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Abstract
Let us consider the finite monogenic semigroup SM with zero having elements
{x, x2, x3, . . . , xn}. There exists an undirected graph �(SM) associated with SM whose
vertices are the non-zero elements x, x2, x3, . . . , xn and, f or 1 ≤ i, j ≤ n, any two distinct
vertices xi and xj are adjacent if i + j > n.
In this paper, the diameter, girth, maximum and minimum degrees, domination

number, chromatic number, clique number, degree sequence, irregularity index and
also perfectness of �(SM) have been established. In fact, some of the results obtained
in this section are sharper and stricter than the results presented in DeMeyer et al.
(Semigroup Forum 65:206-214, 2002). Moreover, the number of triangles for this
special graph has been calculated. In the final part of the paper, by considering two
(not necessarily different) graphs �(S1

M) and �(S2
M), we present the spectral

properties to the Cartesian product �(S1
M)��(S2

M).
MSC: 05C10; 05C12; 06A07; 15A18; 15A36
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1 Introduction and preliminaries
The history of studying zero-divisor graphs beganwith commutative rings in the paper [],
and then it continued with commutative and noncommutative rings in some of the joint
papers written by Anderson (see, for instance, [–]) and some other authors (see, for
instance, [, ]). After that DeMeyer et al. and some other authors studied these special
graphs of commutative and noncommutative semigroups [–]. Since then a very large
number of studies have been added in the literature about zero-divisor graphs. It is obvious
that the reason for studying this subject is to give a great opportunity to characterize over
the algebraic structure that studied on it.
In [–], by considering the (commutative) semigroup S with zero, the zero-divisor

graph �(S) is defined as an undirected graph with vertices Z(S)∗ = Z(S)\{} and for the
set of nonzero zero-divisors of S, where for distinct x, y ∈ Z(S)∗, the vertices x and y are
adjacent if and only if xy = . In the light of this definition, one can always get some new
varieties of graphs by changing the rule of adjacency of vertices.
In this paper, we mainly consider the finite multiplicative monogenic semigroup (with

zero)

SM =
{
x,x,x, . . . ,xn

}
. ()
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Then we define an undirected graph (actually, a type of zero-divisor graph) �(SM) = (V ,E)
associated to SM as follows. The vertices are the nonzero zero-divisors (in other words, all
nonzero elements) of SM , and any two distinct vertices xi and xj (≤ i, j ≤ n) are adjacent
in case of xi · xj =  with the rule xi · xj = xi+j =  if and only if i + j > n (see Figures 
and  below). We write xixj ∈ E(�(SM)) if vertices xi and xj are adjacent. In this paper, we
mainly obtain some certain values for the diameter, girth,maximumandminimumdegree,
chromatic number, clique number, degree sequence, irregularity index and domination
number of the graph �(SM). Moreover, the number of triangles for this special graph has
been calculated. We also note that by studying this new graph �(SM), we have reached
some strict equalities for the bounds given in [] for some of the properties of commutative
semigroups. For example, in here, we get diam(�(SM)) =  and girth(�(SM)) =  while they
were presented by ≤  and ≤ , respectively, in [].

2 Some spectral properties of�(SM)
In this section, by considering the graph �(SM) defined as in the first section, we will
mainly deal with the graph properties, namely diameter, girth, maximum and minimum
degrees, domination number and finally irregularity index of it. In fact, it is quite well
known that most of these properties can be obtained by checking the distance or the total
number of vertices in any graph G. So, the methods in the proofs of the results in this
section will be followed by this idea.
We first recall that for any simple graph G, the distance (length of the shortest path)

between two vertices u, v ofG is denoted by dG(u, v). Actually, the diameter ofG is defined
by

diam(G) =max
{
dG(x, y) : x and y are vertices of G

}
.

We thus obtain the following result.

Theorem  For any monogenic semigroup SM as given in (), the diameter of the graph
�(SM) is .

Proof It is clear that the vertex x of �(SM) is pendant, and so the diameter can be figured
out by considering the distance between this vertex and one of the other vertices in the
vertex set. Therefore, x is only connected with the vertex xn, and since xn is adjacent to all
other vertices (i.e., xn · xi = ,  ≤ i≤ n), we finally get diam(�(SM)) = , as required. �

It is known that the girth of a simple graphG is the length of the shortest cycle contained
inG. However, ifG does not contain any cycle, then the girth of it is assumed to be infinity.

Theorem  For any monogenic semigroup SM as given in (), the girth of the graph �(SM)
is .

Proof By the definition of �(SM), since xn · xn– = , xn– · x =  and xn · x = , we then
have xn – xn– – x – xn, which implies the result, as desired. �

The degree degG(v) of a vertex v of G is the number of vertices adjacent to v. Among all
degrees, themaximum degree �(G) (or theminimum degree δ(G)) of G is the number of

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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Figure 1 The graph �(SM6 ).

the largest (or the smallest) degrees inG (see []). By consideringmaximum orminimum
degrees, another result can be presented as follows.

Theorem For anymonogenic semigroup SM as given in (), themaximumandminimum
degrees of �(SM) are

�
(
�(SM)

)
= n –  and δ

(
�(SM)

)
= .

Proof Let us consider the vertex xn of �(SM). It is clear that xn · xi =  for any  ≤ i ≤ n,
as n + i > n. By the definition of �(SM), we get xnxi ∈ E(�(SM)),  ≤ i ≤ n. Thus, we have
�(�(SM)) = n – .
On the other hand, let us consider the vertex x of �(SM). Then the equality x · xi = 

satisfies only if i = n. Nevertheless, for every i = {, , . . . ,n – }, we have x · xi �= . That
means the unique vertex x is only connected to the vertex xn (i.e., xnx ∈ E(�(SM))), which
implies δ(�(SM)) = , as required. �

Example  Consider the graph �(SM ), as drawn in Figure , with the vertex set
V (�(SM )) = {x,x,x,x,x,x}. ByTheorems ,  and ,we certainly have diam(�(SM )) =
, girth(�(SM )) = , �(�(SM )) = , δ(�(SM )) = .

The degree sequence, denote by DS(G), is a sequence of degrees of vertices of a graph G.
In [], a new parameter for graphs, namely the irregularity index of G, has been recently
defined and denoted byMWB(G). In factMWB(G) is the number of distinct terms in the
set DS(G). (At this point, we should note that although this new index is denoted by t(G)
in the paper [], we prefer to denote it by MWB(G) not to make any confusion with the
material in Section  of this paper.)
We recall that for a real number r, the notation �r� denotes the greatest integer≤ r while

�r	 denotes the least integer ≥ r. This fact will be needed for some of the theorems in this
paper.

Theorem  Let SM be a monogenic semigroup as given in (). Then the degree sequence
and irregularity index of �(SM) are given by

DS
(
�(SM)

)
=

{
, , , . . . ,

⌊
n


⌋
– ,

⌊
n


⌋
,
⌊
n


⌋
,
⌊
n


⌋
+ ,

⌊
n


⌋
+ , . . . ,n – ,n – 

}

and MWB(�(SM)) = n – , respectively.
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Proof In �(SM), since the vertex x is connected only with the vertex xn, then we clearly
obtain that the degree of x is . Secondly, let us consider the vertex x ∈ V (�(SM)). Then,
as a similar idea, it is only connected with the vertices xn and xn–, which implies that the
degree of x is equal to . Now, if we apply the same progress to all remaining vertices,
then we see that
• the degree of vertex x� n �– is � n

 � –  and
• the degree of vertex x� n � is � n

 �, but
• the vertex x� n �+ has the same degree as the vertex x� n �.
Moreover,
• the degree of vertex x� n �+ is � n

 � +  and
• the degree of vertex x� n �+ is � n

 � + .
Now, if we keep following the same procedure, then we get that
• the degree of vertex xn– is n – , while the degree of vertex xn is n – .
Hence, by the definition of degree sequence, we clearly obtain the set DS(�(SM))

as depicted in the theorem. Nevertheless, it is easily seen that the irregularity index
MWB(�(SM)) = n – , as required. �

A subset D of the vertex set V (G) of a graph G is called a dominating set if every vertex
V (G)\D is joined to at least one vertex of D by an edge. Additionally, the domination
number γ (G) is the number of vertices in the smallest dominating set for G (see []).
Now, in our case, by considering the definition of�(SM), the vertex xn is the only element

adjacent to all the other vertices. In other words, xnxi ∈ E(�(SM)) for  ≤ i≤ n, and so the
dominating set contains only the element xn. This simple fact gives the following result
about the domination number of �(SM).

Theorem  Let SM be a monogenic semigroup as given in (). Then

γ
(
�(SM)

)
= .

Example  As an example of Theorems  and , let us consider the graphs �(SM )
and �(SM ) as drawn in Figure . In here, γ (�(SM )) = , DS(�(SM )) = {, , , } and
MWB(�(SM )) = . Moreover, DS(�(SM )) = {, , , , } andMWB(SM ) = .
We note that for the graph �(SM ) in Example ,MWB(�(SM )) = .

3 Perfectness property of�(SM)
Since perfect graphs are directly related to the terms coloring and clique numbers, let us
start this section by reminding the definitions of them.

Figure 2 Graphs �(SM4 ) and �(SM5 ).
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Basically, the coloring of G is to be an assignment of colors (elements of some set) to
the vertices of G, one color to each vertex, so that adjacent vertices are assigned distinct
colors. If n colors are used, then the coloring is referred to as n-coloring. If there exists
an n-coloring of G, then G is called n-colorable. The minimum number n for which G is
n-colorable is called the chromatic number ofG and is denoted by χ (G). In addition, there
exists another graph parameter, namely the clique of a graph G. In fact, depending on the
vertices, each of the maximal complete subgraphs of G is called a clique. Moreover, the
largest number of vertices in any clique of G is called the clique number and denoted by
ω(G). In general, it is well known that χ (G) ≥ ω(G) for any graphG (see, for instance, []).
For every induced subgraph H ⊆ G of G, if χ (H) = ω(H), then G is called a perfect graph
[].
In here, we will state and prove the chromatic and clique numbers for the graph �(SM)

separately, and so the perfectness of this special graph will be obtained.

Theorem  The chromatic number of �(SM) is equal to

χ
(
�(SM)

)
=  +

⌈
n – 


⌉
.

Proof As usual, let us consider the graph �(SM) associated with SM as defined in (). Now,
if we first take account of the vertex xn, then it is easy to see that xn is adjacent to all the
other vertices. That means the color used for xn cannot be used for the remaining vertices.
So, let us suppose that the color for xn is labeled C.
Secondly, let us consider the vertex xn–. Since xn– is adjacent to all vertices except the

vertex x, the color for xn–, say C, can also be used only for x. Similarly, the vertex xn– is
adjacent to all vertices except the vertices x and x. Thus the color, say C, for xn– can also
be used only for the vertex x. (The color C has already been used for x in the previous
step.)
By applying same progress, one can see that to handle the number of coloring for all

vertices in the set V (�(SM)), we must add  to the least integer ≥ n–
 . In other words, a

total + � n–
 	 colors should be needed, which gives the required chromatic number in the

theorem. �

The following lemma (proof can be seen directly by mathematical induction) plays a
central role in the proof of Theorem  below.

Lemma  For any n ∈ N
+, there always exists n – � n

 	 = � n–
 	.

Theorem  The clique number of �(SM) is equal to

ω
(
�(SM)

)
=  +

⌈
n – 


⌉
.

Proof Now, let us consider the complete subgraph A ⊆ �(SM). For all distinct vertices
xi,xj ∈ V (A), we have

xi · xj = xi+j = , i.e., xixj ∈ E
(
�(SM)

)
for all i and j. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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In fact, () can be satisfied only in the case if the sum i + j would be at least equal to the
n + . Therefore, for any two vertices xi and xj, the values of i and j must be at least

i =
⌈
n


⌉
and j =

⌈
n


⌉
+ 

as � n
 	 + � n

 	 +  ≥ n + . This process will give us that A ⊆ �(SM) is a complete subgraph
with the vertex set

V (A) =
{
x� n 	,x� n 	+, . . . ,xn–,xn

}
.

It is easy to see that the number of elements in V (A) is n – � n
 	 + , which equals � n–

 	 + 
by Lemma .
By contradiction, we will show that the set V (A) is maximal. Suppose to the contrary

that |V (A)| > � n–
 	 + . If any two vertices xi and xj (xi,xj ∈ V (�(SM)),  ≤ i, j ≤ � n

 	 – )
is in V (A), then we arrive at a contradiction, as i + j ≤ n – . Otherwise, exactly any one
vertex xi (xi ∈ V (�(SM)),  ≤ i ≤ � n

 	 – ) is in V (A) as |V (A)| > � n–
 	+ . Again, we arrive

at a contradiction as i + � n
 	 ≤ n,  ≤ i ≤ � n

 	 – . Thus, the set V (A) is maximal. Hence,
ω(�(SM)) =  + � n–

 	, as required. �

Now, by keeping in our mind the definition of perfect graphs [] as depicted in the
beginning of this section and considering Theorems , , we can obtain the perfectness of
the graph �(SM) as in the following corollary.

Remark  Since χ (�(SM)) = ω(�(SM)) =  + � n–
 	, the graph �(SM) is perfect.

Notice that for �(SM ) and �(SM ) as drawn in Figures  and (ii), respectively, we have
χ (�(SM )) =  = ω(�(SM )) and χ (�(SM )) =  = ω(�(SM )), respectively.
We recall that any graph G is called Berge if no induced subgraph of G is an odd cycle of

length of at least five or the complement of one (see []). The following lemma proved by
Chudnovsky et al. in [] figures out the relationship between perfect and Berge graphs.
(This lemma is named strong perfect conjecture in some studies.)

Lemma  ([]) A graph is perfect if and only if it is Berge.

By using this relationship depicted in Lemma , one can also prove the perfectness of
�(SM) as in the following result.

Theorem Let SM be amonogenic semigroup as in ().Then the graph of �(SM) is perfect.

Proof Assume that any induced subgraph of �(SM) contains an odd cycle Ck+ and its
number of vertices are k+ (k ≥ ). Let us assume that these vertices are xa ,xa , . . . ,xak+
inCk+ such that xa –xa –xa – · · ·–xak+ –xa , where a < a < · · · < ak+. Since xaixai+ ∈
E(�(SM)) (≤ i≤ k) and xaxak+ ∈ E(�(SM)), by the definition of �(SM), we get xaxaj ∈
E(�(SM)),  ≤ j ≤ k as a + aj > a + a ≥ n + . This implies that no odd cycle induced
subgraph of length of at least  is in �(SM), which is a contradiction. Finally, by Lemma ,
we conclude that �(SM) is perfect. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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Moreover, by [], since the complement of a perfect graph is also perfect, we also obtain
that the complement �(SM) of �(SM) is perfect. As a final note, we may refer to [, ]
for some other properties of perfect graphs which are clearly satisfied for �(SM).

4 Number of triangles in�(SM)
In this section, by using the spectral graph theory, we count the number of triangles in the
graph �(SM) associated with SM as defined in ().
We recall that the notation t(�(SM)) denotes the number of triangles for any simple

undirected graph �(SM). In fact, the following lemma on t(�(SM)) will be needed for our
main result of this section.

Lemma  ([]) Let �(SM) be a simple graph of order n, and let xi,xj ∈ V (�(SM)). Suppose
that Ni and Nj are the neighbor sets of xi and xj, respectively. Then

∑
xixj∈E(�(SM))

|Ni ∩Nj| = t
(
�(SM)

)
, ()

where |Ni ∩Nj| denotes the cardinality of common neighbors.

Before presenting this result, let us consider the adjacencymatrix (here the first row and
column correspond to vertex xn, the second row and column correspond to vertex xn–, . . . ,
etc.) of �(SM) which is defined by its entries aij =  if xixj ∈ E(�(SM)) and  otherwise (see
A(�(SM)) in Figure ). Since A(�(SM)) is symmetric, its eigenvalues are real. Without loss
of generality, we can write them as λ ≥ λ ≥ · · · ≥ λn and call them the eigenvalues of
�(SM). Moreover, the second power A(�(SM)) of the adjacency matrix is written as the
form given in Figure .

Theorem  Let �(SM) be the graph of order n associated with SM as defined in (). Also,
let t(�(SM)) be the number of triangles in �(SM). Then

t
(
�(SM)

)
=

⎧⎨
⎩

n(n–)(n–)
 when n is even,

(n–)(n–)
 when n is odd.

A
(
�(SM)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

    · · ·   · · ·   
    · · ·   · · ·   
    · · ·   · · ·   
    · · ·   · · ·   
...
...
...
... · · · ...

... · · · ...
...
...

    · · ·   · · ·   
    · · ·   · · ·   
    · · ·   · · ·   
    · · ·   · · ·   

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3 The matrix A(�(SM)).

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n –  n –  n –  n –  · · · � n
 � –  � n

 � –  · · ·   
n –  n –  n –  n –  · · · � n

 � –  � n
 � –  · · ·   

n –  n –  n –  n –  · · · � n
 � –  � n

 � –  · · ·   
n –  n –  n –  n –  · · · � n

 � –  � n
 � –  · · ·   

...
...

...
... · · · ...

... · · · ...
...
...

� n
 � –  � n

 � –  � n
 � –  � n

 � –  · · · � n
 � � n

 � –  · · ·   
� n
 � –  � n

 � –  � n
 � –  � n

 � –  · · · � n
 � –  � n

 � · · ·   
...

...
...

... · · · ...
... · · · ...

...
...

    · · ·   · · ·   
    · · ·   · · ·   
    · · ·   · · ·   
    · · ·   · · ·   

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 4 The matrix A2(�(SM)).

Proof It is well known that for any graph �(SM), we have

n∑
i=

λi = ,
n∑
i=

λ
i =

n∑
i=

di = m, m is the number of edges in �(SM)

and

n∑
i=

λ
i =

n∑
i=

∑
vj :vivj∈E(�(SM))

|Ni ∩Nj| = 
∑

vivj∈E(�(SM))

|Ni ∩Nj|

= t
(
�(SM)

)
by Lemma . ()

We now consider A(�(SM)) = (bi,j)n×n and

A(�(SM)
)
= A

(
�(SM)

) ·A(�(SM)
)
= (ci,j)n×n. �

From the above, we certainly have

c, = b, + b, + b, + · · · + b,� n 	– + b,� n 	 + b,� n 	+ + b,� n 	+ + · · · + b,n– + b,n–

= (n – ) + (n – ) + (n – ) + · · · +
⌊
n


⌋
+

(⌊
n


⌋
– 

)
+

(⌊
n


⌋
– 

)

+
(⌊

n


⌋
– 

)
+ · · · +  +  + 

=
(n – )(n – )


+

(⌊
n


⌋
– 

)
,

c, = b, + b, + b, + · · · + b,� n 	– + b,� n 	 + b,� n 	+

+ b,� n 	+ + · · · + b,n– + b,n– + b,n–

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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= (n – ) + (n – ) + (n – ) + · · · +
⌊
n


⌋
+

(⌊
n


⌋
– 

)

+
(⌊

n


⌋
– 

)
+

(⌊
n


⌋
– 

)
+ · · · +  +  + 

=
(n – )(n – )


+

(⌊
n


⌋
– 

)
,

c, = b, + b, + b, + · · · + b,� n 	– + b,� n 	 + b,� n 	+

+ b,� n 	+ + · · · + b,n– + b,n– + b,n–

= (n – ) + (n – ) + (n – ) + · · · +
⌊
n


⌋
+

(⌊
n


⌋
– 

)

+
(⌊

n


⌋
– 

)
+

(⌊
n


⌋
– 

)
+ · · · +  +  + 

=
(n – )(n – )


+

(⌊
n


⌋
– 

)
– 

and

c, = b, + b, + b, + · · · + b,� n 	– + b,� n 	 + b,� n 	+

+ b,� n 	+ + · · · + b,n– + b,n– + b,n–

= (n – ) + (n – ) + (n – ) + · · · +
⌊
n


⌋
+

(⌊
n


⌋
– 

)

+
(⌊

n


⌋
– 

)
+

(⌊
n


⌋
– 

)
+ · · · +  +  + 

=
(n – )(n – )


+

(⌊
n


⌋
– 

)
– .

By iterating this above progress, we get

c� n 	,� n
 	 =

(⌊
n


⌋
– 

)
+

(⌊
n


⌋
– 

)
+

(⌊
n


⌋
– 

)
+ · · · +

(⌊
n


⌋
– 

)
,

which actually equals

(⌊
n


⌋
– 

)⌊
n


⌋
.

Similarly, we obtain

c� n 	+,� n
 	+ =

(⌊
n


⌋
– 

)⌊
n


⌋
.

By continuing these calculations, we finally reach

cn–,n– =  +  +  +  = , cn–,n– =  +  +  = ,

cn–,n– =  +  = , cn,n = .

We have two possible cases for n:

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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• If n is even, then

n∑
i=

ci,i =
[
(n – )(n – )


+
n – 


]
× n


+
n – 


× n


=
n(n – )


+
n(n – )


=
n(n – )(n – )


. ()

• If n is odd, then

n∑
i=

ci,i =
[
(n – )(n – )


+
n – 


]
× n + 



=
(n – )(n – )


× n + 


=
(n – )(n – )


. ()

Since the eigenvalues of the matrix A(�(SM)) are λ
 ,λ

, . . . ,λ
n, by considering (), we

get

t
(
�(SM)

)
=

n∑
i=

λ
i = tr

(
A(�(SM)

))
=

n∑
i=

ci,i.

Using () and () in t(�(SM)) = 

∑n

i= ci,i, we get the result, as desired.
By Figures  and , it is quite easy to see that t(�(SM )), t(�(SM )) and t(�(SM )) are

equal to ,  and , respectively.

5 The Cartesian product of�(S1
M) and�(S2

M)
For given arbitrary graphs G and G, the Cartesian product G�G is defined as the
graph on the vertex set V (G)×V (G) with vertices u = (u,u) and v = (v, v) which are
connected by an edge if and only if either u = v and uv ∈ E(G) or u = v and uv ∈
E(G). This subject has been studied extensively by several authors (see, for instance, [–
]).
Throughout this section, wewill assume thatS

M and S
M denotemonogenic semigroups

with  defined by the sets

{
x,x ,x


 , . . . ,x

n

}

and
{
x,x,x


, . . . ,x

m

}
, ()

respectively, as given in (). Without loss of generality, we can assume that n ≥ m. In this
section, the following results will be dealt with: the diameter, girth, chromatic number and
clique number of the graph �(S

M)��(S
M).

For simplicity, the graph �(S
M)��(S

M) will be denoted by a single letter T .

Theorem  For any two monogenic semigroups S
M and S

M as defined in (),

diam(T ) = .

Proof Since the vertex (x,x) of the graph T definitely has neighborhoods, the diameter
can be figured out by considering the distance between (x,x) and one of the other vertices
in V (T ). It is easily deduced that (x,x) is just adjacent to the vertices (x,xm ) and (xn ,x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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However, for  ≤ i < n and  ≤ j < m, since xn · xi =  and xj · xm = , we clearly obtain
each of (x,xm ) and (xn ,x) is adjacent to the vertex (xn ,xm ). These facts can be shown
systematically as

(x,x) –
(
x,xm

)
–

(
xn ,x

m

)
–

(
xi,x

m

)
–

(
xi,x

j

)

and

(x,x) –
(
xn ,x

)
–

(
xn ,x

m

)
–

(
xn ,x

j

)
–

(
xi,x

j

)
.

Therefore, diam(T ) = , as required. �

Theorem 

girth(T ) = .

Proof Since xn · xn– = , xn– · x =  and xn · xi = , we clearly have (xn ,xm ) – (xn ,xm–
 ) –

(xn ,x) – (xn ,xm ). This gives the result. �

We note that the chromatic number of the Cartesian product of simple graphs G and
G satisfies the equality χ (G�G) =max{χ (G),χ (G)} (cf. []). Now, we replace G by
S
M andG by S

M , and then considering Theorem , we clearly obtain the following result
about the chromatic number for the graph T .

Theorem 

χ (T ) =  +
⌈
n – 


⌉
.

Furthermore, we also get the next theorem for the clique number of T .

Theorem 

ω(T ) =  +
⌈
n – 


⌉
.

Proof Now, let us consider the graph T with its subgraph A. In this case, for all distinct
vertices (xi,x

j
) and (xa ,xb), a subgraph will be definitely complete if

i = a and xj · xb = xj+b = 
or

j = b and xi · xa = xi+a = 

⎫⎪⎬
⎪⎭ ()

i.e., for all related powers i, j, a and b, the subgraph will be complete if (xi,x
j
)(xa ,xb) ∈

E(T ).
On the other hand, each of the equalities in () will only be satisfied in case the sum j+b

is at least equal to m +  and the sum i + a is at least equal to n + . By the assumption
n ≥ m, let us consider the case j = b. Therefore, by a similar idea to that in the proof of
Theorem , for any two vertices xi and xa , we get

i =
⌈
n


⌉
and a =

⌈
n


⌉
+ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/44
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In fact, these above determinations imply that A ⊆ T is a maximal complete subgraph
with the vertex set

V (A) =
{(
x� n 	
 ,xj

)
,
(
x� n 	+,xj

)
, . . . ,

(
xn–,xj

)
,
(
xn,xj

)}
.

A simple calculation shows that

∣∣V (A)
∣∣ = n –

⌈
n


⌉
+ 

=
⌈
n – 


⌉
+  by Lemma .

Hence, we obtain ω(T ) =  + � n–
 	 as required. �

Remark  For any two graphs G and G, it is presented in [] that ω(G�G) ≥
max{ω(G),ω(G)}. However, by considering Theorems  and , since χ (T ) = ω(T ) =
 + � n–

 	, we obtain the strict equality ω(T ) = max{ω(�(S
M)),ω(�(S

M))} for our special
graphs studied in this paper.
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