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Abstract
In this paper, we consider variational discretization solving temperature control
problems with pointwise control constraints, where the state and the adjoint state are
approximated by piecewise linear finite element functions, while the control is not
directly discretized. We derive a priori error estimates of second-order for the control,
the state and the adjoint state. Moreover, we obtain a posteriori error estimates. Finally,
we present some numerical algorithms for the control problem and do some
numerical experiments to illustrate our theoretical results.
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1 Introduction
We are interested in a material plate defined in a two-dimensional convex domain � with
a Lipschitz boundary ∂�. For the state y of thematerial, we choose the temperature distri-
butionwhich ismaintained equal to zero along the boundary.Wedenote thermal radiation
or positive temperature feedback due to chemical reactions by the term φ(y) (see, e.g., [])
and assume that there exists a source f ∈ L(�). This system is governed by the following
equation:{

–div(A(x)∇y(x)) + φ(y(x)) = f (x), x ∈ �,
y(x) = , x ∈ ∂�.

The setting above suggests that we may control the temperature distribution y to come
close to a given target by acting with an additional distributed source term u, namely the
control function. The corresponding optimal control problem is formulated as follows:⎧⎪⎨

⎪⎩
minu∈K {∫

�
(g(y) + h(u))dx},

–div(A(x)∇y(x)) + φ(y(x)) = f (x) + Bu(x), x ∈ �,
y(x) = , x ∈ ∂�,

(.)

where g(·) and h(·) are strictly convex continuous differentiable functions, h(u) → +∞ as
‖u‖L(�) → ∞, A(x) = (aij(x))× ∈ (W ,∞(�̄))× such that (A(x)ξ ) · ξ ≥ c | ξ |, ∀ξ ∈ R

,
f (x) ∈ L(�), B is a linear continuous operator, and K is defined by

K =
{
v(x) ∈ L(�) : a ≤ v(x)≤ b, a.e. x ∈ �

}
,

where a and b are two constants.
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Optimal control problems have been extensively used in many aspects of the modern
life such as social, economic, scientific and engineering numerical simulation []. Finite
element approximation seems to be the most widely used method in computing optimal
control problems. A systematic introduction of finite element method for PDEs and opti-
mal control problems can be found in [–]. Concerning elliptic optimal control problems,
a priori error estimates were investigated in [, ], a posteriori error estimates based on
recovery techniques have been obtained in [–], a posteriori error estimates of resid-
ual type have been derived in [–], some error estimates and superconvergence results
have been established in [–], and some adaptive finite element methods can be found
in [–]. For parabolic optimal control problems, a priori error estimates are estab-
lished in [–], a posteriori error estimates of residual type are investigated in [, ].
Recently, error estimates of spectral method for optimal control problems have been de-
rived in [, ], and numerical methods for constrained elliptic control problems with
rapidly oscillating coefficients are studied in [].
For a constrained optimal control problem, the control has lower regularity than the

state and the adjoint state. Somost researchers considered using piecewise linear finite ele-
ment functions to approximate the state and the adjoint state and using piecewise constant
functions to approximate the control. They constructed a projection gradient algorithm
where the a priori error estimates of the control is first-order in [, ]. Recently, Borzì
considered a second-order discretization and multigrid solution of elliptic nonlinear con-
strained control problems in [], Hinze introduced a variational discretization concept
for optimal control problems and derived a priori error estimates for the control which is
second-order in [, ]. The purpose of this paper is to consider variational discretiza-
tion for convex temperature control problems governed by nonlinear elliptic equations
with pointwise control constraints.
In this paper, we adopt the standard notation Wm,q(�) for Sobolev spaces on � with

the norm ‖ · ‖Wm,q(�) and seminorm | · |Wm,q(�). We set H
(�) ≡ {v ∈H(�) : v|∂� = } and

denote Wm,(�) by Hm(�). In addition, c or C denotes a generic positive constant.
The paper is organized as follows: In Section , we introduce a variational discretiza-

tion approximation scheme for the model problem. In Section , we derive a priori error
estimates. In Section , we derive sharp a posteriori error estimates of residual type. We
present some numerical algorithms and do some numerical experiments to verify our the-
oretical results in the last section.

2 Variational discretization approximation for themodel problem
We now consider a variational discretization approximation for the model problem (.).
For ease of exposition, we set V = H

(�), U = L(�), ‖ · ‖ = ‖ · ‖L(�), ‖ · ‖,� = ‖ · ‖H(�),
‖ · ‖,� = ‖ · ‖H(�) and

a(y,w) =
∫

�

(
A(x)∇y

) · ∇w, ∀y,w ∈ V ,

(u,w) =
∫

�

u ·w, ∀u,w ∈U .

It follows from the assumptions on A(x) that

a(y, y) ≥ c‖y‖,�,
∣∣a(y,w)∣∣ ≤ C‖y‖,�‖w‖,�, ∀y,w ∈ V . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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Then the standard weak formula for the state equation is

a(y,w) +
(
φ(y),w

)
= (f + Bu,w), ∀w ∈ V , (.)

where we assume that the function φ(·) ∈W ,∞(–R,R) for any R > , φ′(·) ≥  and φ′(y) ∈
L(�) for any y ∈H(�). Thus, the equation above has a unique solution.
Throughout the paper, we impose the following assumptions:
(A) g ′(·) and h′(·) are Lipschitz continuous, namely,

∣∣g ′(y) – g ′(y)
∣∣ ≤ C|y – y|, ∀y, y ∈ L(�),∣∣h′(u(x)) – h′(u(x))∣∣ ≤ C|x – x|, ∀u ∈ K ,x,x ∈ �̄.

(A) There exists a positive constantm such that

h′′(u) ≥m, ∀u ∈ K .

Then the model problem (.) can be restated as

{
minu∈K {∫

�
(g(y) + h(u))dx},

a(y,w) + (φ(y),w) = (f + Bu,w), ∀w ∈ V .
(.)

It is well known (see, e.g., []) that the control problem (.) has a solution (y,u) ∈ V ×K ,
and that if the pair (y,u) ∈ V ×K is the solution of (.), then there is an adjoint state p ∈ V
such that the triplet (y,p,u) ∈ V ×V ×K satisfies the following optimality conditions:

a(y,w) +
(
φ(y),w

)
= (f + Bu,w), ∀w ∈ V , (.)

a(q,p) +
(
φ′(y)p,q

)
=

(
g ′(y),q

)
, ∀q ∈ V , (.)(

h′(u) + B∗p, v – u
) ≥ , ∀v ∈ K , (.)

where B∗ is the adjoint operator of B.

Lemma . Suppose that assumptions (A)-(A) are satisfied. Let p ∈ V be the solution of
(.)-(.). Then the following equation:

h′(s(x)) + B∗p(x) = , (.)

admits a unique solution s(x) and s(x) ∈ C,(�̄).

Proof It follows from h′′(u) ≥ m >  that (.) has a unique solution. Note that g ′(y) ∈
L(�). From the regularity theory of patrial differential equations (see, e.g., []), we have

p(x) ∈H
(�)∩W ,(�).

Because � is a two-dimension convex domain, according to embedding theorem, we get

p(x) ∈ C,(�̄).
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From (A) and (.), we get

m
∣∣s(x) – s(x)

∣∣
≤

∣∣∣∣
∫ 


h′′(θs(x) + ( – θ )s(x)

)
dθ · (s(x) – s(x)

)∣∣∣∣
=

∣∣h′(s(x)) – h′(s(x))∣∣
=

∣∣–B∗p(x) + B∗p(x)
∣∣

≤ C|x – x|.

Consequently, we complete the proof of equation (.). �

We introduce the following pointwise projection operator:

�[a,b]
(
g(x)

)
=max

(
a,min

(
b, g(x)

))
. (.)

It is clear that �[a,b](·) is Lipschitz continuous with constant . As in [], it is easy to prove
the following lemma.

Lemma . Let (y,p,u) and s(x) be the solutions of (.)-(.) and (.), respectively. As-
sume that assumptions (A)-(A) are satisfied. Then

u(x) = �[a,b]
(
s(x)

)
. (.)

Remark . We should point out that (.) and (.) are equivalent. This theory can be
used tomore complex situation, for example,K is characterized by a bound on the integral
on u over �, namely,

∫
�
u(x)dx≥ , we have similar results.

Let T h be a regular triangulation of �, such that �̄ =
⋃

τ∈T h τ̄ . Let h = maxτ∈T h{hτ },
where hτ denotes the diameter of the element τ . Associatedwith T h is a finite dimensional
subspace Sh of C(�̄), such that χ |τ are polynomials of m-order (m ≥ ) for all χ ∈ Sh and
τ ∈ T h. Let Vh = {vh ∈ Sh : vh|∂� = }. It is easy to see that Vh ⊂ V .
Then a possible variational discretization approximation scheme of (.) is as follows:

{
minuh∈K {∫

�
(g(yh) + h(uh))dx},

a(yh,wh) + (φ(yh),wh) = (f + Buh,wh), ∀wh ∈ Vh.
(.)

It is well known (see, e.g., []) that control problem (.) has a solution (yh,uh) ∈ Vh ×K ,
and that if the pair (yh,uh) ∈ Vh ×K is the solution of (.), then there is an adjoint state
ph ∈ Vh such that the triplet (yh,ph,uh) ∈ Vh × Vh × K satisfies the following optimality
conditions:

a(yh,wh) +
(
φ(yh),wh

)
= (f + Buh,wh), ∀wh ∈ Vh, (.)

a(qh,ph) +
(
φ′(yh)ph,qh

)
=

(
g ′(yh),qh

)
, ∀qh ∈ Vh, (.)(

h′(uh) + B∗ph, v – uh
) ≥ , ∀v ∈ K . (.)

Similar to Lemma ., it is easy to show the following lemma.

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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Lemma . Suppose that assumptions (A)-(A) are satisfied. Let (yh,ph,uh) be the solu-
tion of (.)-(.), and sh(x) is the solution of the following equation:

h′(sh(x)) + B∗ph(x) = . (.)

Then we have

uh(x) = �[a,b]
(
sh(x)

)
. (.)

Remark . Inmany applications, the objective functional is uniform convex near the so-
lution u, which is assumed in many studies on numerical methods of the problem, see, for
example, [, ]. In this paper, we assumed that g(·) and h(·) are strictly convex continu-
ous differentiable functions, for instance, h(u) = α


∫
�
u, which is frequently met, then the

exact solution of the variational inequality (.) is uh(x) =max(a,min(b, – 
α
B∗ph(x))), and

for numerically solving the problem, we can replace uh(x) bymax(a,min(b, – 
α
B∗ph(x))) in

our program.

3 A priori error estimates
We now derive a priori error estimates of the variational discretization approximation
scheme. Just for ease of exposition, let

J(u) =
∫

�

(
g(y) + h(u)

)
dx,

and J ′(u) is the Fréchet derivative of J(u) at u. Similarly to (.)-(.), we can prove that

(
J ′(u), v

)
=

(
h′(u) + B∗p, v

)
, ∀v ∈ K ,(

J ′(uh), v
)
=

(
h′(uh) + B∗p(uh), v

)
, ∀v ∈ K ,

where p(uh) satisfies the following system:

a
(
y(uh),w

)
+

(
φ
(
y(uh)

)
,w

)
= (f + Buh,w), ∀w ∈ V , (.)

a
(
q,p(uh)

)
+

(
φ′(y(uh))p(uh),q) = (

g ′(y(uh)),q), ∀q ∈ V . (.)

Let πh : C(�̄) → Vh be the standard Lagrange interpolation operator such that for any
v ∈ C(�̄), πhv(Pi) = v(Pi) for all Pi ∈ P, where P is the vertex set associated with the tri-
angulation T h, and n is the dimension of the domain �, we have the following result:

Lemma . [] Let πh be the standard Lagrange interpolation operator. For m =  or ,
q > n

 and ∀v ∈W ,q(�), we have

|v – πhv|Wm,q(�) ≤ Ch–m|v|W,q(�).

Lemma. Let (yh,ph,uh) and (y(uh),p(uh)) be the solutions of (.)-(.) and (.)-(.),
respectively. Assume that p(uh), y(uh) ∈ H(�) and φ′(·) is locally Lipschitz continuous.
Then there exists a constant C independent of h such that

∥∥y(uh) – yh
∥∥
,� +

∥∥p(uh) – ph
∥∥
,� ≤ Ch. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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Proof From φ′(·)≥ , (.), (.) and embedding theorem ‖v‖L(�) ≤ C‖v‖H(�), we have

c
∥∥p(uh) – ph

∥∥
,�

≤ a
(
p(uh) – ph,p(uh) – ph

)
+

(
φ′(y(uh))(p(uh) – ph

)
,p(uh) – ph

)
= a

(
p(uh) – πhp(uh),p(uh) – ph

)
+

(
φ′(y(uh))(p(uh) – ph

)
,p(uh) – πhp(uh)

)
+

(
g ′(y(uh)) – g ′(yh),πhp(uh) – ph

)
+

((
φ′(yh) – φ′(y(uh)))ph,πhp(uh) – ph

)
≤ C

∥∥p(uh) – ph
∥∥
,�

∥∥p(uh) – πhp(uh)
∥∥
,� +C

∥∥y(uh) – yh
∥∥∥∥πhp(uh) – ph

∥∥
+C

∥∥φ′(y(uh))∥∥∥∥p(uh) – ph
∥∥
L(�)

∥∥p(uh) – πhp(uh)
∥∥
L(�)

+C
∥∥y(uh) – yh

∥∥‖ph‖L(�)
∥∥πhp(uh) – ph

∥∥
L(�)

≤ C(δ)
∥∥p(uh) – πhp(uh)

∥∥
,� +C(δ)

∥∥y(uh) – yh
∥∥

+Cδ
(∥∥p(uh) – ph

∥∥
,� +

∥∥πhp(uh) – ph
∥∥
,�

)
≤ C(δ)

∥∥p(uh) – πhp(uh)
∥∥
,� +C(δ)

∥∥y(uh) – yh
∥∥ +Cδ

∥∥p(uh) – ph
∥∥
,�. (.)

Note that p(uh) ∈H(�), by using Lemma ., we obtain

∥∥p(uh) – ph
∥∥
,� ≤ C

∥∥p(uh) – πh
(
p(uh)

)∥∥
,� +C

∥∥y(uh) – yh
∥∥

≤ Ch
∥∥p(uh)∥∥,� +C

∥∥y(uh) – yh
∥∥

≤ Ch +C
∥∥y(uh) – yh

∥∥. (.)

Similarly, we can prove that

∥∥y(uh) – yh
∥∥
,� ≤ Ch

∥∥y(uh)∥∥,� ≤ Ch. (.)

Then (.) follows from (.)-(.). �

In order to derive sharp a priori estimates, we introduce the following auxiliary prob-
lems:

–div
(
A∗∇ξ

)
+ξ = F, in �, ξ |∂� = , (.)

–div(A∇ζ ) + φ′(y(uh))ζ = F, in �, ζ |∂� = , (.)

where

 =

{
φ(y(uh))–φ(yh)

y(uh)–yh
, y(uh) �= yh,

φ′(yh), y(uh) = yh.

From the regularity estimates (see, e.g., []), we obtain

‖ξ‖,� ≤ C‖F‖, ‖ζ‖,� ≤ C‖F‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/450


Tang Journal of Inequalities and Applications 2013, 2013:450 Page 7 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/450

Lemma . Let (yh,ph,uh) be the solution of (.)-(.). Suppose that y(uh),p(uh) ∈
H(�) and φ′(·) is locally Lipschitz continuous. Then there exists a constant C indepen-
dent of h such that

∥∥y(uh) – yh
∥∥ +

∥∥p(uh) – ph
∥∥ ≤ Ch. (.)

Proof Let F = y(uh) – yh and ξh = πhξ . We have

∥∥y(uh) – yh
∥∥ = a

(
y(uh) – yh, ξ

)
+

(
ξ , y(uh) – yh

)
= a

(
y(uh) – yh, ξ – ξh

)
+

(
ξ , y(uh) – yh

)
–

(
φ
(
y(uh)

)
– φ(yh), ξh

)
= a

(
y(uh) – yh, ξ – ξh

)
+

(
φ
(
y(uh)

)
– φ(yh), ξ – ξh

)
≤ C

∥∥y(uh) – yh
∥∥
,�‖ξ – ξh‖,� +C

∥∥y(uh) – yh
∥∥‖ξ – ξh‖

≤ C
∥∥y(uh) – yh

∥∥
,�‖ξ – ξh‖,�. (.)

Note that

‖ξ – ξh‖,� ≤ Ch‖ξ‖,� ≤ Ch
∥∥y(uh) – yh

∥∥. (.)

Thus,

∥∥y(uh) – yh
∥∥ ≤ Ch

∥∥y(uh) – yh
∥∥
,� ≤ Ch. (.)

Similarly, let F = p(uh) – ph and ζh = πhζ , we obtain

∥∥p(uh) – ph
∥∥ ≤ Ch. (.)

From (.) and (.), we get (.). �

Lemma . Let (y,p,u) and (yh,ph,uh) be the solutions of (.)-(.) and (.)-(.), re-
spectively. Assume that all the conditions in Lemma . are valid. Then there exists a con-
stant C independent of h such that

‖u – uh‖ ≤ Ch. (.)

Proof It is clear that

(
J ′(v) – J ′(u), v – u

) ≥ c‖v – u‖, ∀v,u ∈ K . (.)

By using (.) and (.), we have

c‖u – uh‖ ≤ (
J ′(u) – J ′(uh),u – uh

)
=

(
h′(u) + B∗p,u – uh

)
–

(
h′(uh) + B∗p(uh),u – uh

)
≤ –

(
h′(uh) + B∗ph,u – uh

)
+

(
B∗ph – B∗p(uh),u – uh

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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≤ (
B∗ph – B∗p(uh),u – uh

)
≤ C

∥∥ph – p(uh)
∥∥‖u – uh‖. (.)

From (.) and (.), we derive (.). �

Now we combine Lemmas .-. to come up with the following main result.

Theorem . Let (y,p,u) and (yh,ph,uh) be the solutions of (.)-(.) and (.)-(.),
respectively. Assume that all the conditions in Lemmas .-. are valid. Then we have

‖u – uh‖ + ‖y – yh‖ + ‖p – ph‖ ≤ Ch. (.)

Proof Note that

‖p – ph‖ ≤ ∥∥p – p(uh)
∥∥ +

∥∥p(uh) – ph
∥∥, (.)

‖y – yh‖ ≤ ∥∥y – y(uh)
∥∥ +

∥∥y(uh) – yh
∥∥. (.)

From (.)-(.), (.)-(.) and the regularity estimates, we have

∥∥p – p(uh)
∥∥ ≤ ∥∥p – p(uh)

∥∥
,� ≤ C

∥∥y – y(uh)
∥∥, (.)∥∥y – y(uh)

∥∥ ≤ ∥∥y – y(uh)
∥∥
,� ≤ C‖u – uh‖. (.)

Then, (.) follows from (.), (.) and (.)-(.). �

4 A posteriori error estimates
Wenowderiveaposteriori error estimates for the variational discretization approximation
scheme. The following lemmas are very important in deriving a posteriori error estimates
of residual type.

Lemma . [] ∀v ∈W ,q(�), ≤ q < ∞,

‖v‖W,q(∂τ ) ≤ C
(
h
– 
q

τ ‖v‖W,q(τ ) + h
– 

q
τ |v|W ,q(τ )

)
. (.)

Lemma . Let (y,p,u) and (yh,ph,uh) be the solutions of (.)-(.) and (.)-(.), re-
spectively. Then we have

‖u – uh‖ ≤ C
∥∥ph – p(uh)

∥∥, (.)

where p(uh) is defined in (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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Proof It follows from (.) and (.) that

c‖u – uh‖ ≤ (
J ′(u),u – uh

)
–

(
J ′(uh),u – uh

)
≤ –

(
J ′(uh),u – uh

)
= –

(
h′(uh) + B∗ph,u – uh

)
+

(
B∗ph – B∗p(uh),u – uh

)
≤ C(δ)

∥∥ph – p(uh)
∥∥ + δ‖u – uh‖. (.)

Let δ be small enough, then (.) follows from (.). �

Lemma. Let (yh,ph,uh) and (y(uh),p(uh)) be the solutions of (.)-(.) and (.)-(.),
respectively. Assume that φ′(·) is locally Lipschitz continuous. Then there exists a positive
constant C independent of h such that

∥∥yh – y(uh)
∥∥
,� +

∥∥ph – p(uh)
∥∥
,� ≤ C

(
η
 + η


)
, (.)

where

η
 =

∑
τ∈T h

hτ
∫

τ

(
g ′(yh) + div

(
A∗∇ph

)
– φ′(yh)ph

) dx + ∑
l∩∂��=∅

hl
∫
l

[
A∗∇ph · n] ds,

η
 =

∑
τ∈T h

hτ
∫

τ

(
div(A∇yh) – φ(yh) + f + Buh

) dx + ∑
l∩∂��=∅

hl
∫
l
[A∇yh · n] ds,

where hl is the size of the face l = τ̄ 
l ∩ τ̄ 

l , and τ 
l , τ


l are two neighboring elements in T h,

[A∇yh · n]l , and [A∗∇ph · n]l are the A-normal and A∗-normal derivative jumps over the
interior face l, respectively, defined by

[A∇yh · n]l = (A∇yh|τ l –A∇yh|τl ) · n,[
A∗∇ph · n]

l =
(
A∗∇ph|τ l –A∗∇ph|τl

) · n,

where n is the normal vector on l = τ 
l ∩ τ 

l outwards τ 
l . For later convenience, we defined

[A∇yh · n]l =  and [A∗∇ph · n]l =  when l ⊂ ∂�.

Proof Let ep = ph – p(uh) and epI = πhep, it follows from the Green formula, embedding
theorem ‖v‖L(�) ≤ C‖v‖H(�), Lemma ., (.) and (.) that

c
∥∥ph – p(uh)

∥∥
,�

≤ a
(
ep,ph – p(uh)

)
+

(
φ′(y(uh))(ph – p(uh)

)
, ep

)
= a

(
ep – epI ,ph – p(uh)

)
+

(
φ′(yh)ph – φ′(y(uh))p(uh), ep – epI

)
+ a

(
epI ,ph – p(uh)

)
+

(
φ′(yh)ph – φ′(y(uh))p(uh), epI ) + (

φ′(y(uh))ph – φ′(yh)ph, ep
)

=
∑
τ∈T h

∫
τ

(
g ′(yh) + div

(
A∗∇ph

)
– φ′(yh)ph

)(
epI – ep

)
dx +

(
g ′(yh) – g ′(y(uh)), ep)
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+
∑
τ∈T h

∫
∂τ

(
A∗∇ph · n)(

ep – epI
)
ds +

(
φ′(y(uh))ph – φ′(yh)ph, ep

)

≤ Cη
 +C(δ)

∥∥yh – y(uh)
∥∥
,� + δ

∥∥ph – p(uh)
∥∥
,�. (.)

Similarly, we obtain

c
∥∥yh – y(uh)

∥∥
,�

≤ a
(
yh – y(uh), ey

)
+

(
φ(yh) – φ

(
y(uh)

)
, ey

)
=

(
A∇(

yh – y(uh)
)
,∇(

ey – eyI
))

+
(
φ(yh) – φ

(
y(uh)

)
, ey – eyI

)
=

∑
τ∈T h

∫
τ

(
div(A∇yh) – φ(yh) + f + Buh

)(
eyI – ey

)
dx +

∑
τ∈T h

∫
∂τ

(A∇yh · n)(ey – eyI
)
ds

≤ C(δ)η
 + δ

∥∥yh – y(uh)
∥∥
,�. (.)

From (.) and (.), we derive (.). �

Theorem . Let (y,p,u) and (yh,ph,uh) be the solutions of (.)-(.) and (.)-(.),
respectively. Assume that all the conditions in Lemmas .-. are valid. Then there exists
a constant C independent of h such that

‖u – uh‖ + ‖y – yh‖,� + ‖p – ph‖,� ≤ C
(
η
 + η


)
, (.)

where η and η are defined in Lemma ..

Proof Note that

‖p – ph‖,� ≤ ∥∥p – p(uh)
∥∥
,� +

∥∥ph – p(uh)
∥∥
,�, (.)

‖y – yh‖,� ≤ ∥∥y – y(uh)
∥∥
,� +

∥∥yh – y(uh)
∥∥
,�, (.)

and

∥∥p – p(uh)
∥∥
,� ≤ ∥∥p – p(uh)

∥∥
,� ≤ C

∥∥y – y(uh)
∥∥, (.)∥∥y – y(uh)

∥∥
,� ≤ ∥∥y – y(uh)

∥∥
,� ≤ C‖u – uh‖. (.)

Then (.) follows from (.), (.) and (.)-(.). �

5 Numerical experiments
For a constrained optimization problem

min
u∈K⊂U

J(u),

where J(u) is a convex functional onU and K is a convex subset ofU , the iterative scheme
reads (n = , , , . . .):

{
b(un+ 


, v) = b(un, v) – ρn(J ′(un), v), ∀v ∈U ,

un+ = Pb
K (un+ 


),

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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where b(·, ·) is a symmetric and positive definite bilinear form, and similarly to [], the
projection operator Pb

K :U → K is defined: For given w ∈ U find Pb
Kw ∈ K such that

b
(
Pb
Kw –w,Pb

Kw –w
)
=min

u∈K b(u –w,u –w).

The bilinear form b(·, ·) provides a suitable precondition for the projection gradient al-
gorithm. Let Uh = {vh ∈ L(�),a ≤ vh ≤ b : vh|τ = constant,∀τ ∈ T h}. For an acceptable
error tol and a fixed step size ρn, by applying (.) to the discretized nonlinear elliptic op-
timal control problem, we introduce the following projection gradient algorithm (see, e.g.,
[, ]), for ease of exposition, we have omitted the subscript h.

Algorithm . (Projection gradient algorithm)
Step . Initialize u;
Step . Solve the following equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b(un+ 

, v) = b(un, v) – ρn(h′(un) + B∗pn, v), un+ 


,un ∈Uh,∀v ∈ Uh,

a(yn,w) + (φ(yn),w) = (f + Bun,w), yn ∈ Vh,∀w ∈ Vh,
a(q,pn) + (φ′(yn)pn,q) = (yn – yd,q), pn ∈ Vh,∀q ∈ Vh,
un+ = Pb

K (un+ 

);

(.)

Step . Calculate the iterative error: en+ = ‖un+ – un‖;
Step . If en+ ≤ tol, stop; else, go to Step .

According to the preceding analysis, we construct the following variational discretiza-
tion algorithm.

Algorithm . (Variational discretization algorithm)
Step . Initialize u;
Step . Solve the following equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b(un+ 

, v) = b(un, v) – ρn(h′(un) + B∗pn, v), un+ 


,un ∈U ,∀v ∈ U ,

a(yn,w) + (φ(yn),w) = (f + Bun,w), yn ∈ Vh,∀w ∈ Vh,
a(q,pn) + (φ′(yn)pn,q) = (yn – yd,q), pn ∈ Vh,∀q ∈ Vh,
un+ =�[a,b](un+ 


).

(.)

Step . Calculate the iterative error: en+ = ‖un+ – un‖;
Step . If en+ ≤ tol, stop; else, go to Step .

It is well known that there are four major types of adaptive finite element methods,
namely, the h-methods (mesh refinement), the p-methods (order enrichment), the r-
methods (mesh redistribution) and the hp-methods (the combination of h-method and
p-method). For an acceptable error Tol, by using a posteriori error estimator η

 and η
 as

the mesh refinement indicator and the Algorithm ., we present the following adaptive
variational discretization algorithm.

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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Algorithm . (Adaptive variational discretization algorithm)
Step . Solve the discretized optimization problem with Algorithm . on the current

mesh obtain the numerical solution u′
n and calculate the error estimators η and η;

Step . Adjust the mesh by using estimators η and η, then update the numerical solu-
tion u′

n and obtain the new numerical solution u′
n+ on new mesh;

Step . If ‖u′
n+ – u′

n‖ ≤ Tol, stop; else, go to Step .

All of the following numerical examples were solved numerically with codes developed
based on AFEPack which provided a general tool of finite element approximation for
PDEs. The package is freely available and the details can be found in [].
We consider the following optimal control problems:

⎧⎪⎨
⎪⎩
minu∈K {∫

�
(g(y(x)) + h(u(x)))dx},

–div(A(x)∇y(x)) + φ(y(x)) = f (x) + Bu(x), x ∈ �,
y(x) = , x ∈ ∂�,

where

g
(
y(x)

)
=



[
y(x) – y(x)

],
h
(
u(x)

)
=



[
u(x) – u(x)

],
and

K =
{
v(x) ∈ L(�) : a≤ v(x)≤ b,x ∈ �

}
,

the domain � is the unit square [, ]× [, ] and B = I .

Example  In the first example, we compare the convergence order of ‖u – uh‖ in Algo-
rithm . with that in Algorithm .. The data are as follows:

A(x) = E, φ(y) = y, a = , b = .,

p(x) = xx sin(πx) sin(πx),

y(x) = p(x),

u(x) =  + sin(πx) sin(πx),

u(x) =min
(
.,max

(
,u(x) – p(x)

))
,

f (x) = –div
(
A(x)∇y(x)

)
+ φ

(
y(x)

)
– u(x),

y(x) = y(x) + div
(
A∗(x)∇p(x)

)
– φ′(y(x))p(x).

The numerical results are listed in Table  and Table .
In Figure , we see clearly that in the projection gradient algorithm, ‖u – uh‖ = O(h),

while in the variational discretization algorithm, ‖u – uh‖ = O(h). In Figure , we show
the profiles of the exact solution u alongside the solution error.
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Table 1 Algorithm 5.1, Example 1

Mesh ‖u – uh‖ ‖y – yh‖ ‖p – ph‖
16× 16 5.98051E-02 4.92490E-02 4.76241E-02
32× 32 2.84008E-02 1.25725E-02 1.21182E-02
64× 64 1.39765E-02 3.15952E-03 3.04294E-03
128× 128 6.96692E-03 7.90942E-04 7.61570E-04
256× 256 3.48077E-03 1.97800E-04 1.90445E-04

Table 2 Algorithm 5.2, Example 1

Mesh ‖u – uh‖ ‖y – yh‖ ‖p – ph‖
16× 16 4.31006E-02 4.92551E-02 4.76397E-02
32× 32 1.09812E-02 1.25730E-02 1.21193E-02
64× 64 2.77425E-03 3.15960E-03 3.04301E-03
128× 128 6.92439E-04 7.90991E-04 7.61575E-04
256× 256 1.73211E-04 1.97847E-04 1.90445E-04

Figure 1 The convergence order of ‖u – uh‖.

Figure 2 The exact solution u (left) and the error uh – u (right).

Example  In order to illustrate the reliability and efficiency of the a posteriori error esti-
mates in Theorem ., we use Algorithm . to solve this example. The data are as follows:

φ(y) = y, a = –., b = ,

A(x) =

{
E, x + x ≥ ,
 · E, x + x < ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/450
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Table 3 Numerical results, Example 2.

Mesh Nodes Sides Elements Dofs ‖u – uh‖
Uniform mesh 513 1456 944 513 6.19419E-02
Adaptive mesh 145 392 248 145 6.04841E-02

Figure 3 The exact solution u (left) and the error uh – u (right).

p(x) =

{
 sin(πx) sin(πx), x + x ≥ ,
sin(πx) sin(πx), x + x < ,

y(x) = p(x),

u(x) = ,

u(x) =min
(
,max

(
–.,u(x) – p(x)

))
,

f (x) = –div
(
A(x)∇y(x)

)
+ φ

(
y(x)

)
– u(x),

y(x) = y(x) + div
(
A∗(x)∇p(x)

)
– φ′(y(x))p(x).

The numerical results based on adaptive mesh and uniform mesh are presented in Ta-
ble . In Figure , we show the profiles of the exact solution u alongside the solution error.
From Table , it is clear that the adaptive mesh generated via the error indicators in Theo-
rem . are able to save substantial computational work, in comparison with the uniform
mesh. Our numerical results confirm our theoretical results.
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