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1 Introduction
The famous Hardy-Hilbert inequality for positive functions f, g and two conjugate param-
eters p and g such that p > 1, 117 + é =1is given as

/O"‘)/""f(;c);giy) < Sin(Z {/ s x)dx} {f gqx)dx}l, 1.1)

17

provided that the integrals on the right-hand side are convergent. The constant m’(’—l) is

: p
best possible [1]. In the last years, inequality (1.1) has been extended in different ways. In
[2] the authors obtained the following extension of (1.1):

*® flx)g(»)
/0 0 (x+y))‘ dedy

<B(l-pA,, A +pA2—1){foooquA1‘lfp(x) dx} ’ {/Oooyquz_lgq(x) dx} 6, 1.2)

where B(1 — pA,, X + pA,—1) is the best possible constant (B(x, y) is the beta function), A >
0, A; e(%,f}),Aze(lp’\ 1yand pA; +gA1 =2 - 1. For0<p <1, —+q =1,A>0,A4; €
(%, %), Ay e (1;7’\, }9) and pAz +qA; = 2 — A, the reverse form of (1.2) is also valid with the

same constant factor. In [3] the following extension was given:

/ / S)gly) did
(@u2(x) + 26u(x)v(y) + cvz(y)))‘ 4

A1-1 Ag—1 %
<L*{f u(x)P? wP } {/ V(T();qql gq(y)dy} ’ 13

Wy

qA1-1 PA2 1

where L* =a ™2 (1-pAz, 20+ pAy -1 )F(ﬂ A= _pAz A+l 1——)1sbestpos—

sible (F(«, B; y;x) is the hypergeometric function), A > 0, A; € (1 2) 1) A, € (1 2) 1) and
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pAs+qAL =2 -2, a,c>0,b? <ac, » >0, uand v are differentiable nonnegative strictly in-
creasing functions on (a,b) (—00 < a < b < 00), and they satisfy the following conditions:
limg, 4+ u(t) = limg_, 4+ v(£) = 0 and lim;, - u(t) = lim,—, ;- v(¢) = 0. In particular, if we let
a=c=1,b=0and consider /u(x), \/v_(y) instead of u(x) and v(y) respectively in (1.3), we

get
fx)gW)
/ / ) + vy Y

<B(1-pA,, A +pA,-1)

Ay b Ay—1 i
AL [ s, o

here pA; + gA; =2 — X asin (1.2).
The following inequalities are special cases of (1.4):

T fx)gly)
/ o Ereop Y

1

1 o0
B(1—pAy, h+ pAz—l){ f e("qu"”)xfp(x)dx}p{ f e(qu2"q)ygq(y)dy}q, (1.5)

flgl)
/ / (Inx + lny)A dxdy

<B(1-pA,, » +pA,-1)

R Y
x{/l %ﬂ’(ﬁc)dx} {/; %gq(y)dy} ' (1.6)

Refinements of some Hilbert-type inequalities by virtue of various methods were ob-
tained in [4, 5] and [6]. A survey of some recent results concerning Hilbert and Hilbert-
type inequalities can be found in [7] and [8].

Ifp>1,f(x)>0,and F(x) = f: f(t)dt, then the well-known Hardy inequality [1] is given

(EON o (2N [T
/0 ( . ) dx<<p_1> /0 fP(x)dx, 1.7)

the constant (LI)P is best possible. A weighted form of (1.7) was given also by Hardy [1]

as

as
o] F p P poo
/ x<ﬁ) dx < ( P ) / X2 (x) dx, (1.8)
0 x p-1l-a 0
where p>1,a<p—-1orp<0,a>p-1and the constant ( —)? is best possible. For

0<p<1(a<p-1), inequality (1.8) holds in the reverse d1rect1on. Inequality (1.7) was
discovered by Hardy while he was trying to introduce a simple proof of Hilbert’s inequality.
In the book [9], the following Hardy-type inequality is given:

/ e (/ s dt>pdx <o [ i 1.9)
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wherek <0andp >1orp < 0.1f0 < p < 1, then the reverse form of (1.9) holds. The constant
(=k)? is best possible.
In [10](see also [9]), the following Hardy-type inequality is obtained for p > 1:

/1 x[lnx (/ f(t)dt) dx<( >/ xplfp(x)dx (1.10)

For details about inequality (1.7) and its history and development, we refer the reader to
the papers [11] and [12].

Recently, in [13], for f,g > 0, f,g € L(0,00), F(x) = [, f(u) duand G(x) = [ g(u) du, » > 0,
the following form of (1.1) was obtained:

/ / A dy
(x + y)*
2 00 5 o 7
2 B(A A)( / x-k-lFP(x)dx) < / y‘MGq(y)dy) , (L11)
Pq qp 0 0

the constant factor I%B(;I %) is best possible. For other Hilbert-type inequalities involving

Hardy operators, see, for example, [14] and [15].

b f(x )g()
(%) +v(y)*

extension of (1.11) with the best constant factor. The reverse form is also obtained. Some

In this paper, by estimating the double integral f f dx dy, we introduce an

applications are given. The connection between Hilbert and Hardy inequalities is also con-

sidered. As a consequence of Theorem 3.1, we obtain the following interesting inequality:

[ [ ([ (52 ) ([ (2) )

2 Preliminaries and lemmas

Recall that the gamma function I'(0) and the beta function B(u, v) are defined respectively
by

re) =/ letdt, 6>0,
0

oo tu—l
B(u,v) = —— dt, , 0.
)= [ Grgeds o

In this paper, we assume that # and v are defined as in inequality (1.3) from the intro-

duction.

Lemma 2.1 Letr > 1, —+— =1,¢9>0,¢¢€Lab), f o(u) du, and let h be a dif-
ferentiable nonnegative strictly increasing functlon on (a,b) such that limy_, .+ h(x) = 0
limy_, - h(x) = co. Then, for t,a > 0, we have

b b
/ e—th%(x)dxst%-“r(am)%{ / [h(x)]‘”hf<x>e—fh<x>q>r(x)dx} . 21)
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Proof Using integration by parts, we get

b b
/ M (x)dx =t / H (%)™ & (x) dx. (2.2)

a

Applying Hélder’s inequality, we obtain

b
/ H (x)e ™" & (x) dx

1 1
s r

o dD(x)) dx

- / ([ ] e ) (] ) e

b % b %
< ( / [1()] K (x)e™ " dx) ( / [h(x)]“”h’(x)e-fh(x>da’(x)dx)

1
7

b
=3 D(as + 1) ( / [1(x)] "W (x)e™" " (x) dx) ~

Substituting the last inequality in (2.2), we get (2.1). a

Lemma2.2 LetO<r<l, % + % =1,¢>0,¢¢€L(a,b), dkx) = f; ©(u) du, and let h be as in
Lemma 2.1. Then, for t >0 and B € R (Bs +1> 0), we have

b b g
f efth(x)q)(x) dx > téfﬂl—'(ﬂs + 1)% {/ [h(x)]—ﬂfh/(x)e—th(x)q)r(x) dx} . (2.3)

a

Proof Integration by parts yields

b b
/ ~thix (p(x)dx—t/ H (x)e "™ & (x) dix. (2.4)

Using the reverse Holder inequality, we obtain

b
/ H (x)e ™" & (x) dx

1 th(x) 1
s r

) (W] @) e

- [y rente )d

b 1, b 1
> ( / [10)]7° K (x)e " dx) < / ()] H (e @' (x) dx>

a

b ;
=t3 P (Bs+1): ( / ()] "1 (x)e @ " (x) dx> .

Substituting the last inequality in (2.4), we get (2.3).

By the definition of the gamma function above, we may write

1 A 1 —x+y)t
= 2.
[Py m) . 25)
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3 Main results

In this section, we introduce two main results in this paper. Theorem 3.1 gives an ex-
tended form of inequality (1.11) and it is connected to the famous Hardy inequality. In
Theorem 3.2, we introduce the reverse form obtained in Theorem 3.1.

Theorem 3.1 Letp >1, l + l =1,A>0,y € (%, %),f,g >0, f,g € L(a,b), define F(x) =
[ fw)duand G(x) = [} g(u du If [ w0177 () FP (%) dix < 00 and. [ [v(y)] 7147 x
vV ()G1(y) dy < oo, then

/ / (u(x)+V(y))A

§C< f )] /(x)FP<x)dx)”

a

x (/j[v(y] Y00 G (y) dy)q, (3.1)

where the constant C = (% + y)(% - y)B(% +v, % — ) is best possible.

Proof By using (2.5) and applying Holder’s inequality, we have
fgl)
/ / (u(x) + v(y))* dudy
_ L oo A=1_—(u(x)+v(y))t >
= F()L)/a Lf(x)g(y)(fo t" e dt ) dxdy
A1 b
o e [ eme)e
; :

- A-1+py —u(x) d d
T (/o ‘ (f 1@ x) t)

00 b %
x <f0 P <f e“’(y)tg(y)dy>th> . (3.2)

and then forr=¢q,s=p, o = APZV

IA

, we obtain,

By Lemma 2.1, for r=p, s =q, o = %

respectively,

b p + A 2 b At
([ emrrwas) <o (2ayan) [ ) F e @as
a V4 a

b 1 =gy (A porh 14
< / e-vwg(y)dy) stl_ﬂf‘<g—y+1) / O] Ve V6 () dy

Substituting these two inequalities in (3.2), we have

1

PG +y+ 1)51“(3 —y + 1) BEL VP "y gruto !
re i ( / ] wre ([ renrar) ar)

(-/z; ] FmE) (f t%Ve—V@tdt) dy)%'
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Since

o0 Ay i‘—y—l A
/ t7 "7 e O dt = [u(x)] ® F(— +y+1
0 p

and

© P | A
/ ti eV dt = [w(y)] F(— -y + 1),
0 q

we find

1

( / OV )6T) dy) .

b p
I< c( / [(0)] 7 () FP () dx)

T(Z+y)T(2-y)
— =B(% +y,3 —y), we get

() Gkr)

Inequality (3.1) is proved. We need to show that the constant factor C in (3.1) is best pos-

Now, since I'(# + 1) = uI' (#) and

sible. For 0 < & < min{A — gy, A + py}, we define the functions f:(x) = 0, for x € (a,a)
A+ —&
and £, () = 2= [u(x)] 7 i) for x € [a1,b) and g(9) = 0 for y € (a,a2) and g.() =

A—qy—¢ [

g ='W (y) for y € [ay,b), where a; and a, are such that u(a) = v(a) = 1.
Then we get F.(x) = ([u(x)] -

% 1) for x € [a,b) and G.(y) = ~ 1) for
y € [ag, b), Fe(x) = G:(y) = 0 for x € (a,m), y € (a,a,), respectively. Suppose that the con-

stant C = (% + y)(% - ;/)B(f7 + y,% — y) is not best possible, then there exists 0 < K < C
such that

b A+py-¢ 110
151<( / [)] 7l ([ [u)] 7 _1]"dx>

al

R e

az

b 5/ b
<1<< / [u(x)]_g_lu/(x)dx> ( / [vin] /(y)dy)
_ OO —e-1 [% OC —e-1 %_I_<
([ rera) ([era) K 53

On the other hand, we have

f@0)
dxd
/ / ) vy

_Grpy-e)6—gy —e) f” /b ()5 (x)[v(y) )

1

dydx
rq x) +v(y))*
2z _e)o — _ b . 00 qy £
_ (A +py —e)0—qy —¢) [(x)] 1u,(x){/ 0’ i de}dx
pq P L (6+1)

u(x)
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_Q+py &) —qy —¢)
rq

1 00 9 )L—qqy—s 1 b % ek—qqy—s 1
_e—1 ux
- ———dbdu— ! ——dbd
x {8/(; G u /m [u(x)] u(x)/o G x}

(A+py—s)(k q)/—s)B( +J/:——V) o(1)

2 €
A +py —e)(h—qy —¢) —e-1 o
_ o /‘;l [u(x) u'(x )/ 07 1))\ do dx
g (h+py —e)(h—qy —€) BG +v, 5 =v) +o()
pq €
A +py —e)(h—qy —¢) —e-1 e
- v / u(x) u'(x )/ do dx
_ A +py —e)(h—qy —¢) B(; +Y, 5 —y)+o(l) _o. (3.4)

pq €

It is obvious that when ¢ — 0* from (3.3) and (3.4), we obtain a contradiction. Thus, the

proof of the theorem is completed. O

Theorem 3.2 Let 0 < p < 1, }7 + % =1, 1>0,y € (%,g),f,g >0, f,g € L(a,b), de-

fine F(x) = [7f(uw)du and G(x) = [ g(u)du. Iff:[u(x)]’*’l’PVu’(x)FP(x) dx < 0o and
fa [v(y) ] =144/ (y)G4(y) dy < 0o, then we obtain the reverse form of (3.1) as

b r
/ / x)+v(y))A d"dyzc( / (@] ’(x)FP(x)dx)

1

x ( / o /(y)Gq(y)dy) , (35)

a

where C is as in Theorem 3.1.

Proof If we use (2.5) and apply the reverse Holder inequality, we have

_ flg)
/ @ + vy Y

- b
[ [ e [ )
; }
T </(; a2 (/ e "W (x) dx)p dt)
00 b q %1
A-l-qy -V d> d) . 3.6
x < /0 ¢ ( / e"gly)dy) dt (3.6)

I V
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and then for r = g, s = p, B = =ZX, we obtain,

By Lemma 2.2, forr=p,s=¢q, B = /\;py

respectively,

b p N A 2 b _ A
( / o) dx) > AP <1; Y+ 1) ! / [u(x)] T ' (x)e "W FP (x) dx,
a a

b q A-qy A r b _r=qy
(/ e—v(}')tg(y) dy) < 2P T (g —y+ 1) / [V()/)] ? V/(y)e—tv(;v) Gi(y)dy.

If we substitute these two inequalities in (3.6) and make some computations as we did in
Theorem 3.1, we get inequality (3.5). O

4 Applications
In this section, we give some applications of Theorem 3.1 and Theorem 3.2. We consider
some specific functions which satisfy the conditions of the functions «# and v, and we see
the connection between Hilbert and Hilbert-type inequalities with Hardy and Hardy-type
inequalities from the introduction.

1. Let u(x) = x, v(y) =, %,y € (0,00), then we find by (3.1)

[ [ g,
0 0

(x+y)*
b 7
( xEPY PP () dx) < / Yy Ga(y) dy) , (4.1)
0
here F(x) = [y f(¢)dt and G(y) = [ g(t) dt. If we put y =0 in (4.1), we get (1.11). If we let
A=1ly= ”72 we obtain the following form:
o0 o0
[ [ L0 4
o Jo Xty

T o) @ p }a 00 G_(y))q )111
Equin%(/o ( x ) dx) (/0 < y ) ?) (4.2)

Applying Hardy’s inequality (1.7) to the right-hand side of (4.2), we get Hilbert’s inequality
(1.1). If we apply the weighted Hardy inequality (1.8) to (4.1), we get

/ / (x +y)A
<G (fooxpxlpyfp(x) dx) ’ (/Oqu'”wygq(y) dy) 6, (4.3)
0 0

where C = B(I% +y, % — ). Inequality (4.3) is equivalent to inequality (1.2) if we set y =

P=A-pgAi (
P
reverse form of (4.1)

> f(x)g(y)
/0 0 (x+)’)kdd

_1% <y < %) under the condition pA; + gA; = 2 — 1. By Theorem 3.2, we have the

1 1

> C(/Oox—x—l—pypp(x) dx)p </Ooy—x—1+qy Gi(y) dy) q' (4.4)
0 0
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If we apply the reverse inequality of (1.8) to the first integral on the right-hand side in (4.4)
and inequality (1.8) to the second integral (g < 0), we get

/ / (x +y)k by
> C1 (/OO xpf)ﬁlfpyfp(x) dx) g (/oquxhqygLI(y) dy) ‘ . (4'5)
0 0

Inequality (4.5) is equivalent to the reverse form of (1.2) if we set y = 1%’% under the
condition pA; + gA; =2 — A.
2. If u(x) = €*, v(y) = ¢, x,y € (—00,00), we obtain by (3.1)

f / Jx)gly) x)g(y) ) dxdy
< C(/ e (x+py)xpp(x) dx)i </me—(x—qy)qu(y) dy) q, (4.6)

here F(x) = [*_f(£)dtand G(y) = [ g(¢) dt.If we apply (1.9) to the integrals on the right-

hand side of (4.6) and set y = 1%”‘41, we obtain (1.5). The reverse form of (4.6) is also

valid, and we may obtain a reverse inequality of (1.5) if we use (1.9) and its reverse form.
3. If u(x) = Inx, v(y) = Iny, x,y € (1, 00), then we have

Y R C)4C))
/1 /; mdxdy
© FP(x) P Gi(y) :
§C</I W‘i") (/1 Wdy)’ (4.7)

here F(x) = [ f(t)dt and G(y) = | g(¢) dt. In particular, for A =1, y = £2, we get

b ) N[ [T Gl )1
[ 1nx+1ny axdy 5pqsin,%</1 x[lnx]ﬁd’“) (/1 y[lnywdy)’

if we apply (1.10), we get Hilbert-type inequality (1.6).

-
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