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Abstract
Cîrtoaje (J. Nonlinear Sci. Appl. 4(2):130-137, 2011) conjectured that the inequality
a(2b)

x
+ b(2a)

x ≤ 1 with double power-exponential functions holds for all nonnegative
real numbers a, b with a + b = 1 and all x ≥ 1. In this paper, we shall prove the
conjecture affirmatively.
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1 Introduction
The study of inequalities with power-exponential functions is one of the active areas of
research in the mathematical analysis. Cîrtoaje [, ] studied inequalities with power-
exponential functions and conjectured some open inequalities. He posed the open in-
equality as Conjecture . in [],

ab + ba ≤ ,

which holds for all nonnegative real numbers a, b with a+ b = . He proved in [] that this
inequality holds. Moreover, he conjectured the more generalized inequality containing
double power-exponential functions in []:

a(b)
x
+ b(a)

x ≤  (.)

holds for all nonnegative real numbers a, b with a + b =  and all x ≥ , which is Conjec-
ture . in [] and still an open problem. Cîrtoaje’s open inequality (.) is an interesting
and new problem of great importance in the power exponential inequality theory. In this
paper, we shall prove the conjecture affirmatively. The following is our main theorem.

Theorem . For all nonnegative real numbers a, b with a+b =  and all x ≥ , inequality
(.) holds.

We shall show this theorem by using differentiation mainly.
Let

b =  – a
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and

F(x,a) = a(b)
x
+ b(a)

x
.

Since F(x, ) = F(x,  ) =  and F(x,a) = F(x,  – a), it suffices to show that F(x,a) ≤  for
 < a < 

 and x ≥ . To prove Theorem ., we shall investigate the sign of

Fx(x,a) =
∂

∂x
F(x,a) = b(a)

x (a)x ln(a) lnb + a(b)
x (b)x ln(b) lna.

We set

G(x,a) = ln
[
b(a)

x
(a)x ln(a) lnb

]
– ln

[
a(b)

x
(b)x ln(b)(– lna)

]
.

Then Fx(x,a) clearly has the same sign as G(x,a).
Since G(x,a) has the both signs, in order to get the sign of it, we need to investigate the

signs ofG(,a) andGx(,a).We shall describe the results in Sections . and ..Moreover,
for fixed a ∈ (,  ), we show in Section . that Gx = ∂G/∂x is strictly increasing for x≥ ;
that is, G(x,a) is convex on [,∞), which is the main idea of our proof.
In Section , we consider the cases ofGx(,a)≥  andGx(,a) <  to prove Theorem ..

Using three propositions given in Section , we notice the following () and ().
() From Proposition ., for fixed a, if Gx(,a)≥ , then Gx(x,a) >  for x >  and if

Gx(,a) < , then there exists uniquely a number x̃ >  such that Gx(x̃,a) = .
() From Propositions . and ., we notice that G(,a) <  when Gx(,a) < .

() and () play an important role in the proof of Theorem ..
We shall use the functions F(x,a) and G(x,a) defined here throughout this paper.

2 Preliminaries
2.1 The sign of G(1,a)
From the definition of G(x,a), we have

G(x,a) = (a)x lnb + x ln(a) – (b)x lna – x ln(b) + R(a),

where

R(a) = ln
[
ln(a) lnb

]
– ln

[
ln(b)(– lna)

]

= ln

(
 +

ln
lna

)
– ln

(
– –

ln
lnb

)
.

Then we have

G(,a) = a lnb + ln(a) – b lna – ln(b) + R(a), b =  – a.

In this subsection, we shall show that G(,a) <  for 
 ≤ a < 

 .
Consider first the case 

 ≤ a ≤ 
 . We have

R′(a) = –ln
[


P(a)

+


P(b)

]
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and

R′′(a) = ln
[
Q(a)
P(a)

–
Q(b)
P(b)

]
,

where

P(x) = x ln(x) lnx

and

Q(x) = (lnx) + ( + ln) lnx + ln.

Lemma . If 
 ≤ a ≤ 

 , then

G(,a) < .

Proof First, we show that

R′′(a) < 

for 
 ≤ a≤ 

 . Let λ and λ (λ < λ) be the solutions of

x + ( + ln)x + ln = ,

then we have

λ =
–( + ln) –

√
(ln) + 


, λ =

–( + ln) +
√
(ln) + 



and

eλ ∼= ., eλ ∼= ..

Since Q(a) ≤  for eλ ≤ a ≤ eλ , we have Q(a) <  for 
 ≤ a ≤ 

 . Since Q(b) ≥  for
b ≥ eλ , that is, for a ≤ – eλ ∼= ., we haveQ(b) >  for 

 ≤ a≤ 
 . Therefore, from

Q(a) <  and Q(b) > , we get R′′(a) <  for 
 ≤ a≤ 

 .
Next, we show that

R(a) < 
(
a –




)
– 

for 
 ≤ a≤ 

 . If we set

f (a) = R(a) – 
(
a –




)
+ ,

then

f ′(a) = R′(a) – 

http://www.journalofinequalitiesandapplications.com/content/2013/1/468
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and

f ′′(a) = R′′(a).

Since R′′(a) <  for 
 ≤ a≤ 

 , f
′ is strictly decreasing on the interval [ 

 ,

 ] and we have

f ′(a) ≥ f ′(  ) = R′(  ) – (∼= .) > . Therefore, f is strictly increasing on the interval
[ 
 ,


 ], so we have f (a)≤ f (  ) = R(  ) + (∼= –.) < . Thus, we get R(a) < (a– 

 ) – 
for 

 ≤ a≤ 
 .

In order to complete the proof of this lemma, it suffices to show from the above inequal-
ity with respect to R(a) that g(a) <  for 

 ≤ a≤ 
 , where

g(a) = a lnb + ln(a) – b lna – ln(b) + 
(
a –




)
– , b =  – a.

We have

g ′(a) =  lnb –
a
b

+

a
+  lna –

b
a

+

b
+ 

and

g ′′(a) =
( – a)

ab
+
 – a
ab

.

Since g ′′(a) > , g ′ is strictly increasing on the interval [ 
 ,


 ]. Since g

′( 
 )(∼= –.) < 

and g ′(  )(∼= .) > , there exists uniquely a number c ∈ ( 
 ,


 ) such that g ′(c) = .

Then we have g ′(a) <  for 
 < a < c and g ′(a) >  for c < a < 

 . Hence, g is strictly de-
creasing on the interval [ 

 , c] and strictly increasing on the interval [c,  ]. Therefore,
g(a) ≤ max{g( 

 ), g(

 )}. Since g( 

 ) ∼= –. and g(  ) ∼= –., we can get g(a) < 
for 

 ≤ a≤ 
 . �

It still remains to show that G(,a) <  for 
 ≤ a < 

 . Since

G(,a) = a lnb + ln(a) – b lna – ln(b) + ln

(
– ln(a)
ln(b)

)
+ ln

(
lnb
lna

)
, b =  – a,

using the substitution

a =
 – t


,

we need to prove that A(t) <  for  < t ≤ 
 , where

A(t) = ( – t) ln
(
 + t


)
+ ln( – t) – ( + t) ln

 – t


– ln( + t) + lnS(t) + lnS(t),

S(t) =
– ln( – t)
ln( + t)

, S(t) =
ln – ln( + t)
ln – ln( – t)

.

Lemma . If  < t ≤ 
 , then

S(t) <  + t + t.
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Proof We need to prove that f (t) >  for  < t ≤ 
 , where

f (t) =
(
 + t + t

)
ln( + t) + ln( – t).

We have

f ′(t) = ( + t) ln( + t) + t +


 + t
–


 – t

,

f ′′(t) =  ln( + t) –


 + t
–


( + t)

–


( – t)
+ 

and

f ′′′(t) =


 + t
+


( + t)

+


( + t)
–


( – t)

.

If we set g(t) = f ′′′(t)× ( + t)( – t), then we have

g(t) = –t + t + t – t – t + ,

g ′(t) = –t + t + t – t – .

From

g ′(t) < t + t –  <


+


–  < ,

it follows that g is strictly decreasing on (,  ). Since g() =  and g(  ) = –
 , there exists

uniquely a number c ∈ (,  ) such that g(c) = . Since g(t) >  for  < t < c and g(t) < 
for c < t < 

 , we have f
′′′(t) >  for  < t < c and f ′′′(t) <  for c < t < 

 . It follows that f
′′

is strictly increasing on the interval (, c) and strictly decreasing on the interval (c,  ).
Since f ′′() =  and f ′′(  ) =  ln 

 –

 (∼= –.) < , there exists uniquely a number c ∈

(,  ) such that f ′′(c) = . Since f ′′(t) >  for  < t < c and f ′′(t) <  for c < t < 
 , f

′ is
strictly increasing on the interval (, c) and strictly decreasing on the interval (c,  ). Since
f ′() =  and f ′(  ) =  ln 

 –

 (∼= –.) < , there exists uniquely a number c ∈ (,  )

such that f ′(c) = . Hence, f ′(t) >  for  < t < c and f ′(t) <  for c < t < 
 . Thus, f is

strictly increasing on the interval (, c) and strictly decreasing on the interval (c,  ). Since
f () =  and f (  ) =


 ln


 – ln ∼= ., we can get f (t) >  for  < t ≤ 

 . �

Lemma . If  < t ≤ 
 , then

lnS(t) <
–
ln

t.

Proof We need to show that f (t) < , where

f (t) = lnS(t) +

ln

t.

We have

f ′(t) =
(
lnS(t)

)′ +

ln

http://www.journalofinequalitiesandapplications.com/content/2013/1/468
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and

f ′′(t) =
(
lnS(t)

)′′,

where

lnS(t) = ln
[
ln – ln( + t)

]
– ln

[
ln – ln( – t)

]
,

(
lnS(t)

)′ = –


[ln – ln( + t)]( + t)
–


[ln – ln( – t)]( – t)

,

and

(
lnS(t)

)′′ =
– + ln – ln( + t)

[ln – ln( + t)]( + t)
+

 – ln + ln( – t)
[ln – ln( – t)]( – t)

.

We see that (lnS(t))′′ has the same sign as

B(t) =
(
lnS(t)

)′′ × [
ln – ln( + t)

]( + t)
[
ln – ln( – t)

]( – t)

= ( – ln)B(t) + B(t) + B(t),

where

B(t) =
[
ln – ln( + t)

]( + t) –
[
ln – ln( – t)

]( – t),

B(t) = – ln( + t)
[
ln – ln( – t)

]( – t)

and

B(t) = ln( – t)
[
ln – ln( + t)

]( + t).

We have

B(t) = f(t)f(t),

where

f(t) =
[
ln – ln( + t)

]
( + t) +

[
ln – ln( – t)

]
( – t)

and

f(t) =
[
ln – ln( + t)

]
( + t) –

[
ln – ln( – t)

]
( – t).

Since ln > ln( + t) and ln > ln( – t) for  < t ≤ 
 , we have f(t) > . Since f ′

(t) =  ln –
 – ln( – t) ≤  ln –  – ln ∼= –. for  < t ≤ 

 , f is strictly decreasing on the
interval (,  ]. Therefore, we can get f(t) < limt→ f(t) =  for  < t ≤ 

 . From f(t) >  and
f(t) < , it follows that B(t) < . Since B(t) < , B(t) <  and B(t) < , we get B(t) < ,
hence (lnS(t))′′ <  for  < t ≤ 

 . Thus, f
′ is strictly decreasing on the interval (,  ] and

we have f ′(t) < limt→ f ′(t) =  for  < t ≤ 
 . Since f is strictly decreasing on the interval

(,  ], we have f (t) < limt→ f (t) =  for  < t ≤ 
 . Therefore, we get lnS(t) < – 

ln t. �
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Lemma . If 
 ≤ a≤ 

 , then

G(,a) < .

Proof We need to show that A(t) <  for  < t ≤ 
 . By Lemmas . and ., it suffices to

show that f (t) < , where

f (t) = ( – t) ln
 + t


+ ln( – t) – ( + t) ln
 – t


– ln( + t) + ln
(
 + t + t

)
–


ln

t.

We have

f ′(t) = – ln( + t) – ln( – t) +


 + t
+


 – t

+
 + t

 + t + t
+  ln –  –


ln

and

f ′′(t) =
t

( + t)( – t)
–

t( + t)
( + t + t)

+
t

( + t)( – t)
+


( + t + t)

=
t( + t + t + t)

( + t)( – t)( + t + t)
+

t
( + t)( – t)

+


( + t + t)
.

Since f ′′(t) >  for  < t ≤ 
 , f

′ is strictly increasing on the interval (,  ]. Since
limt→ f ′(t) = + ln– 

ln (∼= –.) <  and f ′(  ) =  ln+ 
 – ln–


ln (∼= .) > ,

there exists uniquely a number c ∈ (,  ) such that f ′(c) = . Hence, f is strictly decreasing
on the interval (, c) and strictly increasing on the interval (c,  ]. Since limt→+ f (t) = 
and f (  ) = – 

 ln + ln – 
ln

∼= –., we get f (t) < . Therefore, A(t) < f (t) <  for
 < t ≤ 

 . �

From Lemmas . and ., we get the following result.

Proposition . If 
 ≤ a < 

 , then

G(,a) < .

We notice that lima→ 
 –

G(,a) = .

2.2 The sign of Gx(1,a)
We have

Gx(x,a) =
∂

∂x
G(x,a) = (a)x ln(a) lnb + ln(a) – (b)x ln(b) lna – ln(b),

hence

Gx(,a) = (a)(ln + lna) lnb + lna – b(ln + lnb) lna – lnb,

where b =  – a.

Proposition . There exists a number c ∈ ( 
 ,


 ) such that Gx(,a) >  for  < a < c.

http://www.journalofinequalitiesandapplications.com/content/2013/1/468
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Proof Let us denote Gx(,a) by f (a). We have

f ′(a) =  ln(a) lnb +  lnb –
a
b

ln(a) +

a
+  ln(b) lna +  lna –

b
a

ln(b) +

b

and

f ′′(a) =
(b lnb – a lna)

ab
–
 ln(a)

b
–
 ln(a)

b

+
 ln(b)

a
+
 ln(b) – 

a
+
( – a)

ab
+


b

.

Since  < a < 
 , we have b lnb–a lna > , ln(a) < , ln(b) >  and –a > . Therefore, if

 ln(b) –  ≥ , then f ′′(a) > . The condition  ln(b) –  ≥  is true for  < a < a, where

a =  –


√
e∼= ..

Consequently, f ′ is strictly increasing on (,a]. Since f ′(a) ∼= –., it follows that
f ′(a) <  on (,a], and f is strictly decreasing on (,a]. Since lima→+ f (a) = ∞ and
f (a) ∼= –., there exists uniquely a number c ∈ (,a) such that f (c) = . Then we
have f (a) >  for  < a < c and f (a) <  for c < a < a. Since 

 < a and f ( 
 ) ∼= .,

we can get 
 < c. �

2.3 The convexity of G(x,a)
In order to investigate the convexity of G(x,a) with respect to x, we need the following
lemma.

Lemma . If  < a < 
 , then

(ln + lna) lnb > (ln + lnb) lna,

where b =  – a.

Proof We first show that the inequality

(ln) > lna lnb

holds for  < a < 
 . We denote

f (a) = lna lnb.

Then we have

f ′(a) =
b lnb – a lna

ab
.

We set

g(a) = b lnb – a lna,

http://www.journalofinequalitiesandapplications.com/content/2013/1/468
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then we have

g ′(a) = – lnb – lna – 

and

g ′′(a) =
a – 
ab

< .

Therefore, g ′ is strictly decreasing on the interval (,  ). Since lima→+ g ′(a) = ∞ and
g ′(  ) =  ln –  < , there exists uniquely a number c ∈ (,  ) such that g ′(c) = . Since
g ′(a) >  for  < a < c and g ′(a) <  for c < a < 

 , g is strictly increasing on the interval
(, c) and strictly decreasing on the interval (c,  ). Since lima→+ g(a) =  and g(  ) = ,
we get g(a) >  for  < a < 

 . Therefore, we have f ′(a) >  for any a ∈ (,  ). Since f is
strictly increasing on the interval (,  ), we can get f (a) < f (  ) = (ln). Hence, we have
(ln) > lna lnb for  < a < 

 . Also, the inequality

(ln + lna) lnb > (ln + lnb) lna

is equivalent to

(lnb – lna)
(
(ln) – lna lnb

)
> .

From lnb– lna >  and (ln) – lna lnb > , it follows that (lnb– lna)((ln) – lna lnb) > .
This completes the proof of the lemma. �

Proposition . If  < a < 
 and x ≥ , then Gx is strictly increasing with respect to x.

Proof For fixed a ∈ (,  ), let us denote f (x) =Gx(x,a); that is,

f (x) = (a)x ln(a) lnb + ln(a) – (b)x ln(b) lna – ln(b), b =  – a.

Clearly, we need to show that f ′(x) >  for x≥ . From

f ′(x) = (a)x(ln + lna) lnb – (b)x(ln + lnb) lna,

we can write the inequality f ′(x) >  in the form

(
a
b

)x

(ln + lna) < (ln + lnb)
lna
lnb

.

Since ( ab )
x < , it is enough to show that

(ln + lna) < (ln + lnb)
lna
lnb

,

which follows immediately from Lemma .. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/468
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3 Proof of Theorem 1.1
In this section, we shall prove the main theorem.

Proof We shall show that if  ≤ a ≤ 
 and x≥ , then F(x,a)≤ . The inequality F(,a)≤ 

is proved in Cîrtoaje []. Since F(x, ) = F(x,  ) = , we may show this inequality for
 < a < 

 . We note that Gx(,a) has the both signs, so we consider the cases ofGx(,a)≥ 
and Gx(,a) < .
() We first assume that Gx(,a) ≥ . We have Gx(x,a) >Gx(,a) for x >  from Proposi-

tion .. Since we haveGx(x,a) >  on the assumption,G is strictly increasing with respect
to x. Therefore, G(x,a) > G(,a) for x > . We note that G(,a) has the both signs, so we
consider the cases of G(,a)≥  and G(,a) < .

(i) If G(,a)≥ , then G(x,a) > , so we have Fx(x,a) >  for x > . Hence, F is strictly
increasing with respect to x, and we have F(x,a)≤ limx→∞ F(x,a) = .

(ii) If G(,a) < , then since limx→∞ G(x,a) =∞, there exists uniquely a number x > 
satisfying G(x,a) = . Since G(x,a) <  for  < x < x and G(x,a) >  for x > x, we
have Fx(x,a) <  for  < x < x and Fx(x,a) >  for x > x. Hence, F is strictly
decreasing for  < x < x and strictly increasing for x > x. Therefore, we get

F(x,a)≤max
{
F(,a), lim

x→∞F(x,a)
}
= .

() We next assume that Gx(,a) < . Since Gx is strictly increasing with respect to x
from Proposition . and limx→∞ Gx(x,a) = ∞, there exists uniquely a number x >  sat-
isfying Gx(x,a) = . SinceGx(x,a) <  for  < x < x and Gx(x,a) >  for x > x,G is strictly
decreasing for  < x < x and strictly increasing for x > x. By the assumption Gx(,a) < 
and Proposition ., it follows that a > 

 . Hence, G(,a) <  by Proposition .. From
limx→∞ G(x,a) = ∞, there exists uniquely a number x > x satisfying G(x,a) = . If
 < x < x, then G(x,a) < , so Fx(x,a) < . If x > x, then G(x,a) > , so Fx(x,a) > . Hence
F is strictly decreasing for  < x < x and strictly increasing for x > x. So, we get

F(x,a)≤max
{
F(,a), lim

x→∞F(x,a)
}
= .

This completes the proof of Theorem .. �
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