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Abstract
In this study, we investigate the polynomials for n ≥ 2 and positive integers k and a
positive real number a, with the initial values G0(x) = –a, G1(x) = x – a

G(k)
n+2(x) = xkG(k)

n+1(x) + G(k)
n (x).

We give some fundamental properties related to them. Also, we obtain asymptotic
results for the roots of polynomials G(k)

n (x).
MSC: 11B39; 11B37
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1 Introduction
The polynomials defined by Catalan, for n≥ , as follows

Fn+(x) = xFn+(x) + Fn(x); F(x) = , F(x) = x ()

are called Fibonacci polynomials and denoted by Fn(x), []. The Fibonacci-type polyno-
mials Gn(x), n≥ , are defined by

Gn+(x) = xGn+(x) +Gn(x), ()

where G(x) and G(x) are seed polynomials. There are several studies about the prop-
erties of zeros of polynomials Gn(x). However, there are no general formulas for zeros
of Fibonacci-type polynomials. In [, ], the authors studied the limiting behavior of the
maximal real roots of polynomials Gn(x) with the initial values G(x) = –, G(x) = x – .
In [], the authors generalized Moore’s result for these polynomials. They considered the
initial values G(x) = a, G(x) = x + b, where a and b are integer numbers. In [], the au-
thor determined the absolute values of complex zeros of these polynomials. In [], Ricci
studied this problem in the case a =  and b = . In [], Tewodros investigated the conver-
gence ofmaximal real roots of different Fibonacci-type polynomials given by the following
relation:

G(k)
n+(x) = xkG(k)

n+(x) +G(k)
n (x), n≥ , ()
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where k is a positive integer number. The initial values of the recursive relation () are
G(k)

 (x) = – and G(k)
 (x) = x – . In this study, firstly, we investigate some fundamental

properties of Fibonacci-type polynomials. We give some combinatorial identities related
to equation (). Then, we investigate the limit of maximal real roots of these polynomials.
We notice that Tewodros [] studied a special case a =  of the polynomials we investigate.

2 Some fundamental properties of polynomials G(k)
n (x)

In this section, we give some fundamental properties of polynomials G(k)
n (x), for n ≥ ,

defined by the recursive formula as follows:

G(k)
n+(x) = xkG(k)

n+(x) +G(k)
n (x); G(k)

 (x) = –a; G(k)
 (x) = x – a. ()

The characteristic equation for () is t – xkt –  =  and its roots are

α(x) =
xk +

√
xk + 


and

β(x) =
xk –

√
xk + 


.

Note that α(x)β(x) = –, α(x) + β(x) = xk and α(x) – β(x) =
√
xk + . For relation (), the

Binet formula is

G(k)
n (x) = A(x)αn(x) + B(x)βn(x), ()

where

A(x) =
(x – a) + axk – a

√
xk + 


√
xk + 

, B(x) =
–(x – a) – axk – a

√
xk + 


√
xk + 

. ()

Proposition . For n ≥ , the generating function for polynomials G(k)
n (x) is

H (k)
r (x, t) =

∑
n≥

G(k)
n+r(x)t

n =

⎧⎨
⎩

G(k)
r (x)+G(k)

r–(x)t
–xkt–t , r = , , , . . . ,

t(axk+x–a)
–xkt–t , r = .

()

Proof Let H (k)
r (x, t) be the generating function for polynomials G(k)

n+r(x). So, we write

H (k)
r (x, t) =

∑
n≥

G(k)
n+r(x)t

n. ()

If we multiply both sides of equation () by xkt and t, respectively, then we can get

xktH (k)
r (x, t) = xkG(k)

r (x)t + xkG(k)
r+(x)t

 + xkG(k)
r+(x)t

 + · · · + xkG(k)
r+n–(x)t

n + · · ·

and

tH (k)
r (x, t) =G(k)

r (x)t +G(k)
r+(x)t

 +G(k)
r+(x)t

 + · · · +G(k)
r+n–(x)t

n + · · · .
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The last two equations give us the following equation:

H (k)
r (x, t) – xktH (k)

r (x, t) – tH (k)
r (x, t) = G(k)

r (x)t +
(
G(k)

r+(x) – xkG(k)
r (x)

)
t

+
(
G(k)

r+(x) – xkG(k)
r+(x) –G(k)

r (x)
)
t + · · ·

+
(
G(k)

n+r(x) – xkG(k)
n+r–(x) –G(k)

n+r–(x)
)
tn + · · · .

If we use the recurrence relation and simplify it, we write

H (k)
r (x, t) – xktH (k)

r (x, t) – tH (k)
r (x, t) =G(k)

r (x)t +
(
G(k)

r+(x) – xkG(k)
r (x)

)
t,

i.e.,

Hk
r (x, t) =

⎧⎨
⎩

G(k)
r (x)+G(k)

r–(x)t
–xkt–t , r = , , , . . . ,

t(axk+x–a)
–xkt–t , r = .

Thus, the proof is completed. �

Let us give the well-known formula, which is called the Cassini-like formula, without
proof.

Proposition . (Cassini-like) For n ≥ , we have

G(k)
n–(x)G

(k)
n+(x) –

[
G(k)

n (x)
] = (–)n–

[
A(x)B(x)

]
, ()

where

A(x) =
(x – a) + axk – a

√
xk + 


√
xk + 

and

B(x) =
–(x – a) – axk – a

√
xk + 


√
xk + 

.

In the following propositions, we give some sums formulas related to polynomials
G(k)

n (x).

Proposition . For N ≥ , we have

H (k)
 (x, ) –H (k)

N+(x, ) =
N∑
r=

G(k)
r (x) =

a – x – axk +G(k)
N+(x) +G(k)

N (x)
xk

. ()

Proof Proof of formula () follows now immediately from (). �

Proposition . For N ≥ , we have the following sum formulas:

N∑
r=

G(k)
r (x) =

–xk+ – axk(xk – ) –G(k)
N (x) +G(k)

N+(x)
xk

()
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and

N∑
r=

G(k)
r+(x) =

axk –G(k)
N+(x) +G(k)

N+(x)
xk

. ()

Proof From the Binet formula, we can write

N∑
r=

G(k)
r (x) =

(
x – a + aβ

α – β

) N∑
r=

αr –
(
x – a + aα

α – β

) N∑
r=

βr , ()

where α = α(x), β = β(x). If we substitute the equations

N∑
r=

αr =
 – αN+

 – α ,
N∑
r=

βr =
 – βN+

 – β

and

(
 – α)( – β) = –xk

into equation (), then we can get

N∑
r=

G(k)
r (x) =

(
x – a + aβ

α – β

)
 – αN+

 – α –
(
x – a + aα

α – β

)
 – βN+

 – β .

If we rearrange the last equation, then we have

N∑
r=

G(k)
r (x) =

–a(α – β) + (x – a)(α – β) + a(α – β)
( – α)( – β)(α – β)

–
[(x – a + aβ)αN+ – (x – a + aα)βN+]

( – α)( – β)(α – β)

+
αβ[(x – a + aβ)αN – (x – a + aα)βN ]

( – α)( – β)(α – β)
.

By taking aid of the Binet formula, we can write

N∑
r=

G(k)
r (x) =

–a + (x – a)(α + β) + a(α + αβ + β)
( – α)( – β)

+
G(k)

N (x)
( – α)( – β)

–
G(k)

N+(x)
( – α)( – β)

.

If we substitute α+β = xk , αβ = –, ( – α)( – β) = –xk into the last equation, we obtain
the following equation:

N∑
r=

G(k)
r (x) =

xk+ – axk + axk –G(k)
N+(x) +G(k)

N (x)
–xk

.

Thus, the proof is completed. Similarly, the second part of the proposition can be seen.
�
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3 Asymptotic behaviors of themaximal roots for polynomials G(k)
n (x)

In this section, firstly for k = , we investigate the roots of polynomials G(k)
n (x). After that,

we generalize the obtained results for all positive real numbers k. When k = , we write

G()
n+(x) = xG()

n+(x) +G()
n (x), ()

where

G()
 (x) = –a, G()

 (x) = x – a

and a is a positive real number. Now, we can give the following lemma to be used the later.

Lemma . If r is a maximal root of a function f with positive leading coefficient, then
f (x) >  for all x > r. Conversely, if f (x) >  for all x ≥ t, then r < t. If f (s) <  , then s < r [].

Lemma . For n ≥ , G()
n (x) has at least one real root on the interval (a,a + ) and gn ∈

(a,a + ), where gn is the maximal root of polynomial G()
n (x).

Proof Some of polynomials G()
n (x) are as follows:

G()
 (x) = x – ax – a,

G()
 (x) = x – ax – ax + x – a,

G()
 (x) = x – ax – ax + x – ax – a,

...

Note that polynomialsG()
n (x) aremonic polynomials with degree n and constant term –a.

If we write for x = a, then we have

G()
 (a) = ,

G()
 (a) = –a < ,

G()
 (a) = –a = aG()

 (a) < ,

G()
 (a) = –a – a ≤ –a = aG()

 (a) < ,

...

For k ≥ , if we suppose G()
k (a) ≤ aG()

k–(a) < , then by using the recursive relation (),
we get

G()
k+(a) = aG()

k (a) +G()
k–(a) < .

Thus, for x = a, we getG()
n (x) < . Similarly, when x = a+, we haveG()

n (x) > . Therefore,
G()

n (x) has at least one real root on the interval (a,a + ), and wewrite gn ∈ (a,a + ) for the
maximal root of G()

n (x), which results easily from Lemma . and the recursive relation
for G()

n (x). �
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Let gn denote the maximal root of polynomial G()
n (x) for every n ∈N. Then we can give

the following proposition to illustrate the monotonicity of {gn–} and {gn}.

Proposition . The sequence {gn–} is a monotonically increasing sequence and the se-
quence {gn} is a monotonically decreasing sequence.

Proof Firstly, we consider polynomials G()
n (x) with odd indices. By a direct computation,

we getG()
 (a) = –a < , g > a, a = g. Assume that g < g < g < · · · < gk– < gk–. We can

write G()
k–(gk–) > . Thus, it can be easily seen that

G()
n+k(gn) = (–)k+G()

n–k(gn). ()

By using equation (), we can write

G()
k+(gk–) =G()

(k–)+(gk–) = –G()
(k–)–(gk–) = –G()

k–(gk–). ()

So, from equation () we write

G()
k+(gk–) < . ()

Therefore, polynomials G()
k+(x) must have a root greater than gk–. So, we get

gk+ > gk–. ()

After that we consider polynomials G()
n (x) with even indices. From the recursive rela-

tion (), we can obtain

G()
k+(gk–) = gk–G

()
k (gk–) +G()

k–(gk–). ()

Since G()
k–(gk–) = , by using Lemma ., we can get G()

k+(gk–) < . Thus, we get

gk– < gk . ()

Again, by using Lemma ., we can write

G()
k–(gk) > . ()

From the recursive relation (), we can write

G()
k (gk) = gkG

()
k–(gk) +G()

k–(gk). ()

From equation (), we can get

–gkG
()
k–(gk) =G()

k–(gk) < .

So, we have gk < gk–. Thus, {gn–} is a monotonically increasing sequence and bounded
above by the number a + . Similarly, {gn} is a monotonically decreasing sequence and

http://www.journalofinequalitiesandapplications.com/content/2013/1/466
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bounded below by the number a. If we denote the limx→∞ gn– by godd and limx→∞ gn by
geven, then we can write godd = geven. �

Proposition . For polynomials G()
n–(x) andG

()
n (x), the sequences {gn–} and {gn} con-

verge to the following number ζ :

ζ =

√
( – a) + a – ( – a)

a
. ()

Proof Using the Binet formula of relation (), for all [a,a + ], we can see that α(x) ≥
α(a) >  and |β(x)| = 

α(x) ≤ 
α(a) . Thus, we get

lim
n→∞αn(x) = +∞; lim

n→∞βn(x) = . ()

If we write n = k –  and x = gk– in equation (), then we have

A(gk–)αk–(gk–) + B(gk–)βk–(gk–) = . ()

And from equation () we write

A(gk–) = –B(gk–)
(

βk–(gk–)
αk–(gk–)

)
. ()

A(x) and B(x) are continuous on the interval [a,a + ], this implies that |A(x)| and |B(x)|
are bounded below and above on [a,a + ]. So, since a≥ , we get

lim
k→∞

A(gk–) = A(godd) = . ()

From Binet formula (), we have

lim
k→∞

gk– =

√
( – a) + a – ( – a)

a
. ()

Also, by the aid of similar discussion, if we take n = k and x = gk , then we find that

lim
k→∞

gk =

√
( – a) + a – ( – a)

a
.

That is,

ζ =

√
( – a) + a – ( – a)

a
. ()

Notice that if we take a =  in equation (), then our result coincides with the result of
Tewodros []. �

For ζ numbers in equation (), fromProposition .we can deduce the following result.
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Corollary . For every positive integer a, we have

a < ζ < a + . ()

Now, we give a proposition for the maximal real roots of G(k)
n (x) without proof.

Proposition . The maximal real roots of G(k)
n (x) provide the following equation:

g – a + agk – agk– = , ()

where the numbers g = gn = gn(k) are the maximal real roots of G(k)
n (x), that is,

agn = a – g–kn + ag–kn , ()

which implies

a
 + a(a + )k–

< gn(k) – a <
a

 + ak
,

whenever k > .

a – 
a(a + )

<
a – gn()
agn()

= gn() – a <


a + 

and

lim
k→∞

gn(k) = a,

whenever a >  for every n ∈ N.

Proof The proof can be easily seen as being similar to the proof of Proposition . �
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