A note on the roots of some special type polynomials

Serpil Halıcı* and Zeynep Akyüz

Correspondence:
shalici@sakarya.edu.tr Department of Mathematics, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey

Abstract

In this study, we investigate the polynomials for $n \geq 2$ and positive integers k and a positive real number a, with the initial values $G_{0}(x)=-a, G_{1}(x)=x-a$

$$
G_{n+2}^{(k)}(x)=x^{k} G_{n+1}^{(k)}(x)+G_{n}^{(k)}(x) .
$$

We give some fundamental properties related to them. Also, we obtain asymptotic results for the roots of polynomials $G_{n}^{(k)}(x)$.
MSC: 11B39; 11B37
Keywords: Fibonacci polynomials; Binet formula; generating function

1 Introduction

The polynomials defined by Catalan, for $n \geq 0$, as follows

$$
\begin{equation*}
F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x) ; \quad F_{1}(x)=1, \quad F_{2}(x)=x \tag{1}
\end{equation*}
$$

are called Fibonacci polynomials and denoted by $F_{n}(x)$, [1]. The Fibonacci-type polynomials $G_{n}(x), n \geq 0$, are defined by

$$
\begin{equation*}
G_{n+2}(x)=x G_{n+1}(x)+G_{n}(x), \tag{2}
\end{equation*}
$$

where $G_{0}(x)$ and $G_{1}(x)$ are seed polynomials. There are several studies about the properties of zeros of polynomials $G_{n}(x)$. However, there are no general formulas for zeros of Fibonacci-type polynomials. In [2, 3], the authors studied the limiting behavior of the maximal real roots of polynomials $G_{n}(x)$ with the initial values $G_{0}(x)=-1, G_{1}(x)=x-1$. In [4], the authors generalized Moore's result for these polynomials. They considered the initial values $G_{0}(x)=a, G_{1}(x)=x+b$, where a and b are integer numbers. In [5], the author determined the absolute values of complex zeros of these polynomials. In [6], Ricci studied this problem in the case $a=1$ and $b=1$. In [7], Tewodros investigated the convergence of maximal real roots of different Fibonacci-type polynomials given by the following relation:

$$
\begin{equation*}
G_{n+2}^{(k)}(x)=x^{k} G_{n+1}^{(k)}(x)+G_{n}^{(k)}(x), \quad n \geq 0, \tag{3}
\end{equation*}
$$

where k is a positive integer number. The initial values of the recursive relation (3) are $G_{0}^{(k)}(x)=-1$ and $G_{1}^{(k)}(x)=x-1$. In this study, firstly, we investigate some fundamental properties of Fibonacci-type polynomials. We give some combinatorial identities related to equation (3). Then, we investigate the limit of maximal real roots of these polynomials. We notice that Tewodros [7] studied a special case $a=1$ of the polynomials we investigate.

2 Some fundamental properties of polynomials $G_{n}^{(k)}(x)$

In this section, we give some fundamental properties of polynomials $G_{n}^{(k)}(x)$, for $n \geq 0$, defined by the recursive formula as follows:

$$
\begin{equation*}
G_{n+2}^{(k)}(x)=x^{k} G_{n+1}^{(k)}(x)+G_{n}^{(k)}(x) ; \quad G_{0}^{(k)}(x)=-a ; \quad G_{1}^{(k)}(x)=x-a . \tag{4}
\end{equation*}
$$

The characteristic equation for (4) is $t^{2}-x^{k} t-1=0$ and its roots are

$$
\alpha(x)=\frac{x^{k}+\sqrt{x^{2 k}+4}}{2}
$$

and

$$
\beta(x)=\frac{x^{k}-\sqrt{x^{2 k}+4}}{2} .
$$

Note that $\alpha(x) \beta(x)=-1, \alpha(x)+\beta(x)=x^{k}$ and $\alpha(x)-\beta(x)=\sqrt{x^{2 k}+4}$. For relation (4), the Binet formula is

$$
\begin{equation*}
G_{n}^{(k)}(x)=A(x) \alpha^{n}(x)+B(x) \beta^{n}(x) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
A(x)=\frac{2(x-a)+a x^{k}-a \sqrt{x^{2 k}+4}}{2 \sqrt{x^{2 k}+4}}, \quad B(x)=\frac{-2(x-a)-a x^{k}-a \sqrt{x^{2 k}+4}}{2 \sqrt{x^{2 k}+4}} . \tag{6}
\end{equation*}
$$

Proposition 2.1 For $n \geq 0$, the generating function for polynomials $G_{n}^{(k)}(x)$ is

$$
H_{r}^{(k)}(x, t)=\sum_{n \geq 0} G_{n+r}^{(k)}(x) t^{n}= \begin{cases}\frac{G_{r}^{(k)}(x)+G_{r-1}^{(k)}(x) t}{1-k^{k} t-t^{2}}, & r=1,2,3, \ldots, \tag{7}\\ \frac{t\left(a x^{2}+x-a\right)}{1-x^{k} t-t^{2}}, & r=0 .\end{cases}
$$

Proof Let $H_{r}^{(k)}(x, t)$ be the generating function for polynomials $G_{n+r}^{(k)}(x)$. So, we write

$$
\begin{equation*}
H_{r}^{(k)}(x, t)=\sum_{n \geq 0} G_{n+r}^{(k)}(x) t^{n} . \tag{8}
\end{equation*}
$$

If we multiply both sides of equation (8) by $x^{k} t$ and t^{2}, respectively, then we can get

$$
x^{k} t H_{r}^{(k)}(x, t)=x^{k} G_{r}^{(k)}(x) t^{1}+x^{k} G_{r+1}^{(k)}(x) t^{2}+x^{k} G_{r+2}^{(k)}(x) t^{3}+\cdots+x^{k} G_{r+n-1}^{(k)}(x) t^{n}+\cdots
$$

and

$$
t^{2} H_{r}^{(k)}(x, t)=G_{r}^{(k)}(x) t^{2}+G_{r+1}^{(k)}(x) t^{3}+G_{r+2}^{(k)}(x) t^{4}+\cdots+G_{r+n-2}^{(k)}(x) t^{n}+\cdots .
$$

The last two equations give us the following equation:

$$
\begin{aligned}
H_{r}^{(k)}(x, t)-x^{k} t H_{r}^{(k)}(x, t)-t^{2} H_{r}^{(k)}(x, t)= & G_{r}^{(k)}(x) t^{0}+\left(G_{r+1}^{(k)}(x)-x^{k} G_{r}^{(k)}(x)\right) t \\
& +\left(G_{r+2}^{(k)}(x)-x^{k} G_{r+1}^{(k)}(x)-G_{r}^{(k)}(x)\right) t^{2}+\cdots \\
& +\left(G_{n+r}^{(k)}(x)-x^{k} G_{n+r-1}^{(k)}(x)-G_{n+r-2}^{(k)}(x)\right) t^{n}+\cdots .
\end{aligned}
$$

If we use the recurrence relation and simplify it, we write

$$
H_{r}^{(k)}(x, t)-x^{k} t H_{r}^{(k)}(x, t)-t^{2} H_{r}^{(k)}(x, t)=G_{r}^{(k)}(x) t^{0}+\left(G_{r+1}^{(k)}(x)-x^{k} G_{r}^{(k)}(x)\right) t,
$$

i.e.,

$$
H_{r}^{k}(x, t)= \begin{cases}\frac{G_{r}^{(k)}(x)+G_{r-1}^{(k)}(x) t}{1-x^{k} t-t^{2}}, & r=1,2,3, \ldots, \\ \frac{t\left(a x^{k}+x-a\right)}{1-x^{k} t-t^{2}}, & r=0 .\end{cases}
$$

Thus, the proof is completed.

Let us give the well-known formula, which is called the Cassini-like formula, without proof.

Proposition 2.2 (Cassini-like) For $n \geq 0$, we have

$$
\begin{equation*}
G_{n-1}^{(k)}(x) G_{n+1}^{(k)}(x)-\left[G_{n}^{(k)}(x)\right]^{2}=(-1)^{n-1}[A(x) B(x)] \tag{9}
\end{equation*}
$$

where

$$
A(x)=\frac{2(x-a)+a x^{k}-a \sqrt{x^{2 k}+4}}{2 \sqrt{x^{2 k}+4}}
$$

and

$$
B(x)=\frac{-2(x-a)-a x^{k}-a \sqrt{x^{2 k}+4}}{2 \sqrt{x^{2 k}+4}} .
$$

In the following propositions, we give some sums formulas related to polynomials $G_{n}^{(k)}(x)$.

Proposition 2.3 For $N \geq 0$, we have

$$
\begin{equation*}
H_{0}^{(k)}(x, 1)-H_{N+1}^{(k)}(x, 1)=\sum_{r=0}^{N} G_{r}^{(k)}(x)=\frac{2 a-x-a x^{k}+G_{N+1}^{(k)}(x)+G_{N}^{(k)}(x)}{x^{k}} \tag{10}
\end{equation*}
$$

Proof Proof of formula (10) follows now immediately from (7).

Proposition 2.4 For $N \geq 0$, we have the following sum formulas:

$$
\begin{equation*}
\sum_{r=0}^{N} G_{2 r}^{(k)}(x)=\frac{-x^{k+1}-a x^{k}\left(x^{k}-1\right)-G_{2 N}^{(k)}(x)+G_{2 N+2}^{(k)}(x)}{x^{2 k}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r=0}^{N} G_{2 r+1}^{(k)}(x)=\frac{a x^{k}-G_{2 N+1}^{(k)}(x)+G_{2 N+3}^{(k)}(x)}{x^{2 k}} \tag{12}
\end{equation*}
$$

Proof From the Binet formula, we can write

$$
\sum_{r=0}^{N} G_{2 r}^{(k)}(x)=\left(\frac{x-a+a \beta}{\alpha-\beta}\right) \sum_{r=0}^{N} \alpha^{2 r}-\left(\frac{x-a+a \alpha}{\alpha-\beta}\right) \sum_{r=0}^{N} \beta^{2 r},
$$

where $\alpha=\alpha(x), \beta=\beta(x)$. If we substitute the equations

$$
\sum_{r=0}^{N} \alpha^{2 r}=\frac{1-\alpha^{2 N+2}}{1-\alpha^{2}}, \quad \sum_{r=0}^{N} \beta^{2 r}=\frac{1-\beta^{2 N+2}}{1-\beta^{2}}
$$

and

$$
\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)=-x^{2 k}
$$

into equation (13), then we can get

$$
\sum_{r=0}^{N} G_{2 r}^{(k)}(x)=\left(\frac{x-a+a \beta}{\alpha-\beta}\right) \frac{1-\alpha^{2 N+2}}{1-\alpha^{2}}-\left(\frac{x-a+a \alpha}{\alpha-\beta}\right) \frac{1-\beta^{2 N+2}}{1-\beta^{2}} .
$$

If we rearrange the last equation, then we have

$$
\begin{aligned}
\sum_{r=0}^{N} G_{2 r}^{(k)}(x)= & \frac{-a(\alpha-\beta)+(x-a)\left(\alpha^{2}-\beta^{2}\right)+a\left(\alpha^{3}-\beta^{3}\right)}{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)(\alpha-\beta)} \\
& -\frac{\left[(x-a+a \beta) \alpha^{2 N+2}-(x-a+a \alpha) \beta^{2 N+2}\right]}{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)(\alpha-\beta)} \\
& +\frac{\alpha^{2} \beta^{2}\left[(x-a+a \beta) \alpha^{2 N}-(x-a+a \alpha) \beta^{2 N}\right]}{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)(\alpha-\beta)} .
\end{aligned}
$$

By taking aid of the Binet formula, we can write

$$
\begin{aligned}
\sum_{r=0}^{N} G_{2 r}^{(k)}(x)= & \frac{-a+(x-a)(\alpha+\beta)+a\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)}{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)} \\
& +\frac{G_{2 N}^{(k)}(x)}{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)}-\frac{G_{2 N+2}^{(k)}(x)}{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)} .
\end{aligned}
$$

If we substitute $\alpha+\beta=x^{k}, \alpha \beta=-1,\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)=-x^{2 k}$ into the last equation, we obtain the following equation:

$$
\sum_{r=0}^{N} G_{2 r}^{(k)}(x)=\frac{x^{k+1}-a x^{k}+a x^{2 k}-G_{2 N+2}^{(k)}(x)+G_{2 N}^{(k)}(x)}{-x^{2 k}}
$$

Thus, the proof is completed. Similarly, the second part of the proposition can be seen.

3 Asymptotic behaviors of the maximal roots for polynomials $G_{n}^{(k)}(x)$

In this section, firstly for $k=2$, we investigate the roots of polynomials $G_{n}^{(k)}(x)$. After that, we generalize the obtained results for all positive real numbers k. When $k=2$, we write

$$
\begin{equation*}
G_{n+2}^{(2)}(x)=x^{2} G_{n+1}^{(2)}(x)+G_{n}^{(2)}(x), \tag{14}
\end{equation*}
$$

where

$$
G_{0}^{(2)}(x)=-a, \quad G_{1}^{(2)}(x)=x-a
$$

and a is a positive real number. Now, we can give the following lemma to be used the later.
Lemma 3.1 If r is a maximal root of a function f with positive leading coefficient, then $f(x)>0$ for all $x>r$. Conversely, if $f(x)>0$ for all $x \geq t$, then $r<t$. If $f(s)<0$, then $s<r$ [2].

Lemma 3.2 For $n \geq 2, G_{n}^{(2)}(x)$ has at least one real root on the interval $(a, a+1)$ and $g_{n} \in$ $(a, a+1)$, where g_{n} is the maximal root of polynomial $G_{n}^{(2)}(x)$.

Proof Some of polynomials $G_{n}^{(2)}(x)$ are as follows:

$$
\begin{aligned}
& G_{2}^{(2)}(x)=x^{3}-a x^{2}-a, \\
& G_{3}^{(2)}(x)=x^{5}-a x^{4}-a x^{2}+x-a, \\
& G_{4}^{(2)}(x)=x^{7}-a x^{6}-a x^{4}+2 x^{3}-2 a x^{2}-a,
\end{aligned}
$$

$$
\vdots
$$

Note that polynomials $G_{n}^{(2)}(x)$ are monic polynomials with degree n and constant term - a. If we write for $x=a$, then we have

$$
\begin{aligned}
& G_{1}^{(2)}(a)=0, \\
& G_{2}^{(2)}(a)=-a<0, \\
& G_{3}^{(2)}(a)=-a^{3}=a^{2} G_{2}^{(2)}(a)<0, \\
& G_{4}^{(2)}(a)=-a^{5}-a \leq-a^{5}=a^{2} G_{3}^{(2)}(a)<0, \\
& \vdots
\end{aligned}
$$

For $k \geq 2$, if we suppose $G_{k}^{(2)}(a) \leq a^{2} G_{k-1}^{(2)}(a)<0$, then by using the recursive relation (14), we get

$$
G_{k+1}^{(2)}(a)=a^{2} G_{k}^{(2)}(a)+G_{k-1}^{(2)}(a)<0 .
$$

Thus, for $x=a$, we get $G_{n}^{(2)}(x)<0$. Similarly, when $x=a+1$, we have $G_{n}^{(2)}(x)>0$. Therefore, $G_{n}^{(2)}(x)$ has at least one real root on the interval $(a, a+1)$, and we write $g_{n} \in(a, a+1)$ for the maximal root of $G_{n}^{(2)}(x)$, which results easily from Lemma 3.1 and the recursive relation for $G_{n}^{(2)}(x)$.

Let g_{n} denote the maximal root of polynomial $G_{n}^{(2)}(x)$ for every $n \in \mathbb{N}$. Then we can give the following proposition to illustrate the monotonicity of $\left\{g_{2 n-1}\right\}$ and $\left\{g_{2 n}\right\}$.

Proposition 3.3 The sequence $\left\{g_{2 n-1}\right\}$ is a monotonically increasing sequence and the sequence $\left\{g_{2 n}\right\}$ is a monotonically decreasing sequence.

Proof Firstly, we consider polynomials $G_{n}^{(2)}(x)$ with odd indices. By a direct computation, we get $G_{3}^{(2)}(a)=-a^{3}<0, g_{3}>a, a=g_{1}$. Assume that $g_{1}<g_{3}<g_{5}<\cdots<g_{2 k-3}<g_{2 k-1}$. We can write $G_{2 k-3}^{(2)}\left(g_{2 k-1}\right)>0$. Thus, it can be easily seen that

$$
\begin{equation*}
G_{n+k}^{(2)}\left(g_{n}\right)=(-1)^{k+1} G_{n-k}^{(2)}\left(g_{n}\right) \tag{15}
\end{equation*}
$$

By using equation (15), we can write

$$
\begin{equation*}
G_{2 k+1}^{(2)}\left(g_{2 k-1}\right)=G_{(2 k-1)+2}^{(2)}\left(g_{2 k-1}\right)=-G_{(2 k-1)-2}^{(2)}\left(g_{2 k-1}\right)=-G_{2 k-3}^{(2)}\left(g_{2 k-1}\right) . \tag{16}
\end{equation*}
$$

So, from equation (16) we write

$$
\begin{equation*}
G_{2 k+1}^{(2)}\left(g_{2 k-1}\right)<0 \tag{17}
\end{equation*}
$$

Therefore, polynomials $G_{2 k+1}^{(2)}(x)$ must have a root greater than $g_{2 k-1}$. So, we get

$$
\begin{equation*}
g_{2 k+1}>g_{2 k-1} . \tag{18}
\end{equation*}
$$

After that we consider polynomials $G_{n}^{(2)}(x)$ with even indices. From the recursive relation (14), we can obtain

$$
\begin{equation*}
G_{2 k+1}^{(2)}\left(g_{2 k-1}\right)=g_{2 k-1}^{2} G_{2 k}^{(2)}\left(g_{2 k-1}\right)+G_{2 k-1}^{(2)}\left(g_{2 k-1}\right) \tag{19}
\end{equation*}
$$

Since $G_{2 k-1}^{(2)}\left(g_{2 k-1}\right)=0$, by using Lemma 3.1, we can get $G_{2 k+1}^{(2)}\left(g_{2 k-1}\right)<0$. Thus, we get

$$
\begin{equation*}
g_{2 k-1}<g_{2 k} . \tag{20}
\end{equation*}
$$

Again, by using Lemma 3.1, we can write

$$
\begin{equation*}
G_{2 k-1}^{(2)}\left(g_{2 k}\right)>0 \tag{21}
\end{equation*}
$$

From the recursive relation (14), we can write

$$
\begin{equation*}
G_{2 k}^{(2)}\left(g_{2 k}\right)=g_{2 k}^{2} G_{2 k-1}^{(2)}\left(g_{2 k}\right)+G_{2 k-2}^{(2)}\left(g_{2 k}\right) \tag{22}
\end{equation*}
$$

From equation (22), we can get

$$
-g_{2 k}^{2} G_{2 k-1}^{(2)}\left(g_{2 k}\right)=G_{2 k-2}^{(2)}\left(g_{2 k}\right)<0
$$

So, we have $g_{2 k}<g_{2 k-2}$. Thus, $\left\{g_{2 n-1}\right\}$ is a monotonically increasing sequence and bounded above by the number $a+1$. Similarly, $\left\{g_{2 n}\right\}$ is a monotonically decreasing sequence and
bounded below by the number a. If we denote the $\lim _{x \rightarrow \infty} g_{2 n-1}$ by $g_{\text {odd }}$ and $\lim _{x \rightarrow \infty} g_{2 n}$ by $g_{\text {even }}$, then we can write $g_{\text {odd }}=g_{\text {even }}$.

Proposition 3.4 For polynomials $G_{2 n-1}^{(2)}(x)$ and $G_{2 n}^{(2)}(x)$, the sequences $\left\{g_{2 n-1}\right\}$ and $\left\{g_{2 n}\right\}$ converge to the following number ζ :

$$
\begin{equation*}
\zeta=\frac{\sqrt{\left(1-a^{2}\right)^{2}+8 a^{2}}-\left(1-a^{2}\right)}{2 a} . \tag{23}
\end{equation*}
$$

Proof Using the Binet formula of relation (14), for all $[a, a+1]$, we can see that $\alpha(x) \geq$ $\alpha(a)>1$ and $|\beta(x)|=\frac{1}{\alpha(x)} \leq \frac{1}{\alpha(a)}$. Thus, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha^{n}(x)=+\infty ; \quad \lim _{n \rightarrow \infty} \beta^{n}(x)=0 \tag{24}
\end{equation*}
$$

If we write $n=2 k-1$ and $x=g_{2 k-1}$ in equation (5), then we have

$$
\begin{equation*}
A\left(g_{2 k-1}\right) \alpha^{2 k-1}\left(g_{2 k-1}\right)+B\left(g_{2 k-1}\right) \beta^{2 k-1}\left(g_{2 k-1}\right)=0 \tag{25}
\end{equation*}
$$

And from equation (25) we write

$$
\begin{equation*}
A\left(g_{2 k-1}\right)=-B\left(g_{2 k-1}\right)\left(\frac{\beta^{2 k-1}\left(g_{2 k-1}\right)}{\alpha^{2 k-1}\left(g_{2 k-1}\right)}\right) . \tag{26}
\end{equation*}
$$

$A(x)$ and $B(x)$ are continuous on the interval $[a, a+1]$, this implies that $|A(x)|$ and $|B(x)|$ are bounded below and above on $[a, a+1]$. So, since $a \geq 1$, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A\left(g_{2 k-1}\right)=A\left(g_{\text {odd }}\right)=0 \tag{27}
\end{equation*}
$$

From Binet formula (5), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} g_{2 k-1}=\frac{\sqrt{\left(1-a^{2}\right)^{2}+8 a^{2}}-\left(1-a^{2}\right)}{2 a} \tag{28}
\end{equation*}
$$

Also, by the aid of similar discussion, if we take $n=2 k$ and $x=g_{2 k}$, then we find that

$$
\lim _{k \rightarrow \infty} g_{2 k}=\frac{\sqrt{\left(1-a^{2}\right)^{2}+8 a^{2}}-\left(1-a^{2}\right)}{2 a} .
$$

That is,

$$
\begin{equation*}
\zeta=\frac{\sqrt{\left(1-a^{2}\right)^{2}+8 a^{2}}-\left(1-a^{2}\right)}{2 a} . \tag{29}
\end{equation*}
$$

Notice that if we take $a=1$ in equation (29), then our result coincides with the result of Tewodros [7].

For ζ numbers in equation (23), from Proposition 3.4 we can deduce the following result.

Corollary 3.5 For every positive integer a, we have

$$
\begin{equation*}
a<\zeta<a+1 . \tag{30}
\end{equation*}
$$

Now, we give a proposition for the maximal real roots of $G_{n}^{(k)}(x)$ without proof.

Proposition 3.6 The maximal real roots of $G_{n}^{(k)}(x)$ provide the following equation:

$$
\begin{equation*}
g-2 a+a g^{k}-a^{2} g^{k-1}=0, \tag{31}
\end{equation*}
$$

where the numbers $g=g_{n}=g_{n}(k)$ are the maximal real roots of $G_{n}^{(k)}(x)$, that is,

$$
\begin{equation*}
a g_{n}=a^{2}-g_{n}^{2-k}+2 a g_{n}^{1-k}, \tag{32}
\end{equation*}
$$

which implies

$$
\frac{a}{1+a(a+1)^{k-1}}<g_{n}(k)-a<\frac{a}{1+a^{k}},
$$

whenever $k>2$.

$$
\frac{a-1}{a(a+1)}<\frac{2 a-g_{n}(2)}{a g_{n}(2)}=g_{n}(2)-a<\frac{1}{a+1}
$$

and

$$
\lim _{k \rightarrow \infty} g_{n}(k)=a \text {, }
$$

whenever $a>1$ for every $n \in \mathbb{N}$.

Proof The proof can be easily seen as being similar to the proof of Proposition 3.4

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Acknowledgements

The authors are very grateful to the referees for very helpful suggestions and comments about the paper which improved the presentation and its readability.

Received: 18 October 2012 Accepted: 20 September 2013 Published: 07 Nov 2013

References

1. Koshy, T: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)
2. Matyas, F: Bounds for the zeros of Fibonacci-like polynomials. Acta Acad. Paedagog. Agriensis Sect. Mat. 25, 15-20 (1998)
3. Moore, GA: The limit of the golden numbers is 3/2. Fibonacci Q. 32(3), 211-217 (1993)
4. Prodinger, H: The asymptotic behavior of the golden numbers. Fibonacci Q. 34(3), 224-225 (1996)
5. Zhou, J-R, Srivastava, HM, Wang, ZG: Asymptotic distributions of the zeros of a family of hypergeometric polynomials Proc. Am. Math. Soc. 140, 2333-2346 (2012)
6. Ricci, PE: Generalized Lucas polynomials and Fibonacci polynomials. Riv. Mat. Univ. Parma 4, 137-146 (1995)
7. Amdeberhan, T: A note on Fibonacci-type polynomials. Integers 10, 13-18 (2010)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: 10.1186/1029-242X-2013-466

 Cite this article as: Halıcı and Akyüz: A note on the roots of some special type polynomials. Journal of Inequalities and Applications 2013, 2013:466

