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1 Definitions and results

As the development of singular integral operators and their commutators, multilinear sin-
gular integral operators have been well studied (see [1-6]). In this paper, we study some
multilinear operator associated to the singular integral operators with non-smooth ker-
nels as follows.

Definition 1 A family of operators Dy, ¢ > 0, is said to be ‘approximations to the identity’

if, for every ¢ > 0, D, can be represented by the kernel 4,(x,y) in the following sense:

D = [ atw o) dy
for every f € LP(R") with p > 1, and a,(x, y) satisfies
|at(x,y)| < hs(x,y) = Ct_”/zs(|x —y|2/t),
where s is a positive, bounded and decreasing function satisfying

. 2\ _
rlirgo r’”ss(r ) =0

for some € > 0.

Definition 2 A linear operator T is called a singular integral operator with non-smooth
kernel if T is bounded on L?(R") and associated with a kernel K(x, ) such that
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for every continuous function f with compact support, and for almost all x not in the
support of f.

(1) There exists an ‘approximation to the identity’ {B;,¢ > 0} such that 7B, has an asso-
ciated kernel k;(x, y) and there exist ¢;, ¢; > 0 so that

/ |K(x,y)—kt(x,y)|dx§ ¢y, forallyeR".
lx—y|>c1 £1/2

(2) There exists an ‘approximation to the identity’ {4;, ¢ > 0} such that A;T has an asso-
ciated kernel K;(x, y) which satisfies

|I(t(x,y)| <cit™? iflx—y| < c3t'?,

and
K (x,9) — Ki,9)| < cat®lc =y if |x — y| > cat"?
for some ¢3,¢4 >0, 8 > 0.

Let m; be positive integers (j=1,...,0), w1 + - - - + m; = m, and let b; be functions on R”
(j=1,...,0).Set, for1 <j<m,

Rwdmmw=@wr-zjivwwm~w%

| <m;

The multilinear operator associated to 7 is defined by

l—L 1 ml+1( ]; ,y)

b
Tvmwf -

K(x, y)f (y) dy.

Note that when m = 0, T? is just the multilinear commutator of T and b; (see [7]).
However, when m > 0, T} is a non-trivial generalization of the commutator. It is well
known that multilinear operators are of great interest in harmonic analysis and have
been widely studied by many authors (see [1-4]). Hu and Yang (see [8]) proved a variant
sharp estimate for the multilinear singular integral operators. In [7], Pérez and Trujillo-
expL’/ (R")
and noted that Oscey, 17 C BMO. The main purpose of this paper is to prove a sharp

Gonzalez proved a sharp estimate for the multilinear commutator when b; € Osc

function inequality for the multilinear singular integral operator with non-smooth kernel
when D*b; € BMO(R") for all a with || = m;. As an application, we obtain an L” (p > 1)
norm inequality and an Llog L-type inequality for the multilinear operators. In [9-12],
the boundedness of a singular integral operator with non-smooth kernel is obtained. In
[13], the boundedness of the commutator associated to the singular integral operator with
non-smooth kernel is obtained. Our works are motivated by these papers.

First, let us introduce some notations. Throughout this paper, Q denotes a cube of R"
with sides parallel to the axes. For any locally integrable function f, the sharp function of
f is defined by

fx»wma/medw
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where, and in what follows, fg = |Q|™ f 0 f(x)dx. It is well known that (see [14, 15])

) ~ supm(l;@/[f(y)—ddy

We say that f belongs to BMO(R") if f* belongs to L>®(R") and ||f||zumo = ||f || ;- Let M be
a Hardy-Littlewood maximal operator defined by

M) = sup o / £6)| dy.

For k € N, we denote by M* the operator M iterated k times, i.e., M'(f)(x) = M(f)(x) and
M) (x) = M(M1(F)) (x)  when k > 2.

The sharp maximal function M(f) associated with the ‘approximations to the identity’
{A;, t > 0} is defined by

M) =sup o / 1F0) - Arg ()| dy,

where g = {(Q)? and /(Q) denotes the side length of Q. For 0 < r < 0o, we denote M (f),
by

MA(), = [ME ()]

Let @ be a Young function and ® be the complementary associated to ®. For a func-
tion f, we denote the ®-average by

ufn(p,Q—mf{bo 5 <I>(lf§y)|)dy<1}

and the maximal function associated to ¢ by

Mo(f)(x) = SQUP Hf”cb,Q

The Young functions used in this paper are ®(¢) = £(1 + logt)” and ®(¢) = exp(£""), the
corresponding average and maximal functions are denoted by || - ||zqogz)",@Q» Mi(ogry and
I llexp 217, @» Mexp1ir- Following [11, 12, 16], we know the generalized Holder inequality

1
Ql /QVWW dy < Ifloliglag

and the following inequality, for r,7; > 1, j = 1,...,/ with 1/r = 1/r; + --- + 1/r;, and any
X € Rn, b S BMO(R”),

I
“f”L(logL)l/V,Q = ML(logL)l/r(f) =< CML(lugL)l (f) < CM +1(f),
16 = bollexprr,q = Cllbllsuos

|byrng = bagl < Ck|1bllsmo-

We denote the Muckenhoupt weights by A, for 1 < p < oo (see [14]).
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We shall prove the following theorems.

Theorem 1 If T is a singular integral operator with non-smooth kernel as given in Def-
inition 2, let D*b; € BMO(R") for all o with |a| = mj and j = 1,...,1. Then there exists a
constant C > 0 such that for any f € C°(R"), 0 <r<1and x € R,

!
M), = CTT( 3 108 o M0

j=1 lajl=m;j

Theorem 2 If T is a singular integral operator with non-smooth kernel as given in Defini-
tion 2, let D*b; € BMO(R") for all o with || =m; and j=1,...,1. Then T? is bounded on
LP(w) for any 1 < p < 0o and w € Ap, that is,

I
17000 = CTT( X 128 o) U orr

j=1 |Otj|=mj

Theorem 3 If T is a singular integral operator with non-smooth kernel as given in Defini-
tion 2, let w € Ay, D*b; € BMO(R") for all o with |o| = mj and j=1,...,1. Then there exists
a constant C > 0 such that for all ) > 0,
!
>i| w(x) dx.

w({x e R": | TP ()| > 1)) < C/Rn @[1 +log*(lf;)|

2 Proof of the theorem

To prove the theorems, we need the following lemma.

Lemma 1 (see [1]) Let b be a function on R" and D*b € L1(R") for all « with |«| = m and
some q > n. Then

1 1/q
Rm(b;x;y) < C|x_)/|m (~7 / D*b(z) qu) ,
| | Z |Q, »)| J Q) | |

|a|=m
where Q is the cube centered at x and having side length 5/n|x — y|.

Lemma 2 ([14, p.485]) Let 0 < p < q < 00 and for any function f > 0, we define that for
1/r=1/p-1/g,

" 1/
Ifllwze = supA|{x € R*:f(x) > A}, Npo(f) =supllf xellee /I xeller
A>0 E

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

I llwze < Npo(F) < (a/(g =) If Nwaa-

Lemma 3 (see [17]) Letr; >1forj=1,...,1, we denote that 1/r = 1/ry + - - - + 1/r;. Then

1
@ ./Qlfl(x) o ﬁ(x)g(x)| dx < ”f”expL'l,Q U ”f”exerl,Q“g"L(logL)”’”,Q'
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Lemma 4 ([9, 10]) Let T be a singular integral operator with non-smooth kernel as given
in Definition 2. Then T is bounded on LP (R") for every 1 < p < 0o and bounded from L'(R")
to WL'(R").

Lemma 5 (see [9, 12]) For any y > 0, there exists a constant C > 0 independent of y such
that

Hx €R": M(f)(x) >D)\,Mf1(f)(x) < yk}| < Cy|{x e R": M(f)(x) > A}’
for A >0, where D is a fixed constant which only depends on n. Thus
M, = Iz,
forevery f € LP(R"),1< p < 00.

Lemma 6 Let {A;,t > 0} be an approximation to the identity’ and b € BMO(R"). Then, for
every f € [P(R"),p>1andx e R",

sup — / A, ((b = o)) @)| dx < ClbllssoM>()(@),
Q3% |Q|

where tq = [(Q)? and 1(Q) denotes the side length of Q.

Proof We write, for any cube Q with x € Q,
1
@/Q|AtQ((b—bQ ) ‘dx< |Q|// th X,y b(y bQ)f(y |dydx
=1l / / heo(®,9)| (b0) - bo)f ()| dy dx
1
1Ql I (%,9)[ (b0) = b dyd
Zl Q| /Q/;k+1Q\2kQ ol y)‘( ) Q)f@)‘ ly dx

= 11 +12.

We have, by the generalized Holder inequality,

b )| dy dx
IQIIZQI// |(0) - ba)f )| ay
< Cllb = bollexpr20lf I Ltog )20

< Cl1bllpsoM*(f)(%)

L=<C

For I, notice for x € Q and y € 2'Q\2%Q, then |x — y| > 28"t and /1, (x,y) < CS(ZTZ(I)),

then

o]

) < 2k-1)
- Z |Q|2//;k+lQ b(y) - bo)f (y)| dy dx

oo

1
= CZ 2kns(22(k—l)) |2k+1Q| /2"‘*1Q| (b(y) - bQ)f()/)| dy

k=1
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o0
kn o (9 2(k=1
< €Y 295(226D) 1 = bollexp k1 o o 125410
k=1

<c22“ D) 1BllmoM> (f) R)
< ClIbllssoM* () (%),

where the last inequality follows from
oo o0
Z 2(/(—1)ns(22(k—1)) <C Z 2—(/(—1)8 <00

k=1 k=1

for some € > 0. This completes the proof. O

Proof of Theorem 1 It suffices to prove for f € C{°(R") and some constant C that the
following inequality holds:

1/r
(@ [0 - ot as) <C1—[( 5 10t o M.

j=1 Najl=m;

Without loss of generality, we may assume [ = 2. Fix a cube Q = Q(xp,d) and ¥ € Q. Let Q
5/nQ and by(x) = bj(x) = Yju 1o, 21 (Db, then Ry (b x,9) = Ruy(bjix,y) and D*b
D*bj — (D*b))g for || = m;. We write, for f = f x5 +f xpm =i t 120

T’ (f)x) = wm () dy = / MK(x,y)ﬁ(y)dy
_|a§n1 /R” it Ixx ylym)alDalbl(y)K(xry)ﬁ(Y)dy
m' ; /R n iy (B13%,y |xx yﬁaz Dazl}z(y)K(x’y)ﬁ(y) 5
' \ch:m;c:tzI:mz 0‘1!1“2! R (x_y)almlfc) ili;ll’gy D) K(x )i (y) dy
/ . WK (x,9)f2(y) dy
- T(%fl) - T<a§nl a%!Rmz (1;2$x|,9-c)£x.|—m-)°“D"‘1l31ﬁ>

1 (x—-)1+2pep Db, )
1

oqlas! x—-|"
len| =, logl=my L2 =l

| — |

Page 6 of 14
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and

'2— Rm(é; ) )
Ay TY(P) = f n %Kt(m)ﬁ@ dy

- 3 Rmz(bz;x,y)(x—y)alDalbl(y)IQ(x,y)ﬁ()’)dy

ar! Jpn o — y|™

- > 1 le(blsx’w(x—y)”DazbZ(y)Iq(x,y)ﬁ(y)dy

az! Jpn e — y|™

1 x — y)Mr2 DY, (y) D2 )
+ Z (x—y) 1 () 2(y) K 9)fi () dy
O[l!O[2! R Ix —_)/|m

loeg |[=my, |ag|=ma

T2 Ry (B, 9)
. / flf—mf Ki(x,y)2 () dy
R |x_y|

2 m; E'; 5"
:AtQT(—H’ﬂR ’_( i )ﬁ)

e — ™
1 Ry (b, ) (x — )1 D% by
|1 |=m1

1 le (b1;%,-)(x — )2D*2 b,
= '

1 (x - )a1+a2Da1 leaz bz
/)

orlan! e — ™"
oy |=mm1, Iazl my

l_[] 1le+1 ) )
20

e — - I'”

+
>
O
/\ /\ A

+AtQ

then

1 1/r
[@ /Q TP - yAtQTbmme]

1/r
Lafrom- s

n} lRm,(b;,x, ) ) r :|l/r
d
[ C Rmz(b2;x;')(x—~)°‘1Da1[;1 ) , ]1/r
~ T )
+ _|Q|/Q <|0t1|2=m1 |x—|m fl x
r 1/r
dx:|

[ C le(él;x,.)(x_.)O‘ZDQZBZ )

— | |T

lail, (HX; PERTEE
[ C

Ll 2

rC Hj:lRle(bi;x") r 1r
' _@L%T( FEND fl)‘ d’“}

_artae pea . poe2 1/r
/(x ) by bzf) dx]

o

o [=my, |oea]|=mma
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AtQT< Z LRmz(bZ;x,')(x—.)O‘IDDllblfl>

oq! [x —-|™

r 1/r
dx]

r 1/r
dx]

r 1/r
dx]

+
Rla
P

ey [=my

AtQT< Z Lle(bl;x,‘)(x—.)szDaszfl)

oy! |x — ™

+
Rla
P

loea|=ma

C
+_

1Q

1 (x - ')a”azDal l;lDazl;z
()[1!0[2! |x - |m !

A@T(

P

loeg |=my, loea]|=mm

C H/‘Zlemj‘Jrl(gj;x;’) )
— | l(r-a4, ) 2 7
* _|Q|/Q( e )( o

2211+[2+[3 +1, +15 +I6 +I7+[8 +19.

r 1/r
dxj|

Now, let us estimate 1, I, I3, I, I5, Is, I7, Is and Iy, respectively. First, forx € Qand y € Q,

by Lemma 1, we get

Ru(bji,y) < Cla=31" > | Db g

letj|=m

by Lemma 2 and the weak type (1,1) of T (Lemma 4), we obtain

1/r
w=CT1( X 19 lue) (i [ et )
|a| mj
2
’ IT(¢)xollr
< CH( S 10t i
lojl=rm;
2
<CT1( X 127l 10 1760
loyjl=rm;
=¢ H( 3 108 i ) s
lotj|=rm;
2
=C H( 2 IID"fb/||BMo)M<f><5c>.
j=1 Nlajl=m;

For I, we get, by Lemma 2 and the generalized Holder inequality,

1/r
L<C Z ||D°‘2b2HBMO (|Q|f | T(D*1bufy) ()| dx)

loea|=m log |=rmy

o I T(Dbyfy) xollr
<C Y Db g0 Y 1Q 1%

loea|=m oy |=rmy

<C Y Db o Y 1QITDbf) |y

o= g |=rmy

=C Z ”DazbZ“BMo Z |Q|_1||D"11~91f1||L1

lara| =3 g |=rmy
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=C Z ”DazbZ“BMO Z ”Dalbl_(Dabl)é”expL,Q”f”L(IOgL)@

loeg |[=mp g |[=mm11
2

=¢ H( 2 ||D“f‘bf||BMo)M2<f>(5c).
j=L Nejl=m;

For I3, similar to the proof of I, we get

2
h=C H( 2 IID“b;IIBMo)M2<f><5c>.

j=1 Sla|=m;

Similarly, for I, taking r, 1,7, > 1 such that 1/r = 1/r; + 1/r,, we obtain, by Lemma 3 and

the generalized Holder inequality,

1/r
L<Cc (|Q|/ |T(D 5D byfh) (x)|” dx)

oy |=my, g |=my

LT Db D2byf) xo 1
¢ Y Qi

g |=my,|ag|=my

<C Y QTP BD2bf) |y

log|=my, |z |=my
<C ) lQpuaDebfi

a1 |=rm,|az |=my

=C Z l_[HDalb Da]b Hexer/,Q : |V||L(logL)1/V,Q

la1|=my,lag|=my j=1

2
< CTT( X2 12l )40

j=1 “ler|=myj

For Is, Is, I7 and I3, by Lemma 6, we get

1
15+16+17+18<c]_[( ) HD"‘b”BMO)'Q'/]AtQT(ﬁ )| dx

j=1 lajl=m;

€ X le X i [ AT (D b))

loea|=mm g |=rmy

€ X Dbl X i [T @ b)) s

ey [=my loea|=mm3

1 L
+C > el /Q | Ay T (D' 51D byf;) (%) | dx

oy |=mmy,|ag |=my

2
< CTT( X2 12l )40

j=1 Nla|=m;
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For Iy, we write

1_[]'2=1 ij+l(5j;x1 ) )
I — )

e

(-7

/ l_L 1Rm/+1(b1;x;y)
R}’l

T (K () — Ko ) .(9) dy
lx =yl

B / Hj:lij(bj;x’y)

oy (K@) =K y)h)dy

(K(x,9) = Kelx, ) o o) dy

~ DBy () (% = 9) Ry (23, 9)
Z / lx —y1™

1]= W’l

-y f n Dby (y) (% = 9)%2 Ryny (13 %,)

x— y|m (K(x,5) - Ki(%, %)) dy

oz |= le

1 / DY by (y)D?2 by (y) (x — y)1+e2

) (K(x,9) = Kulw )0 dy

+
oqlo!
o1 |=mm, lag|=mp

=10+ 1P + 10 + 1Y
By Lemma 1 and the following inequality (see [15])

bg, = bo,| < Clog(|Qal/|Qul)1Bllzmo  for Q1 C Qa,

we know that for x € Q and y € 2¥*1Q \ 2¢Q,

|Ron(B3%,9)| < Clx—yI” Z (1D g + I( ab)é(x,y) ~ ab)QD

|oe|=m

< Cklx=y1" Y [Db yy0r

lae|=m

Note that |x—y| > d = t"? and |x —y| ~ |xo —y| forx € Qand y € R" \ Q. By the conditions

on K and K}, we obtain

Ry (b3 %,9)
|1 | - Z./k+lQ\2’<Q WU(O@)’) —Kz(x»)’)Hf(Y)My

< cH( 3 o, ||BMO) 3 [esose ey 0l

|a|= mj

TI( X 108l 02 i [yl

j=1 Nla|=m; k=1

IA

2
Cl_[( Z ”Dab/'“BMO)M(f)(;C)'

j=1 Nla|=m;

IA

Page 10 of 14
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For Iéz), we get, by the generalized Holder inequality,

i kd’ ;
GIEE I LIANAD 3D o) B L Ol CIE

K1\ X0 — y]*D

loca |=rmy loey|=rmy k=0
= C( Z HDazb2“BMo)
ey |=mm
o0
x Z Zl(2_5k||D‘¥1b1 - (Dalbl)é||expL,sz”f”L(logL),ZkQ
lap|=my k=1
2
=C H( 2 IID“b/IIBMo)MZ(f)(@.
j=1 Nearl=m;

Similarly,

2
IYe H( > IID“bJIIBMo)MZ(f)@.

j=1 |a\:mj
For 1&4), taking r,ry, 7, > 1 such that 1/r = 1/r; + 1/r;, by Lemma 3 and the generalized
Holder inequality, we get
o0 s

d ~ ~
126 B 2 e OO ROl

a1 |=m |z |=my k=0

co 2
<C Y Y TTIPY8 = (D5) | expri sk Mg

log|=my,lag|=my k=1 j=1

2
= CH( Z HD"‘ijBMO)MB(f)(g).
j=1

ot |=mj

Thus

2
|Is] < c]‘[( > !!D“b,!!BMO>M3<f)<5c>.

j=1 \al:m}-
This completes the proof of Theorem 1. O

By Theorem 1 and the L”(w)-boundedness of M'*!, we may obtain the conclusions of

Theorem 2. By Theorem 1 and [16, 17], we may obtain the conclusions of Theorem 3.

3 Applications

In this section we shall apply Theorems 1, 2 and 3 of the paper to the holomorphic func-
tional calculus of linear elliptic operators. First, we review some definitions regarding the
holomorphic functional calculus (see [9]). Given 0 < 6 < 7, define

So = {ze C: |arg(z)| 59} U {0}
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and its interior by SJ. Set Sy = Sy \ {0}. A closed operator L on some Banach space E is said
to be of type 6 if its spectrum o (L) C Sy and if for every v € (6, ], there exists a constant
C, such that

| -1 <C, S,
For v € (0, 7], let

Hoo(Sg) = {f:Sg — C:f is holomorphic and ||f ||z~ < oo},

where |[f ||z = sup{|[f(z)| : z € S} }. Set

S
\D(Sg) = {g eHoo(Sg) :3ds > 0,3c¢ > 0 such that |g(z)’ < 1 lz||z|25 }

If Lis of type 6 and g € Hy (Sg), we define g(L) € L(E) by

() = (2! /r (nl — L) "g(n) dn,

where T is the contour {£ = re™ : r > 0} parameterized clockwise around Sy with

0 < ¢ < . If, in addition, L is one-to-one and has a dense range, then, for f € H, (Sg),

fL) =[] (w0,

where h(z) = z(1 + z)~2. L is said to have a bounded holomorphic functional calculus on

the sector S, if

lg(@)] < Nllglze

for some N > 0 and for all g € Hy(S)).
Now, let L be a linear operator on L2(R") with 6 < /2 so that (L) generates a holo-
morphic semigroup e %, 0 < |arg(z)| < 7/2 — 6. Applying Theorem 6 of [9], we get the

following.

Theorem 4 Assume the following conditions are satisfied:

—zL

(i) The holomorphic semigroup e ", 0 < |arg(z)| < /2 — 0 is represented by the kernels

a,(x,y) which satisfy, for all v > 0, an upper bound
|a.(x,p)| < cohyz(%,9)

forx,y € R",and 0 < |arg(z)| < w/2—6, where hy(x,y) = Ct™"%s(|x—y|?/t) and s is a positive,
bounded and decreasing function satisfying

lim r”“s(rz) =0.

r—0o0
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(ii) The operator L has a bounded holomorphic functional calculus in L*(R"), that is, for

allv >0 andg e Hy (Sg), the operator g(L) satisfies

Then, for D*b; € BMO(R") for all a with |a| = mj and j =1,...,1, the multilinear operator

le@@) > < eoliglz=IIfll 2.

g(L)? associated to g(L) and b; satisfies:

() ForO<r<1landxeR",

l
M (e (), ® < C]‘[( > HD“fb,-HBMO>M“1(f)(5c);

j:1 |0t]|=m]

(b) g(L)? is bounded on LP(w) for any 1< p < 0o and w € Ay, that is,

)
10 Dl = CTT( X 1298 o ) 717

j=1 lajl=m;j

(c) There exists a constant C > 0 such that for all A > 0 and w € Ay,

I
w({x eER": |g(L)b(f)(x)| >A}) < C/Rn lf(;” |:1 +10g+<lf(;)|)] w(x) dx.
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