid which is centered at the origin, then (see [8,
p.105])
1
mE=(-2\E (15)
» VB . .

The well-known L, -Petty affine projection inequality is expressed as follows (see [8—10]).

Theorem A (L,-Petty affine projection inequality) IfK,L € F}, p > 1, then
noy” V(LK) ™ > Q,(K), (1.6)

with equality if and only if K is an ellipsoid which is centered at the origin.

Let K € §), and let p > 1, then the L,-centroid body, I',K, of K is the origin-symmetric
convex body whose support function is given by (see [6, 11])

_ 1 p n—-1
hlepl((u)— cn,pV(I(),[<|<u’x>| dx forallueS". (1.7)

If E is an ellipsoid which is centered at the origin, then I',E = E. In particular, I',B = B.

The well-known L,-Busemann-Petty centroid inequality is as follows (see [6]).

Theorem B (L,-Busemann-Petty centroid inequality) IfK € S} and p > 1, then
V({I,K) = V(K), (1.8)
with the equality if and only if K is an ellipsoid which is centered at the origin.

Lutwak et al. introduced the concept of dual L,-centroid bodies (see [12]). We give the
concept of the unusual normalization of dual L,-centroid bodies such that I"_,B = B: Let
K € K7 and real p > 0, then radial function of dual L,-centroid body, I'_,K, of K is defined
by

1

-p _
prpr(u) T (n +P)Cnp V(K)

/ 1’(u, V) ’p dS,(K,v) forallue sl (1.9)
sn=
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It is easy to show that if E is an ellipsoid which is centered at the origin, then

T_E= ( 4 ) ’ ITE. (1.10)

Wy

Combined with (1.5) and (1.10), we have that I"_,E = E. In particular, I'_,B = B.
Si Lin gives the following dual inequality of inequality (1.8) (see [13, p.9, Theorem 5.4]).

Theorem C (Dual L,-Busemann-Petty centroid inequality) IfK € K? and p > 1, then
V(I_,K) < V(K), 1.11)
with equality if and only if K is an ellipsoid which is centered at the origin.

Liu et al. [14], Lu and Wang [15], Ma and Liu [16, 17] independently proposed the notion
of L,-mixed curvature function: Let p > 1,i=0,1,...,# -1, a convex body K € K is said
to have an L,-mixed curvature function f,;(K,-) : 1 5 R, ifits L,-mixed surface area
measure S,;(K, ) is absolutely continuous with respect to spherical Lebesgue measure S

and has the Radon-Nikodym derivative

ds, (K, )

S =fpi(K, ). (1.12)

If the mixed surface area measure S;(K, -) is absolutely continuous with respect to spher-

ical Lebesgue measure S, we have
S i (K1) = fi(K, u)h(K, u)' P . (1.13)

According to the concept of L,-mixed curvature function of convex body, Lu and Wang
[15] and Ma introduce the concept of L,-mixed curvature image of convex body as fol-
lows: For each K € .7-'[’0 (i=0,1,...,n—1) and real p > 1, define A, ;K € S}, the L,-mixed
curvature image of K, by

Wi(A,,iK)
,

P(Ap,iK, )P = fpi (K ). (114)

n

If i = 0 in (1.14), then A,oK = A,K. The unusual normalization of definition (1.14) is
chosen so that for the unit ball B, we have A,;B=B.ForK e F/\,n—i#p=>1,1>0,

i,0’
ApdK =15 ApiK. (115)
Let C7, denote the set of L,-mixed curvature images of convex bodies in F/;. That is,
Cl={Q=ApL:LeFl}.

Because the L,-mixed curvature image belongs to star bodies, thus, Cfo c S
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For each K € K", real p > 1and i = 0,1,...,n — 1, the L,-mixed projection body, IT, K,
of K is an origin-symmetric convex body whose support function is given by (see [18])

1 _
h%p_,.K(M) = m /31,71 | (u,v) |p dS,i(K,v), forallueS" Y (1.16)

where S,,;(K,-) (i =0,1,...,n — 1) is L,-mixed surface area measure. Obviously, I1,0K =
I1,K, and for the standard unit ball B, we have IT,;B = B. For K € K", A > 0, p > 1 and
0 <i<mn,then

n—i-p

I,;(AK) =1 7 TI,;K. (1.17)

Let K € S}, real p > 1 and i be arbitrary real numbers, then the L,-mixed centroid body,
I'p,:K, of K is the origin-symmetric convex body whose support function is given by (see

(19])

1

P 1|(u,v) ¥ og? (V) dS(v) forall u € S"L. (1.18)
nmp Wi S§n-

rp,,vk(”)
Obviously, I'y,0K = T',K, and for the standard unit ball B, we have I',,;B = B.
Ma introduced the concept of dual L,-mixed centroid body (see [19]). Further, we intro-
duced the concept of the unusual normalization of dual L,-mixed centroid body I'_,, ;K
as follows: Let K € K, p>0,i=0,1,...,n — 1, then the dual L,-mixed centroid bodies,

I'_,iK, of K are defined by:

1
o () ’(u, v) ‘p dS,i(K,v) forallue sl (1.19)

2K 1 4 P)eny WHK) Jna

Obviously, I'_,0K =T'_,K, and for the standard unit ball B, we have I'_, ;B = B.
In this article, we will first introduce the concept of (i,0)-type L,-mixed affine surface
area of convex body as follows.

Definition 1.1 For K € F/,i=0,1,...,n—1and p > 1, the (i,0)-type L,-mixed affine

surface area, Q;f) (K), of K is defined by

QO(K) = /S K, W) dS(u). (1.20)

Next, we have established an extension of L,-Petty affine projection inequality (1.6) as
follows.

Theorem 1.1 Let K € fi’fo, i=0,1,...,n—-1and p >1, then

n—i

no ™ Wi, )™ > Q0(K), a2y

with equality in inequality (1.21) for 0 < i < n -1 if and only if K is a ball which is centered
at the origin; for i = 0 if and only if K is an ellipsoid which is centered at the origin.

Further, we obtain the following generalized L,-Busemann-Petty centroid inequality.

Page 4 of 16
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Theorem 1.2 Suppose that K € CI', € S”,i=0,1,...,n—1and p > 1, then

Wi(T,,:K) > Wi(K), (1.22)

with equality in inequality (1.22) for 0 <i < n—1 ifand only if K is a ball which is centered
at the origin; for i = 0 if and only if K is an ellipsoid which is centered at the origin.

Finally, we get the following dual inequality of the inequality (1.22).
Theorem 1.3 Suppose that K € K. IfT_,,K € C}|, € S},i=0,1,...,n—1and p > 1, then
Wi(T_piK) < Wi(K), (1.23)

with equality in inequality (1.23) for 0 < i < n -1 ifand only if K is a ball which is centered
at the origin; for i = 0 if and only if K is an ellipsoid which is centered at the origin.

2 Preliminaries
2.1 Support function, radial function and polar of convex body
If K € K", then its support function, /g = h(K,-) : R” — (0, 00), is defined by (see [20, 21])
h(K,x) = max{(x,y) 1y € I(}, x e R”.
Obviously, if K € K", A is a positive constant, x € R”, then h(AK, x) = Ah(K, x).
If K is a compact star-shaped (about the origin) in R”, its radial function, px = p(K,-) :
R”\ {0} — [0, 00), is defined by (see [20, 21])
p(K,x) =max{A>0:Ax € K}, xeR"\{0}.
When px is positive and continuous, K is called a star body (about the origin). Obviously, if
K eS8 a>0,xeR" then p(K,ax) = a™ p(K,x) and p(eK,x) = ap(K,x). Two star bodies
K and L are said to be dilates (of one another) if px(1)/ . (1) is independent on u € S,
For K € K7, the polar body, K*, of K is defined by (see [20, 21])
K*={xeR": (x,y) <LyeK}.
Obviously, we have (K*)* = K. If > > 0, then

(K)* = 271K, (2.1)

If K € K, then the support and radial function of the polar body K*, of K are defined
respectively by (see [20, 21])

1
and g+ (u) =

e ) = @)

(2.2)

for all u € $".
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2.2 The quermassintegrals, L,-mixed quermassintegrals and L,-mixed volume
For K € K" and i = 0,1,...,n — 1, the quermassintegrals, W;(K), of K are defined by (see
[20, 21])

Wi(K) = %/SH h(K,u)dS;(K, u). (2.3)

From (2.3), we easily see that
Wy (K) = V(K). (2.4)

Forp>1, K,L € K and ¢ > 0, the Firey L,-combination K +, ¢ - L € K is defined by
(see [22])

WK +pe- L,V =h(K,-Y +eh(L,-),

where “ in ¢ - L denotes the Firey scalar multiplication.
ForK,L € K}, ¢ > 0 and real p > 1, the L,-mixed quermassintegrals, W, ;(K, L), of K and
L (i=0,1,...,n—1) are defined by (see [1])
_i Wi(K +, ¢ - L) - Wi(K
W, (K, L) = lim Ktpe-L) = Wilk)
p

e—>0* &

(2.5)

Obviously, for p =1, W1;(K, L) is just the classical mixed quermassintegral W;(K,L).
For i = 0, the L,-mixed quermassintegral W, o(K, L) is just the L,-mixed volume V, (K, L),

namely,
Wyo(K,L) = V,(K, L). (2.6)

Forp>1,i=0,1,...,n-1and each K € K}, there exists a positive Borel measure S, (K )
on §"! such that the L,-mixed quermassintegral W, ;(K, L) has the following integral rep-
resentation (see [1]):

W,i(K,L) = % /S . W (v) dS,(K,v) (2.7)

forall L € k7. It turns out that the measure S,,;(K,-) (i=0,1,...,n—1) on Sl is absolutely
continuous with respect to S;(K, -) and has the Radon-Nikodym derivative

ds, (K, )

_ K
25K, =hPK,-). (2.8)

From (2.3) and (2.7), it follows immediately that for each K € K7,
Wpi(K, K) = Wi(K). (2.9)

If K,L € K, p > 1, by definition (1.12), then formula (2.7) of the L,-mixed quermassin-
tegral can be rewritten as follows:

Wyi(K,L) = % /S*H (L, uff, (K, u) dS(u). (2.10)

Page 6 of 16
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We shall require the Minkowski inequality for the L,-mixed quermassintegrals W,,; as
follows (see [1]): For K,L € K, and p > 1, 0 < i < n, then

W), (K, L)"™ = Wi(K)" P W;(LY, (2.11)
with equality for p =1 and 0 < i <n-1ifand only if K and L are homothetic; for p > 1 and
0 <i<mn-1lifand onlyif K and L are dilates. For p =1 and i = n — 1, inequality (2.11) is

identical.

2.3 Dual quermassintegrals and L,-dual mixed quermassintegrals
For K € S and any real i, the dual quermassintegrals, Wi(K), of K are defined by (see [20,

21])

~ 1 ,

Wi(K) = - /5 . o1 () dS(u). (2.12)
Obviously,

Wo(K) = V(K). (2.13)

For K,L € S}, p>1and ¢ > 0, the L,-harmonic radial combination K +_, ¢ - L € S is
defined by (see [2, 23, 24])

pK+_pe-L, )P =pK, )P +ep(L, )"

Note that here ‘e - L’ is different from ‘e - L’ in the Firey L,-combination.
For K,L € S}, ¢ >0, p > 1 and real i # n, the L,-dual mixed quermassintegrals,
\)NV_pyi(I(,L), of K and L are defined by [25]

i Wi(K +_p & - L) — Wi(K)

n—
; —p,i(l(l L) = Eli)l'g)l+ (2.14')

&

If i = 0, we easily see that definition (2.14) is just the definition of L,-dual mixed volume,

namely,
W_,0(K,L) = V_, (K, L). (2.15)

From definition (2.14), the integral representation of the L,-dual mixed quermassinte-

grals is given by (see [25]): If K,L € S}/, p > 1,and real i #n, i # n + p, then

~ 1 nip—i _
W_, (K, L) = - /S . o T w) o, (w) dS(u). (2.16)
Together with (2.12) and (2.16), for K € S}, p > 1,and i # n,n + p, we get

W_,i(K,K) = Wi(K). (2.17)

Page 7 of 16
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Analog of the Minkowski inequality for L,-dual mixed quermassintegrals is as follows
(see [25]): If K,L € S}, p>1,thenfori<nori>n+p,

Wi (K, L) = Wi(K)™ P~ Wi(L)?. (218)

For n < i < n+ p, inequality (2.18) is reversed. With equality in every inequality if and only
if K and L are dilates.

3 The (i, j)-type L,-mixed affine surface area
In this section, we further propose the concept of (i, /)-type L,-mixed affine surface area

as follows.

Definition 3.1 ForK € F/(,i=0,1,...,n-1,j € Rand p > 1, the (i, j)-type L,-mixed affine
surface area, QI(;}(K ), of K is defined by

i i
) = [l st o1

Obviously, 2 (K) = 2,(K) and QU (K) = 2 (K).

Next, we introduce the concept of (i, 0)-type L,-mixed affine surface area of the convex
bodies K1, Ks,...,K,_; as follows.

Definition 3.2 For p > 1, i=0,1,...,n — 1, the (i, 0)-type L,-mixed affine surface area,
QK ..., Ky i), of Ky ..., K, s € FIL is defined by

. _1_
K5 K) = [ 500K 010] 57 S0, (52)
LetKy=-- =Ky j=KandK,_; j=---=K,;=L(j=0,...,n—1i), we define Ql(j;(K,L) =

Ql(f) (K,...,K,L,...,L) with n — i — j copies of K and j copies of L. From this, if j is any real
number, we can define the following.

Definition 3.3 For K,L € F},i=0,...,n—1,p>1,j € R, the (i,j)-type L,-mixed affine
surface area, ng)j(l( ,L), of K, L is defined by

Q0K 1) = fs K )T dS ), (33)
Specially for the case j = —p, we have that

Q) (K, L) = /5 il (L ) dS(w) (3.4)
Take L = B in (3.4) and write

O 1y . o
QY (K) = QUK. B). (3.5)
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Because for u € §"1, S;(B,u) = S, h(B,u) = 1, s0 by (2.8) and (1.13), we get f,,/(B,u) = 1. This
together with (3.3) and (3.5) yields

i n=ioj
) = | S0 dS(w) (3.6)

and Q;Z(K ) is called the (i, j)-type L,-mixed affine surface area of K € J7,. In particular,
Ql(f]) (K) = ©,,(K) is called the jth L,-mixed affine surface area of K € F (see [26]).

Next, we give some propositions of L,-mixed curvature image and (i, j)-type L,-mixed

affine surface area.

Proposition 3.1 LetK € F],,i=0,1,...,n-1,j€R. Then

n—i—j

. w n+p—i
QUK) = ot — Wi (A, K). 3.7
(k) (WMJJ S(ApK) (37)

In particular, take j = 0 in (3.7), then

n—i

QOK) = oy ™™ Wil A pK) 7. (3.8)

Proof From (3.6), (1.14) and (2.12), we have

Q,(f,);(1< ) = - Si(K,u) e das(u)
= (W;K)) ' /gn—l p(ApK, 1) dS(u)
on  \F
_ (m) W (A piK). .

Proposition 3.2 Letp>1,K € ]-"l”o andi=0,1,...,n—-1. Then

* Wy v
W, (K, Q") = mw—p,i(l\p.l](; Q (3.9)
i\p,i

foreach Q € Kl.
Proof For each Q € K}, from (2.10), (1.14), (2.2) and (2.16), we have

1/;ﬂ@wmmwww
Sn—l

Wp,i(K, Q*) p

w

=" 1) P p(A i K, u)" P dS(u
W0y ) Sn_lp(Q )P o(Ap,iK, u) (u)
wy, ~

—FW_ iA i1<y .
me)““”Q) D
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Proposition 3.3 Ifp >1,L € F},, then
QUL < P W, (L K*)" ™ Wi(K) (3.10)
Jor all K € S} with equality if and only if K and A,;L are dilates.

Proof Let L € F, and each K € &, then from (1.20), (2.2), (2.7), (2.12) and Holder’s in-

equality, we have
) ) ni n+p—i
QI(;)(L)mp—z _ |:/Snlﬁ”i(l" ) 7Pl dS(u)]
=i NP mp
- [ f (P P yL,0) P (00,0 dS(u)}
sn=

/1 n—i 1 ) p
Sn"ﬂ”(— / p(1<,u>%,,«(L,u)dS(u>) (— / p(K,u)“dS(u))
n Jsn-1 n Jgn-1
= WPW, (LK) (K.

From this, we immediately get (3.10).
According to the condition of equality to hold in the Holder inequality, we know that
equality holds in (3.10) if and only if

p(I<’ M)ip_ﬂi,i(lﬂ M) —c
p(K,uy=t

forany u € $"~!, where c is a constant. Combined with the definition of L,-mixed curvature

image, for any u € S"!, we have

P(ApiL,u)™P~ cWi(ApL)
p(K, uyr+p=i wn

this shows that K and A, ;L are dilates. Therefore, the equality holds in inequality (3.10) if
and only if K and A, ;L are dilates. The proof is complete. O

Now, according to Proposition 3.3, we can give an expansion of the definition of the
(i,0)-type L,-mixed affine surface area of K € K], as follows.

Definition 3.4 If K € ]}, p > 1, then the (;, 0)-type L,-mixed affine surface area, Ql(f) (K),
of K is defined by

_r
7=

m i QIK) T = inf{nW,,(K, Q) Wi(Q)7 : Qe 8. (3.11)
For i = 0, the definition is just the definition of L,-affine surface area by Lutwak proposed
in [2].

4 Generalized L,-Petty affine projection inequality
In this section, we complete the proof of Theorem 1.1 in the introduction. In fact, we prove

the following more general conclusion.
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Theorem 4.1 Let K € K, L € F/,p>1,0 <i<n-—1,then

n-i n

neo " Wi i(L, T, ) = QU(L)Wi(K) =5p, (4.1)

with equality in inequality (4.1) for 0 <i<n—1if and only if K and L are balls of dilates
which are centered at the origin; for i = 0 if and only if K and L are ellipsoids of dilates

which are centered at the origin.
In order to prove the theorems above, we first give the following three lemmas.

Lemma 4.1 (See [27]) Suppose that K € K}, i e Rand 0 <i<n, then
Wi(K) < i V(K)'7, (4.2)

with the equality for 0 < i < n if and only if K is a ball which is centered at the origin. If
i=0, then (4.2) is identical.

Lemma 4.2 (See [18]) Suppose that K € K}, p >1 and 0 <i<n -1, i is a positive integer,
then

n=i
n

w0 WiK) T V(IEK) T <o), (4.3)

with equality if and only if K is a ball which is centered at the origin.

Remark 4.1 The conditions of inequality (4.3) can be relaxedtop >1and 0 <i<n-1,
while the conditions of the equality that holds can be given separately. For 0 <i < n—1 and
p =1, the inequality (4.3) is proved by Lutwak with the equality holding if and only if K
is a ball (see [7]). For i = 0 and p > 1, inequality (4.3) is proved by Lutwak et al. with the
equality that holds if and only if K is an ellipsoid which is centered at the origin (see [6]).
For i =0 and p = 1, then (4.3) is the famous Petty projection inequality (see [28]), with the
equality that holds if and only if K is an ellipsoid.

Lemma4.3 IfK,LeK/),p>1,i=0,1,...,n—1, then
Wp,i(L, I—Ip,,-K) = Wp,l»(K, I_Ip,iL). (4.4)
Proof From (1.16), (2.10) and the Fubini theorem, it is easy to prove Lemma 4.3. O

Proof of Theorem 4.1 For L € F}\, and any Q € K7, by inequality (3.10) and Lemma 4.1, we
have

(n—i)

. . . bl . pln—i)
QUL < ™, WL, Q"V(QY) 7, (4.5)

with equality for 0 <i < n -1 if and only if A,;L and Q* are centered balls of dilates; for
i=0ifand onlyif A,;L and Q* are dilates.
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Take Q = I1,,;K with K € K} in (4.5), then

, , . bl , pn—i)
QLY < n™ P ) Wip,(L, T, K)"™V (I K) 7, (4.6)

with equality for 0 <i <n —1if and only if A,;L and I} .K are centered balls of dilates;
for i =0 ifand only if A,L and I[T)K are dilates.
Combining with inequalities (4.3) and (4.6), we give

QI(;) (L)n+p—i m([{)n—i—p
n+p—i % n—i n—i—p * @
< 1" Wy (L, Ty, K)" Wi(K)" PV (T} K)

< "W, (L, T, K)o,

which implies that inequality (4.1) holds.

Next, we discuss the conditions of equality that holds in inequality (4.1).

According to the condition of the equality that holds in inequality (4.3) and inequality
(4.6) with Remark 4.1, the four steps will be given.

(1) For the case p >1 and 0 < i < n — 1, the equality holds in (4.1) if and only if H;,iK and
Ap ;L are balls of dilates which are centered at the origin, and K is a ball which is centered
at the origin. Together with A,,B = B and I1,;B = B, we know that K and L are balls of
dilates which are centered at the origin.

(2) For the case p =1 and 0 < i < n -1, the equality holds in (4.1) if and only if I} ;K and
A1;L are balls of dilates which are centered at the origin, and K is a ball. By using IT,, ;B =
B and (1.17), it is obtained that T1},(AB) = A'*""TI} ,B = A"**""B (1 > 0) is a ball which is
centered at the origin. Because I17,K and Aj,L are balls of dilates which are centered at
the origin, then AL is a ball of dilates which are centered at the origin, and together with
ApiB=Band (1.15), L is a ball which is centered at the origin. However, K is a ball, so the
equality holds in (4.1) if and only if K and L are balls of dilates which are centered at the
origin.

(3) For the case p >1and i = 0, the equality holds in (4.1) if and only if [I)K and A,L
are dilates and K is an ellipsoid which is centered at the origin. Let K = E be an ellipsoid
which is centered at the origin, from (1.5), we know that ITE = (w,/ V(E))I%E is an ellipsoid
which is centered at the origin. Other, from the literature [2], we know that L is an ellipsoid
E which is centered at the origin if and only if A,L are dilates of polar body E* of this E.
So we know that the equality holds in (4.1) if and only if L and K are ellipsoids which are
centered at the origin and both are dilates.

(4) For the case p =1 and i = 0, the equality holds in (4.1) if and only if A;L and I K
are dilates, and K is an ellipsoid. Suppose that K = AE +x with A > 0, xg € R”, and E is an
ellipsoid which is centered at the origin, noting that S(AE +xy, -) = S(AE, -) = A" 1S(E, -) (see
[29]), this together with (1.5) TI}K = [T} (AE + x¢) = I} AE = M1"TT}E = A'""(w,/V(E))E is
an ellipsoid which is centered at the origin. Because AL and IT{K are dilates, then AL
is an ellipsoid which is centered at the origin. However, from [2], we know that L is an
ellipsoid E which is centered at the origin if and only if A;L are dilates of polar body E*
of this E. Therefore, the equality holds in (4.1) if and only if K and L are ellipsoids of the

dilates which are centered at the origin.
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To sum up, the equality holds in (4.1) forp > 1and 0 <i < n—1ifand only if K and L are
balls of the dilates which are centered at the origin; for p > 1 and i = 0 if and only if K and
L are ellipsoids of the dilates which are centered at the origin. The proof is complete. [J

Proof of Theorem 1.1 Exchange K and L in inequality (4.1), we have for L € K}, K € 7,
p>1,0<i<n-1

n—i

== n—i ; n-i-p
newy " Wy (K, Ty, L) #9 = QU (K)Wi(L) =5 . (4.7)

By using Lemmas 4.3 and (4.7), we have

n-i n—i

1oy ™ Wy (L, T, K) 57 = naoy ™ Wiy (K, T1,,,L) 71

n—i—

> QU(K) Wi (L) "= .

Taking L = I1,;K in the inequality above, we immediately obtain inequality (1.21). The
proof is complete. g

Combining with Theorem 1.1 and (3.8), we immediately obtain the following.
Corollary 4.1 IfK € F,i=0,1,...,n—1and p > 1, then
Wi(I1,K) = Wi(Ap,K), (4.8)

with the equality in inequality (4.8) for 0 < i < n—1ifand only if K is a ball which is centered
at the origin; for i = 0 if and only if K is an ellipsoid which is centered at the origin.

Further, we have established the following results.

Theorem 4.2 Let K,L € ]-'lf’o, 0<i<n-1,p=>1,then

n-i

1o " Wp(TT, K, T, L) 77 = QO(K)

n—p-i L
n—i n-i

QL) (4.9)

with the equality in inequality (4.9) for 0 < i < n—1ifand only if K and L are balls of dilates
which are centered at the origin; for i = 0 ifand only if K and L are ellipsoids of dilates which
are centered at the origin.

Proof From inequality (4.1), we know that for Qe K7, Le F/,p>1,0<i<n-1,

n-i n—i-p

nwy T Wyi(L, T,,Q) 7 > QO(L)Wi(Q) . (4.10)

Take Q = I1,,;K in (4.9), and using Corollary 4.1 and Lemma 4.3, we have

n—i

QL) WA K) =50 < QL) Wi(TT, K) =55

n—i

- n—i_
< VlCl);ﬁ7 ! Wp,l’(L, Hp,il'lp,i1<) np=i

n—i

= nay ™ Wy (T, K, T, L) 70 (4.11)
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Combining inequality (4.11) with (3.8), we immediately obtain inequality (4.8). According
to the condition of the equality holding in inequalities (4.1) and (4.9), the condition of the
equality that holds in inequality (4.8) is easily obtained. The proof is complete. g

5 Generalized L,-Busemann-Petty centroid inequality and dual inequality
In this section, we give the extension of the well-known L,-Busemann-Petty centroid in-
equality (1.8). Namely, we complete the proof of Theorem 1.2 and Theorem 1.3 (i.e., dual

inequality of Theorem 1.2) in the introduction.
Lemma5.1 IfK € F},,0=0,1,...,n-1,p>1, then
MK = TpiA K. (5.1)

Proof Using definition (1.16) of L,-mixed projection body and definition (1.14) of L ,-mixed
curvature image, it is easy to prove (5.1). O

Lemma5.2 IfKeK},LeS),p>1,i=0,1,...,n—1, then

Wy i(K,TpiL)  Wopi(L,T_iK)

WiK) Wi(L) 5-2)

Proof By (1.18), (1.19), (2.3), (2.7), (2.12) and (2.16), it is easy to prove (5.2). a

Proof of Theorem 1.2 For L € F'

i,0?

using (5.1) and Corollary 4.1, we have
WLy ApiL) = WilT1p,L) = Wi(ApL),

taking K = AL in the inequality above, we immediately get inequality (1.22).

According to the condition of the equality that holds in inequalities (4.8) and (1.8), and
noting that A,;B = B and (1.15), we know with the equality in inequality (1.22) for p > 1
and 0 <i<n—-1ifand only if K is a ball which is centered at the origin; forp >1and i=0

if and only if K is an ellipsoid which is centered at the origin. O

Proof of Theorem 1.3 Take L =T'_, ;K in (5.2), we have
W;i(K) = Wp,i([(, Fp,il"_p,iK).

Using the Minkowski inequality (2.11) of the L,-mixed quermassintegrals, we have

n

W) 2 Wi(K) 57 Wi, i) 7. (53)
Together with inequality (1.22), we can get

Wi(K) = Wi(T,,T_,K) > Wi(T_,K),

from this, we can get inequality (1.23).
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According to the condition of the equality that holds in inequalities (2.11) and (1.22), we
discuss the conditions of the equality that holds in (1.23) in the following four cases:

(1) For the case p >1 and 0 < i < n — 1, the equality holds in (1.23) if and only if K and
I,,I'_,:K aredilates,and I'_,, ;K is a ball which is centered at the origin. Because I'_, ;B = B,
thenI'_,;K is a ball which is centered at the origin if and only if K is a ball which is centered
at the origin. Therefore, K is a ball which is centered at the origin. While the equality
I",,:B = B shows that I'_, ;K is a ball which is centered at the origin if and only if I',,;,I"_, ;K
is a ball which is centered at the origin. From this, for p > 1 and 0 < i < n — 1 the equality
holds in inequality (1.23) if and only if K is a ball which is centered at the origin.

(2) Forthe case p > 1and i = 0, the equality holds in (1.23) ifand only if K and I',I"_,K are
dilatesand I'_, K is an ellipsoid which is centered at the origin. Because I'_,K is an ellipsoid
which is centered at the origin, and together with (1.10), K is an origin-symmetric ellipsoid
E if and only if I'_,K is an origin-symmetric ellipsoid. On the other hand, the literature
[11] tells us that if £ is an ellipsoid which is centered at the origin, then I',E = E. From this,
I',I'_,K is an ellipsoid which is centered at the origin. Therefore, for p > 1 and i = 0, the
equality holds in inequality (1.23) if and only if K is an ellipsoid which is centered at the
origin.

(3) For the case p =1 and 0 < i < n — 1, the equality holds in (1.23) if and only if K and
I',iI'_1,,K are homothetic, and I'_; ;K is a ball which is centered at the origin. From I'_,,;B =
B, we know that I'_; ;B = B, then K is a ball which is centered at the origin. This I"_; ;B =B
together with I'; ;B = B, then I'1;I"_; ;K is a ball which is centered at the origin. Therefore,
for p=1and 0 < i < n -1, the equality holds in inequality (1.23) if and only if K is a ball
which is centered at the origin.

(4) For the case p =1 and i = 0, the equality holds in (1.23) if K and '’ ;K are homo-
thetic, and I'_; K is an ellipsoid which is centered at the origin. Because I'_;K is an origin-
symmetric ellipsoid E if and only if K is an origin-symmetric ellipsoid. On the other hand,
from I'_,E = E, we know that I"_; K is an ellipsoid which is centered at the origin if and
onlyif I''I"_; K is an ellipsoid which is centered at the origin. Therefore, for p =1and i = 0,
the equality holds in inequality (1.23) if and only if K is an ellipsoid which is centered at
the origin.

To sum up, the equality holds in (1.23) for p > 1and 0 < i < n—1 if and only if K is a ball
which is centered at the origin; for p > 1 and i = 0 if and only if K is an ellipsoid which is
centered at the origin. The proof is complete. d
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