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Abstract
Young inequality, extended in (Geometry of Orlicz Spaces, 1986; Geometry of Orlicz
Spaces, 1996), has extensive use and great effort in mathematical analysis. By the kind
of extended Young inequality, we can get the famous Holder inequality and the
Minkowski inequality. But until now, we have not found its strict proof of analysis. In
(Geometry of Orlicz Spaces, 1986; Geometry of Orlicz Spaces, 1996), only the probable
pattern description was found. In this paper, we will get the strict proof of analysis of a
kind of extension of Young inequality with the approximation method.
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1 Introduction
The original Young inequality [] has been proposed in an integral form by Young in .
Suppose that f (x) is a strictly increasing and continuous function defined in [, c], f –(x)
is the inverse function of f (x), f () = , a ∈ [, c], b ∈ [f (), f (c)]. Then

∫ a


f (x)dx +

∫ b


f –(x)dx ≥ ab,

where the equality holds if and only if b = f (a).
Young inequality has an extensive use and a great effort in mathematical analysis. Now

Young inequality was extended as follows.
Let M(u) and N(v) be complementary N-function with each other (see Definition .

and Definition .), then the kind of Young inequality uv ≤ M(u) + N(v) holds, and the
equality holds if and only if u = q(|v|) sign v or v = p(|u|) signu for all u, v ∈ (–∞, +∞).
By the kind of Young inequality, we can get the famous Holder inequality and the

Minkowski inequality (see references [] and []). But until now, we have not found its
strict proof of analysis. In references [] and [], only the probable pattern description
was found. Some other decisions can be found in [–].
In this paper, we will get its strict proof of analysis with the approximation method.

2 Preliminaries
Definition . [] The mappingM : (–∞, +∞) → (–∞, +∞) is called an N-function if it
has the following properties:

(i) M(u) is even, continuous, convex andM() = .
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(ii) M(u) >  for all u �= .
(iii) limu→

M(u)
u =  and limu→∞ M(u)

u = ∞.

Lemma . [] M(u) is an N-function if and only if there exists p(u) : [, +∞) → [, +∞)
with the following properties:

(i) p(u) is right-continuous and nondecreasing;
(ii) p(u) >  whenever u �= ;
(iii) p() =  and p(∞) = ∞,M(u) =

∫ |u|
 p(t)dt.

Record . [] p(u) is the right-derivative of N-functionM(u).

Lemma. Let p–(u) be the left-derivative of N-functionM(u), then p–(u) = limh→+ p(u–
h), and

∫ |u|
 p–(t)dt =M(u).

Proof From the proof process of Theorem . in reference [], we know p–(u) is left con-
tinuous, and for all  < u < v, p(u) ≤ p–(v) ≤ p(v).
Hence, for h > , we have p(v – h) ≤ p–(v) .
Therefore,

lim
h→+

p(v – h) ≤ p–(v).

On the other hand, since p–(v)≤ p(v) and p–(v) is left continuous, we get

p–(v) = lim
h→+

p–(v – h) ≤ lim
h→+

p(v – h).

Therefore, we have

p–(v) = lim
h→+

p(v – h).

Since for all h > , p(v – h) ≤ p–(v)≤ p(v), then we have

∫ |u|


p(t – h)dt ≤

∫ |u|


p–(t)dt ≤

∫ |u|


p(t)dt =M(u).

That is,

M
(|u| – h

)
–M(–h) ≤

∫ |u|


p–(t)dt ≤ M(u).

Let h→ , by the property (i) ofM(u) in Definition ., we have

∫ |u|


p–(t)dt =M(u). �

Definition . [] Suppose that M(u) is an N-function. Let p(t) be the right derivative
ofM(u). Let q(s) = supp(t)≤s t = infp(t)>s t, called the right-inverse function of p(t). By Theo-
rem . in reference [], we know that q(s) also satisfies the three properties of Lemma .,
and N(v) =

∫ |v|
 q(s)ds is called the complementary N-function of M(u). It is obvious, the

left derivative q–(s) of N(v) satisfies q–(s) = supp(t)<s t = infp(t)≥s t.
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Lemma . [] q(p(t))≥ t, p(q(s)) ≥ s; q(p(t) – ε) ≤ t, p(q(s) – ε) ≤ s.

Lemma . [] M(u) is strictly convex if and only if p(t) is strictly increasing, that is, q(s)
is continuous.

Lemma . [] For any N-function M(u) and ε > , there exists a strictly convex N-
function M(u), such that

( – ε)p(t) ≤ p(t) ≤ ( + ε)p(t), ( – ε)M(u) ≤ M(u) ≤ ( + ε)M(u),

where p(t) and p(t) are the right derivatives of M(u) and M(u), respectively.

Record . Lemma . is Theorem . in reference [], but it reverses the old conclusion
‘M(u) ≤ M(u) ≤ ( + ε)M(u),’ for the new conclusion ‘( – ε)M(u) ≤ M(u) ≤ ( + ε)M(u).’
From the construction process of p(t), in the proof in reference [], we know if p(t) is
continuous, then p(t) is also continuous.

Lemma . Suppose that u ≥  and v ≥ , then u = q(v) or v = p(u) if and only if u ∈
[q–(v),q(v)]. By the symmetry, we get another necessary and sufficient condition, that is,
v ∈ [p–(u),p(u)].

Proof Sufficiency.
Suppose that u ∈ [q–(v),q(v)].
(i) If q–(v) = q(v), it is clear that u = q–(v) = q(v).
(ii) If q–(v) �= q(v), then q–(v) < q(v). If u = q(v), then the conclusion holds.
If q–(v)≤ u < q(v), we need only to prove that p(u) = v.
From Definition ., we have

q–(v) = sup
p(t)<v

t = inf
p(t)≥v

t.

Since q–(v)≤ u⇒ supp(t)<v t ≤ u, then for any 
n , we get

p
(
u +


n

)
≥ v.

Let n→ ∞, since p(t) is right continuous, then we have

p(u) ≥ v.

On the other hand, from u < q(v) = supp(t)≤v t = infp(t)≥v t, we get

p(u) ≤ v.

So, we have

p(u) = v.
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Necessity.
If u = q(v), it is clearly established.
If p(u) = v, then from

q–(v) = inf
p(t)≥v

t ≤ u

and

q(v) = sup
p(t)≤v

t ≥ u.

We have

u ∈ [
q–(v),q(v)

]
. �

The next two lemmas are about the change of variable of integral and distribute integral.

Lemma. [] Suppose thatf (x) and g(x) are defined on the interval [a,b], and the Stieltjes
integral of f (x) about g(x) exists. Suppose that x(t) is a strictly increasing and continuous
function on the interval [α,β], and x(α) = a and x(β) = b, then

∫ β

α

f
(
x(t)

)
dg

(
x(t)

)
=

∫ b

a
f (x)dg(x).

Lemma . [] Suppose that f (x) and g(x) are defined on the interval [a,b], and the Stielt-
jes integral of f (x) about g(x) exists, then

∫ b

a
f (x)dg(x) +

∫ b

a
g(x)df (x) = f (b)g(b) – f (a)g(a).

3 Main result
Theorem . Suppose that M(u) is an N-function, and N(v) is the complementary N-
function of M(u), then Young inequality uv ≤ M(u) + N(v) holds, and uv = M(u) + N(v)
holds if and only if u = q(|v|) sign v or v = p(|u|) signu.

Proof Suppose that u ≥  and v≥ .
Firstly, we will prove the necessity of the equality.
Suppose that there exist u ≥  and v ≥  satisfying

M(u) +N(v) = uv.

Let

F(u, v) =M(u) +N(v) – uv.

From Young inequality, we have learned that for all u and v, F(u, v)≥ .
From M(u) + N(v) = uv, we have F(u, v) =M(u) + N(v) – uv and we can get the

minimum  in u.
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If u = , from M(u) + N(v) = uv, we get that v = , then u = q(v) =  or v =
p(u) = , that is, the necessity of the equality holds.
If u �= , then F(u, v) is the minimum of the F(u, v) on the interval (,+∞).
Therefore, the left derivative of F(u, v) is less than or equal to zero on the point u, and

the right derivative of F(u, v) is more than or equal to zero on the point u.
That is,

p–(u) – v ≤ ,p(u) – v ≥ .

Then

v ∈ [
p–(u),p(u)

]
.

From Lemma ., we get u = q(v) or v = p(u).
That is, the necessity of the equality holds.
Secondly, we will get the proof of the Young inequality and the sufficiency of the equality

in three steps.
Step I. Suppose that M(u) and N(v) are all strictly convex. From Lemma ., the right

derivative p(t) and q(s) are all strictly increasing, continuous, and are the right inverse-
function of each other. From the reference [], we have that the Stieltjes integral

∫ q(v)
 t dp(t)

exists.
From Lemma . and Lemma ., we have

M(u) +N(v)

=
∫ u


p(t)dt +

∫ v


q(s)ds

=
∫ u


p(t)dt +

∫ q(v)


t dp(t)

=
∫ u


p(t)dt + vq(v) –

∫ q(v)


p(t)dt

= vq(v) +
∫ u

q(v)
p(t)dt. ()

(i) If u > q(v), then p(u) > v.
Hence, by expression (), we have

M(u) +N(v)

=
∫ u

q(v)
p(t)dt + vq(v)

=
∫ u

q(v)
p(t)dt + uv – v

(
u – q(v)

)

≥ p
(
q(v)

)(
u – q(v)

)
+ uv – v

(
u – q(v)

)
= uv.

(ii) If u < q(v), then p(u) ≤ v.
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Hence, by expression (), we have

M(u) +N(v)

= vq(v) –
∫ q(v)

u
p(t)dt

= uv + v
(
q(v) – u

)
–

∫ q(v)

u
p(t)dt

≥ uv + v
(
q(v) – u

)
– p

(
q(v)

)(
q(v) – u

)
= uv.

(iii) If u = q(v), then v = p(u).
From expression (), we have uv =M(u) +N(v).
That is, the sufficiency of the equality holds.
Step II. Suppose thatM(u) is strictly convex, then from Lemma ., the right derivative

p(t) is strictly increasing, and the right-inverse function q(s) is continuous and nonde-
creasing.
From Lemma . and Record ., ∀ < ε < 

 , we can construct a function strictly in-
creasing and continuous q(s) such that

( – ε)q(s) ≤ q(s)≤ ( + ε)q(s).

Hence,


 + ε

q(s) ≤ q(s)≤ 
 – ε

q(s). ()

Let p(t) be the right-inverse function of q(s), then p(t) is strictly increasing and con-
tinuous.
In the following, we will get the relation of p(t) and p(t).
In expression (), let s = p(t), we have


 + ε

q
(
p(t)

) ≤ q
(
p(t)

) ≤ 
 – ε

q
(
p(t)

)
.

That is,

t
 + ε

≤ q
(
p(t)

) ≤ t
 – ε

. ()

From Lemma . and expression (), we get

q
(
p
(

t
 – ε

))
≥ t

 – ε
>

t
 – ε

≥ q
(
p(t)

)
. ()

Since q(s) is nondecreasing, by expression (), we get

p
(

t
 – ε

)
> p(t). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/437
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From the result in Step I, we get

uv ≤ M(u) +N(v) =
∫ u


p(t)dt +

∫ v


q(s)ds.

Therefore,

M(u) +N(v)

=
∫ u


p(t)dt +

∫ v


q(s)ds

≥
∫ u


p(t)dt +

∫ v




 + ε

q(s)ds (by ())

≥
∫ u


p(t)dt +


 + ε

(
uv –

∫ u


p(t)dt

)

>


 + ε
uv +

∫ u


p(t)dt –


 + ε

∫ u


p
(

t
 – ε

)
dt (by ())

=


 + ε
uv +

∫ u


p(t)dt –

 – ε
 + ε

∫ u
–ε


p(t)dt.

Let ε → , we have

M(u) +N(v)≥ uv.

In the following, we will prove the sufficiency of the equality.
If v = p(u), from Lemma . and expression (), for  < ε < 

 above, we have

q
(
p
(

t
 + ε

)
– ε

)
≤ t

 + ε
<

t
 + ε

≤ q
(
p(t)

) ⇒ p
(

t
 + ε

)
– ε < p(t). ()

In expression (), let ε → , by Lemma ., we get

p–(t)≤ lim
ε→

p(t). ()

On the other hand, in expression (), let ε → , we get

lim
ε→

p(t)≤ p(t).

Therefore,

p–(t)≤ lim
ε→

p(t) ≤ p(t). ()

By Lemma ., we get

∫ u


p–(t)dt =M(u) =

∫ u


lim
ε→

p(t)dt =
∫ u


p(t)dt. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/437
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Now we need to prove that

∫ p(u)

p(u)
q(s)ds = u

(
p(u) – p(u)

)
. ()

In fact, if s = p(u), from Definition ., since p(u) is strictly increasing, then we have
q(s) = supp(t)≤s t = supp(t)≤p(u) t = u. If s ∈ [p–(u),p(u)), from Lemma ., we get q(s) = u.
Therefore, we have

∫ p(u)
p(u)

q(s)ds =
∫ p(u)
p(u)

uds = u(p(u) – p(u)).
By the result in Step I, we have

up(u) =M(u) +N
(
p(u)

)
=

∫ u


p(t)dt +

∫ p(u)


q(s)ds. ()

From expressions () and (), we get

M(u) +N
(
p(u)

)

=
∫ u


p(t)dt +

∫ p(u)


q(s)ds

=
∫ u


p(t)dt +

∫ p(u)


q(s)ds +

∫ p(u)

p(u)
q(s)ds

≤
∫ u


p(t)dt +

∫ p(u)




 – ε

q(s)ds +
∫ p(u)

p(u)
q(s)ds (by ())

=
∫ u


p(t)dt +

(


 – ε

)(
up(u) –

∫ u


p(t)dt

)
+

∫ p(u)

p(u)
q(s)ds (by ())

=
∫ u


p(t)dt –


 – ε

∫ u


p(t)dt +


 – ε

up(u) + u
(
p(u) – p(u)

)
(by ())

=M(u) –


 – ε

∫ u


p(t)dt +

(
u

 – ε
– u

)
p(u) + up(u).

Let ε → , we have

M(u) +N
(
p(u)

) ≤ up(u). ()

On the other hand, we have got the inequality uv≤ M(u) +N(v) .
Let v = p(u), we have

up(u) ≤ M(u) +N
(
p(u)

)
.

Therefore, together with expression (), we have

M(u) +N
(
p(u)

)
= up(u).

That is, the sufficiency of the equality holds.
Step III for any N-function M(u), suppose that its complementary N-function is N(v),

p(t) is the right-inverse function of M(u), and q(s) is the right-inverse function of N(v).

http://www.journalofinequalitiesandapplications.com/content/2013/1/437
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From Lemma ., for  < ε < 
 above, we can find a strictly convex N-functionM(u) and

its right-derivative p(t) such that

( – ε)p(t) ≤ p(t) ≤ ( + ε)p(t), ( – ε)M(u) ≤ M(u) ≤ ( + ε)M(u). ()

Suppose that N(v) is the complementary N-function ofM(u), q(s) is the right deriva-
tive of N(v).
In the following, wewill get the relation of q(t) and q(t) for  < ε < 

 above. In expression
(), let t = q(s) – ε, we have

( – ε)p
(
q(s) – ε

) ≤ p
(
q(s) – ε

) ≤ ( + ε)p
(
q(s) – ε

)
. ()

From Lemma ., we have that

p
(
q(s) – ε

) ≤ s, p
(
q(s)

) ≥ s. ()

Therefore, by expressions () and (), we have

p
(
q(s) – ε

) ≤ s
 – ε

, p
(
q(s)

) ≥ s
 + ε

. ()

Then, by Lemma ., together with expression (), we have

p
(
q(s) – ε

) ≤ s
 – ε

<
s

 – ε
≤ p

(
q
(

s
 – ε

))
,

p
(
q(s)

) ≥ s
 + ε

>
s

 + ε
≥ p

(
q
(

s
 + ε

)
– ε

)
.

()

Since p(t) is nondecreasing, then by expression (), we get

q
(

s
 + ε

)
– ε < q(s) < q

(
s

 – ε

)
+ ε. ()

From the result in Step II, we get

uv ≤ M(u) +N(v)

≤ ( + ε)M(u) +
∫ v


q(s)ds

< ( + ε)M(u) +
∫ v



(
q
(

s
 – ε

)
+ ε

)
ds (by ())

= ( + ε)M(u) + εv + ( – ε)
∫ v

–ε


q(s)ds

= ( + ε)M(u) + εv + ( – ε)N
(

v
 – ε

)
.

Let ε → , we have

uv ≤ M(u) +N(v).

http://www.journalofinequalitiesandapplications.com/content/2013/1/437
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In the following, we will prove sufficiency of the equality.
By the result in Step II, we have

M(u) +N
(
p(u)

)
= up(u). ()

Therefore,

M(u) +N
(
p(u)

)

≤ 
 – ε

M(u) +N
(
p(u)

)

=
(


 – ε

– 
)
M(u) +M(u) +N

(
p(u)

)
+N

(
p(u)

)
–N

(
p(u)

)

=
(


 – ε

– 
)
M(u) + up(u) +N

(
p(u)

)
–N

(
p(u)

)
(by ())

≤
(


 – ε

– 
)
M(u) + up(u) +N

(
p(u)

)
–

∫ p(u)



(
q
(

s
 + ε

)
– ε

)
ds (by ())

=
(


 – ε

– 
)
M(u) + up(u) +

∫ p(u)


q(s)ds – ( + ε)

∫ p(u)
+ε


q(s)ds + εp(u)

=
(


 – ε

– 
)
M(u) + up(u) +N

(
p(u)

)
– ( + ε)N

(
p(u)
 + ε

)
+ εp(u).

Let ε → , together with expression (), we get p(u) → p(u), M(u) → M(u), and
N( p(u)+ε ) →N(p(u)) since N(v) is continuous.
Therefore,

M(u) +N
(
p(u)

) ≤ up(u). ()

On the other hand, we have got the inequality uv≤ M(u) +N(v).
Let v = p(u), we have

up(u) ≤ M(u) +N
(
p(u)

)
.

Therefore, together with expression (), we have

M(u) +N
(
p(u)

)
= up(u).

That is, the sufficiency of the equality holds. �
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