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1 Introduction
Let C denote the set of all # x n complex matrices, N = {1,2,...,n} and A = (a;) € C"™"

(n > 2). Denote
R(A)=) lazl,  CiA)=) lail, ieN,
I I
N,(A) = {i:|ay] > Ri(A),i e N}, N (A) = {i:|az| > Ci(A),i e N}.

We call A a strictly diagonally dominant matrix (abbreviated SD,,) if
|lail > Ri(A), VieN.

A is called an Ostrowski matrix (abbreviated OS),) (see [1]) if
|aiilla] > Ri(A)R;(A), Vi, jeN,i#].

As in [2], for all i € N and « € [0,1], we call |a;| — Ri(A), lai;| — aR;(A) — (1 — «)C;i(A)
and |a;| — [Ri(A)]¥[Ci(A)]* the ith dominant degree, a-dominant degree and product
a-dominant degree of A, respectively.

For 8 C N, denote by |8]| the cardinality of 8 and 8 = N/B. If B,y C N, then A(B,y)
is the submatrix of A lying in the rows indexed by 8 and the columns indicated by y. In
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particular, A(B, B8) is abbreviated to A(B). If A(B) is nonsingular, then

AlB = AIA(B) = A(B) - A(B, B)[A(B)] A(B, B)

is called the Schur complement of A with respect to A(8).
The comparison matrix of A, 1(A) = («;) is defined by

|ﬂ,‘j|, 1fl=],

—layl, ifi#j.

Ol[]‘ =

A matrix A is called an M-matrix if there exist a nonnegative matrix B and a real number
s> p(B) such that A = sI — B, where p(B) is the spectral radius of B. It is well known that A
is an H-matrix if and only if £(A) is an M-matrix, and if A is an M-matrix, then the Schur
complement of A is also an M-matrix and detA > O (see [3]). We denote by H,, and M,, the
sets of H-matrices and M-matrices, respectively.

The Schur complement has been proved to be a useful tool in many fields such as con-
trol theory, statistics and computational mathematics, and many works have been done
on it (see [4—8]). Meanwhile, studying the locations of eigenvalues of the Schur comple-
ment of matrices is of great significance as shown in [2, 3, 9-14]. In this paper, we present
some new estimates of diagonally dominant degree on the Schur complement of matrices
and use them to study the distributions for the eigenvalues of the Schur complement of
matrices.

The paper is organized as follows. In Section 2, we give several new estimates of the
diagonally dominant degree, the «-diagonally dominant degree and product «-diagonally
dominant degree on the Schur complement of matrices. In Section 3, several new distri-
bution theorems for eigenvalues of the Schur complements are obtained. In Section 4, we

present a numerical example to illustrate the theory results.

2 Estimates of diagonally dominant degree for the Schur complement
In this section, we present several new estimates for the diagonally dominant degree, the
a-diagonally dominant degree and product a-diagonally dominant degree of the Schur

complement of matrices.
Lemma 1 [5] IfA € H,, then [u(A)] ™t > |A7Y.
Lemma 2 [5] IfA isan SD, or A isan OS,, then A € H,, i.e., u(A) € M,,.

Lemma 3 [3] IfA isan SD, or A is an OS,, and B C N, then the Schur complement of A is
an SD g, oran OS g, where B = N — B is the complement of B in N, and | B| is the cardinality

of B.

Lemma4 [2] Leta>b,c>b,b>0and 0 <a <1. Then

a%c™ > (a-b)*(c- b +b.
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Theorem1 Let A = (a;) € C™", B = {iy, ia,...,ix} SN, (A) # &, B =1 jas--»j1}, k < n,and
let A/ = (ay,). Then forall1 <t <|,

|ay,| = Ri(AIB) = |ajj,| — Ri,(A) + 8, > lay;| - Ry, (A), @
and
’a;t| +Rt(A/13) = |aft/t| +Rit( ) lz = |a}tlt| + 'z(A)7 (2)

where

I
. laii, | P 1 laij
5' = min | lulu lu( ) Z| /tlv" r = max ZV71| lu]V|

Jt k ’
lsusk |4, sk g, | = 3y i,

P, (A) = ’Z |, + Z il i €BI<u<k.
v#u

Proof Since B € N,(A) # ¢, then A(B) € Hy, n(A(B)) € My. From Lemma 1 and Lemma 2,
we have

[(AB)] " = |[A®] |-

Thus, forl1 <t </,

|| - Re(AIB)

1
= |d;t| - Z|a/ts|

s#t
. ! |di1/s|
-1
> laj,;, | = Z |l = Z(la/til I |)[M(A(’B))]
s#t s=1
|ﬂikis|
, |ai1js|
=}
= laj,j,| — R;,(A) + Z |ajpi, | + 8, — 8, — Z('aﬁil e |ajfik|)[M(A(ﬂ))]
1 =1
v= s |a,»kj5|
= laj; | - Rj,(A) + 6,
Zf:l |aj,i, | — ‘Sjt —laji | o =l
!
1 - Zs=1 |ﬂi1j5|
+ ———det .
det[(A(B))] : w(A(B))

l
- Zs:l |aikjs |

def 1
= i) = RulA) + 8, + ooy det

Similarly to the proof of Lemma 4 in [13], we can prove that detB > 0. Thus, we obtain
Inequation (1). Similarly, we can prove Inequation (2). O
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Remark 1 Note that

PL(A) _ _Ry(4)

|, | — i, |

This shows that Theorem 1 improves Theorem 1 of [13].

Theorem 2 Let A = (a;) € C™", B = {i1, i, ..., ix} € N,(A) N N(A) ¢, B = {j1,ja ...

k<n,andlet Alp = (a). Then foralll <t <[,0<a <1,

|| - (RA(AIB))* (CHAIB)) ™ = layj,| — (R, (A) - 8,) (C;,(A) - 8T) ™

and
| + (ReAIB))" (CUAIB))™ < lazl + (Ry(4) - 8)° (Cu() = 87) ",
where
[ PR
8; = min Wit = P, (4) Zlamv n = max Lo 'Zl“”l

7
l<ws<k |a‘wlw l<wsk |ﬂiwz’w| - Zv%w |ﬂiwiv|

[
. a; _114j,i
(StT - min | la)lw Qlw E |alv]t |, é -~ max ZV—I | ]vlw|

k )
lzosk | i | =0k |a,i, | = 30 i, ]

P, (A)=n Z|a,wlv|+2|alw,v Qi,(A) EZlﬂzvleZlﬂm

v#w 1220}
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JJits

3)

(4)

Proof Since B € N,(A) # ¢, then A(B) € Hy, t(A(B)) € M. From Lemma 1 and Lemma 2,

we have

[(AB)] " = |[a®)] |-

Thus, foralll<t<[,0<a <1,

|| - (R(AIB))* (CHAIB)) ™

|, |
z |“it}'t| - (lajtil FRPR |a}'tik|)[M(A(/3))]_l
||
I @il
- Z lajiji | + (|afti1 oo | |)[M(A('B))]_l
s#t
|aikj3|
l-a
! |, |
< | 31 gl + (il laz ) [ (AB)] ™
s#t

|aikj¢|
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Let
|, |
= (1o i ) [11(AGB)) ]
|aik/t|
By the proof of Theorem 1, we have
! |, |
Z |ajtfs| + (lﬂ]’till,...,|ﬂjtik|)[M(A(ﬁ))]_l ' SR/‘Z(A)_(St—
s#t
|aikjs|
Similarly,
! g, |
Z \ajgio| + (1|55 |ﬂjsik|)[ﬂ(A(ﬂ))]_l : <Cy,(A)-¢/ -
i |ﬂl'k]'t|

By Lemma 4, we have
@] - (R:(A1B))" (Ca/B) ™
= lajil - ¢ = (R, (4) = 8- £)" (G (4) - 8] = £) ™
= el — € - [(Ry(4) — )" (G, (4) - 87)' ™ =]
=lj5i| = (Ri (4) = )" (G, (4) - 8) ™
Thus, we obtain Inequation (3). Similarly, we can prove Inequation (4). O

Remark 2 Note that

|al i l (‘A | l i l (A
8 — min (1) LU w Z a ﬂ)ﬂ) w Z d
b 1wk i | = _1 w<k i

|alwlw |alwlw

. la; . a; A
8f = min iy | = Qi (A) Z| ai,,| > min @] = Cio )Z| aij,|.

1<w=<k |ﬂlmlm l=ws<k | lwlw
This shows that Theorem 2 improves Theorem 2 of [2].

Similarly to the proof of Theorem 2, we can prove the following theorem.

Theorem 3 Let A = (a;) € C™", B = {ir, iz, ..., ix} € N,(A) N N(A) # ¢, B = {ji,jos--rjihs
k<nand AlB = (a,). Thenforalll <t <[,0<a <1,
|ay,| — aR(AIB) - (1 - ) C(A/B)
> |aj,;,| — aR;,(A) — (1 - a)C;,(A) + ady + (1 — )]

= |ﬂitiz| - Olet A)-(Q1- a)Cjt(A)¢
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and

|y, | + aR(AIB) + (1 - ) C,(A/B)
<laj;| + aR;,(A) + (1 - ) Cj,(A) — S, — (1 - Ot)(StT
< laj,;,| + aRiz(A) +(1- O‘)CJ}(A)'
3 Distribution for eigenvalues of the Schur complement
In this section, we present two new distribution theorems for eigenvalues of the Schur

complement.

Lemma 5 [2] Let A = (a;) € C"™" and 0 < «a < 1. Then for any eigenvalue X of A, there

exists 1 <t < n such that
A —aul < (Re(A)) (CH(A)) ™

Theorem 4 Let A = (a;) € C™", B = {i1,iz,..., i} € N:(A) # ¢, B = {jij2s---»j1}, and let
A/B = (ay,). Then for any eigenvalue A of A/ B, there exists 1 <t <[ such that

1A - aj,j,| < Rj, (A) - 3, <R, (A). ®)

Proof Let A be an eigenvalue of A/8. From the famous Gerschgorin circle theorem, we
know that there exists 1 <t <[ such that |A — a},| < R,(A/B). Hence

0> |r—ay,| - R,(A/B)

Aiyji
-1
= A =, + @iy, > 30 )[AGB)]
Lirje
! Airjs
-1
— Z ﬂjz/s - (a}'til’ e ’ajtik)[A(/g)]
s=1,7#t a4
Uds
l l leziyj |
-1
> h—ajl = Y lajl = Y (1l la)) [1(AB))]
s=1,#t s=1 |6l‘ ) |
s
k
= A —ay,,| - R;,(A) + Z |43, + 8 = 9,
v=1
I |ai1/s|
-1
= (il aji ) [ (AB))]
=1
’ |aikjs|

> A= ajml —le(A) + 8]2’
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that is

A —aj,;,| < R;,(A) = &, < R;,(A).

Thus, Inequation (5) holds. d

Theorem 5 Let A = (ay) € C™", B = {i1,iz,...,ix} € N(A) N N(A) # ¢, B =1{jijre.rjibs
k<n,andlet Al = (a,,). Then for any 0 < o <1 and every eigenvalue ) of A/ B, there exists
1 <t <! such that

= ai | < (Ry,(4) - 8,) (Cir(A4) - 87) ™ < (R;,(4))" (G, (4) ™ (6)

Proof Let A be an eigenvalue of A/8. By Lemma 5, we know that there exists 1 < ¢ < /such
that

A —al,| < (R(A/B))*(Ci(AIB) ™, O<a<l
Thus,

0> |1 ~al,| - (R(AIB))" (Ci(A/B)) ™

Aije
-1
= A= a/tjt — (a/til’ e ,tljtik)[A(ﬂ)]
Aigjy
o
/ ailjx
-1
- Grjs * (ﬂ/til""’ahik)[A(lg)]
=1,
o aikjs
1-a
! Aije
-1
x Z @jp + @iy - a3 )[A(B)]
-1,
o igji
Airjy
-1
> |)\ - a}'t/'zl — (ajtil’ e :aj;ik)[A(,B)]
Aije
o
! ailjs
-1
| 2= |1l + @i r i ) [AB)]
=1,
o aikjs
1-a
! Airje
-1
x| D0 4l + @0 a3 )[AB)]
s=1,#t

Ligje
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Similarly to the proof of Theorem 2, we can prove

Aij
-1
(ajtil ERERE} ﬂ]zlk)[A(ﬂ)]
Lirje
o
i ailfs
-1
+ \@ie| + | @i @i )[A(B)]
S aik/s
1-a
! Aiyjs
-1
< | D0 | il + | @0 ) [AGB)]
s Lije

< (R (A) - 8,)"(C(A) - 87) "™

Therefore, we have

0= [o.—ay| - (RAAIB)" (CAIP) ™ = 11—y - (R, (A) = 8) (G, (4) ~5/)'

That is, Inequation (6) holds.

4 A numerical example

-

In this section, we present a numerical example to illustrate the theory results.

Example1 Let

6 1 5 2 2
3 15 2 4 3
A=12 2 18 1 4|, B =1{1,3}.
5 3 5 8 2
5 2 2 39

By calculation with Matlab 7.1, we have that
R (A) = 10; Ry(A) =12; R3(A) = 9; R4(A) =155
Ci(A) = 15; G(A)=8; Cs3(A) = 14; Cy(A) =105
8y =2.7273; 84 = 5.4545; 85 = 3.8182;

87 =02143; 67 =02143; 8! =0.4286.

Since 8 € N,(A), by Theorem 4, any eigenvalue A of A/f satisfies

R5(A) =12;

Cs(A) = 11;

re{r:|a-151<9.2727} U {r: |1 - 8] <9.5455} U{Ar:|r-9] <8.1818} =T.

From Theorem 3 of [2], any eigenvalue A of A/f satisfies

re{r:|r-15 101250} U {A:|r - 8] <11.2500} U {A: |1 - 9| <9.3750} =T7].

Evidently, I'; C I'j, we use Figure 1 to show the fact.

Page 8 of 10


http://www.journalofinequalitiesandapplications.com/content/2013/1/431

Li and Wang Journal of Inequalities and Applications 2013, 2013:431 Page 9 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/431

10| b
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—10F} i

0 5 10 15 20 25

Figure 1 The blue solid line and the green dashed line denote the corresponding discs I'y and I},
respectively.

4t i

0 5 10 15 20

Figure 2 The blue solid line and the green dashed line denote the corresponding discs I'; and I',
respectively.
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Meanwhile, since 8 € N,(A) N N (A), by taking « = 0.5 in Theorem 5, any eigenvalue A
of A/ satisfies

re{r:|r-15 <8.4968} U {Ar:|r—8] <9.6648} U{r:|r-9] <9.3002} =T;.
From Theorem 4 of [2], any eigenvalue A of A/B satisfies
re{r:|r-15/<8.8939} U {r:|A-8]<10.5067} U {1:|x-9] <9.9804} =T},

Evidently, I'; C I'}, we use Figure 2 to show the fact.
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