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Abstract
Let X be a finite subset of a real vector space. We study Jensen-type convexity on
subsets of X . In particular for subsets of X , we introduce the definition of X-midconvex
sets. We show that such a notion corresponds well to the classical notion of a convex
set. Moreover, we prove that a function X-midconvex set is a midconvex hull of all its
extremal points. Other analogues of some classical results are also given. At the end
we present an algorithmic approach to finding the midconvex hull of a given set.
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1 Introduction
Thanks to the growing role of computers, one can recently notice an increasing interest in
discrete (finite) sets in many parts of mathematics. In particular, one has to mention the
recent development of convexity on subsets of ZN [].
Therefore, there appears a natural need to introduce and develop (mid-)convexity on

finite sets. Since we are going to study finite subsets of a real vector space, we may restrict
ourselves to finite subsets of RN . Since the middle point of an interval is one of the most
important geometrical notions, we start our investigations with the simplest and earliest
version of convexity-midconvexity.
The main difference between our approach and that of [–] is that we restrict our con-

siderations to X, that is, we treat X as a space. Hence, our notions have relative character
since we study convexity on the subsets ofX. One can say that we investigatemidconvexity
on a restricted domain.
Now, we briefly describe the contents of the paper. First of all, we propose a proper

definition of a midconvex set for finite sets. By ‘proper’ we mean here that we are looking
for the notionwhich has possiblymany properties analogous to those of convex sets inRN .
We consider two different definitions of midconvexity. The first one, which is intuitively
very similar to the classical definition, occurs to have weak properties. The other one,
which we call function midconvexity, at a first glance seems a little bit artificial, but it
corresponds well to the classical definition. It is based on the observation that in RN a
closed set V is convex if and only if it is the preimage of the set (–∞, ] for some convex
function f :RN →R.
Next, we study the properties of function midconvexity. In particular in Section , we

prove an analogue of the theorem stating that a compact convex set in RN is the convex
hull of its extremal points. We introduce also the notion of a convex function on a finite
domain. We prove that the maximum of such a convex function is achieved at an extreme
point of its domain.
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2 Midconvexity on finite sets
In the whole paper, we assume that X is a finite subset of RN . By N we denote the set of
nonnegative integers and byR+ the set of nonnegative real numbers.We adapt the classical
definitions of a midconvex set and a midconvex function to our setting [].

Definition . We say thatW ⊂ X is X-midconvex if

∀v,w ∈ W :
v +w


∈ X ⇒ v +w


∈W .

Evidently,X and a singleton areX-midconvex sets. It is also obvious that the intersection
of X-midconvex sets is X-midconvex.

Definition . We say that a function f : W →R, whereW ⊂ X, is X-midconvex (shortly
midconvex) ifW is X-midconvex and

∀v,w ∈ W :
v +w


∈W ⇒ f
(
v +w


)
≤ f (v) + f (w)


.

We will need some of their properties with respect to the following definition of a mid-
convex set.

Proposition . Let W ⊂ X be an X-midconvex set, let c >  and let f : W →R, g : W →
R be X-midconvex functions. Then max(f , g) and cf are X-midconvex functions.

Proof It is obvious that cf is X-midconvex. We show thatmax(f , g) is X-midconvex. Con-
sider arbitrary u, v ∈ W such that u+v

 ∈ W . Then we have

f
(
u + v


)
≤ f (u) + f (v)



and

g
(
u + v


)
≤ g(u) + g(v)


.

Whence we obtain

max

(
f
(
u + v


)
, g

(
u + v


))
≤ max

(
f (u) + f (v)


,
g(u) + g(v)



)

≤ 

(
max

(
f (u), g(u)

)
+max

(
f (v), g(v)

))
. �

To explain the unintuitive behavior of X-midconvexity, we need the notion of a discrete
interval (form ∈N):

[a,b]m :=
{
k
m
a +

(
 –

k
m

)
b : k ∈ {, . . . ,m}

}
.

One could expect that if W is X-midconvex and a,b ∈ W are such that [a,b]m ⊂ X, then
[a,b]m ⊂W . It occurs that this is not the case.
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Example . LetN = , X = {, , , } andW = {, }. ThenW is X-midconvex and ,  ∈
W , but [, ] = X 	⊂W .

Therefore, we need another definition of a midconvex set.
Let us present the idea which, in our opinion, leads to the ‘right’ definition. The ob-

servation that a closed set A ⊂ RN is convex if and only if there exists a convex function
f : RN → R such that A = {x ∈ RN : f (x) ≤ } (the part ‘if ’ of the statement is obvious; for
the converse, take as f the distance from A) leads us to the following definition.

Definition . We say that W ⊂ X is function X-midconvex (shortly X-fmidconvex) if
there exists an X-midconvex function f : X →R such that

W =
{
x ∈ X : f (x)≤ 

}
.

Clearly, f : X →R, f ≡  is X-midconvex. Hence, X is X-fmidconvex.

Observation . Every X-fmidconvex set is X-midconvex.

Proof Let W be X-fmidconvex. Then W := {x ∈ X : f (x) ≤ } for a certain X-midconvex
function f : X →R. Consider arbitrary x,x ∈W such that x+x

 ∈ X. Then we have

f
(
x + x



)
≤ f (x) + f (x)


≤ .

Hence x+x
 ∈ W . �

As one could expect, the implication converse to Observation . does not hold. To
notice this (see Example .), we will need the following result, which shows that fmid-
convexity resembles classical convexity.

Theorem . Let W be X-fmidconvex. Then

∀a,b ∈W ,∀m ∈N : [a,b]m ⊂ X ⇒ [a,b]m ⊂W .

Proof The proof follows a similar approach from [].
Since W is X-fmidconvex, there exists a midconvex function f : X → R such that W =

{x ∈ X : f (x)≤ }. Suppose, for the proof by contradiction, that there exist a,b ∈W ,m ∈N,
such that [a,b]m ⊂ X but [a,b]m 	⊂ W . It means that there exists a k ∈ {, . . . ,m} such that

xk :=
k
m
a +

(
 –

k
m

)
b /∈W ,

i.e., that f (xk) > . Then

C :=max f |[a,b]m > .

Let l ∈ {, . . . ,m} be chosen such that f (xl) = C. Two cases can occur.
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. l ≤ m
 . Then xl ∈ [a,b]m, and we obtain that

C = f (xl) = f
(

l
m
a +

(
 –

l
m

)
b
)
= f

( l
ma + ( – l

m )b + b


)

≤ f ( lma + ( – l
m )b) + f (b)


=
f ( lma + ( – l

m )b)


=
f (xl)


.

Whence we have f (xl)≥ C > C, a contradiction.
. l > m

 . Then xl–m ∈ [a,b]m, and by reasoning analogous to case , we obtain a
contradiction. �

Now, we show that the implication converse to that fromObservation . does not hold.

Example . We continue considerations from Example .. Let N = , m = , X =
{, , , }, W = {, }. Then [, ]m = X, and hence [, ] 	⊂ W . W is an X-midconvex
set which is not X-fmidconvex. It shows also that an analogue of Theorem . for X-
midconvex set does not hold.

Proposition . Let W ⊂ W ⊂ X and let W be X-fmidconvex and W be W-
fmidconvex. Then W is X-fmidconvex.

Proof There exist midconvex functions f : X → R, f : W → R such that W =
f – ((–∞, ]) and W = f – ((–∞, ]). Multiplying any of those functions by a positive real
number, we do not destroy the above property. Therefore, we may assume that

max
x∈W

f(x)≤ 


min
x∈X\W

f(x). ()

We define a function f : X → R+ as follows:

f (x) =

⎧⎨
⎩f(x) for x ∈ X \W,

f(x) for x ∈W.

Evidently, f –((–∞, ]) =W. We have to prove yet that f is X-midconvex. Consider arbi-
trary x,x ∈ X such that x+x

 ∈ X. We distinguish five cases.

o. x,x ∈ X \W, x+x
 ∈ X \W. Then we have

f
(
x + x



)
= f

(
x + x



)
≤ f(x) + f(x)


=
f (x) + f (x)


.

o. x,x ∈ X \W, x+x
 ∈W. Making use of (), we get

f
(
x + x



)
= f

(
x + x



)
≤ f(x)


≤ f(x) + f(x)


=
f (x) + f (x)


.

o. x,x ∈ W. By Observation ., W is X-midconvex and therefore x+x
 ∈ W. As a

consequence, we have

f
(
x + x



)
= f

(
x + x



)
≤ f(x) + f(x)


=
f (x) + f (x)


.

http://www.journalofinequalitiesandapplications.com/content/2013/1/42


Tabor et al. Journal of Inequalities and Applications 2013, 2013:42 Page 5 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/42

o. x ∈ X \W, x ∈W, x+x
 ∈ X \W. Then we have

f
(
x + x



)
= f

(
x + x



)
≤ f(x) + f(x)



=
f(x)


=
f (x)


=
f (x) + f (x)


.

o. x ∈ X \W, x ∈W, x+x
 ∈W. Applying (), we get

f
(
x + x



)
= f

(
x + x



)
≤ f(x)



≤ f(x) + f(x)


=
f (x) + f (x)


.

We have proved that f is X-midconvex. �

Now, we define an X-fmidconvex hull of a given set A ⊂ X. We begin with important
remarks.

Proposition . Let W, W be X-fmidconvex subsets of X. Then W ∩ W is X-
fmidconvex.

Proof There exist midconvex functions f : X →R, f : X →R such thatW = f – ((–∞, ])
andW = f – ((–∞, ]). We define the function f : X →R+ as follows:

f (x) =max
{
f(x), f(x)

}
for x ∈ X.

By Proposition . f is X-midconvex. Furthermore, f –((–∞, ]) =W ∩W. This finishes
the proof. �

Proposition . Let X ⊂ RN , X ⊂ RN be finite sets and let W ⊂ X be X-fmidconvex
and W ⊂ X be X-fmidconvex. Then W ×W is (X ×X)-fmidconvex.

Proof There exist an X-midconvex function f : X → R and an X-midconvex function
f : X →R such that

W =
{
x ∈ X : f(x) ≤ 

}
,

W =
{
x ∈ X : f(x) ≤ 

}
.

We define the function f : X ×X → R as follows:

f (x, y) =max
(
f(x), f(y)

)
, for (x, y) ∈ X ×X.

We are going to show that f is (X ×X)-midconvex and that

{
(x, y) ∈ X ×X : f (x, y) ≤ 

}
=W ×W.
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Consider arbitrary (x,x), (y, y) ∈ X × X and assume that (x,x)+(y,y)
 ∈ X × X. Then

x+y
 ∈ X, x+y

 ∈ X and

f
(
x + y



)
≤ f(x) + f(y)


,

f
(
x + y



)
≤ f(x) + f(y)


.

Whence we obtain

f
(
(x,x) + (y, y)



)
= max

(
f
(
x + y



)
, f

(
x + y



))

≤ max

(
f(x) + f(y)


,
f(x) + f(y)



)

≤ max(f(x), f(x)) +max(f(y), f(y))


=
f (x,x) + f (y, y)


.

It means that f is (X ×X)-midconvex. Furthermore, we have

{
(x, y) ∈ X ×X : f (x, y) ≤ 

}
=

{
(x, y) ∈ X ×X :max

(
f(x), f(y)

) ≤ 
}

=
{
(x, y) ∈ X ×X : f(x)≤ , f(y) ≤ 

}
=W ×W. �

We are going to define now an X-midconvex hull and an X-fmidconvex hull of a given
set A ⊂ X. We follow the classical definition of a midconvex hull [].

Definition . Let A⊂ X.
The intersection of all X-midconvex sets containing A is called an X-midconvex hull of

A and is denoted by mconvX(A).
The intersection of all X-fmidconvex sets containing A is called an X-fmidconvex hull

of A and is denoted by fmconvX(A).

One can directly verify that mconvX(A) is X-midconvex. By Proposition ., we obtain
that the intersection of a finite family of X-fmidconvex sets is X-fmidconvex, and conse-
quently, by the finiteness of X, we obtain that fmconvX(A) is X-fmidconvex. Consequently,
the X-fmidconvex hull of A is the smallest X-fmidconvex set containing A.
The example below illustrates Definition . and shows that an X-midconvex hull and

an X-fmidconvex hull of a given set are, in general, different.

Example . Let N = , X = {(–, ), (, ), (, ), (, ), (, –), (, ), (, ), (, )} (see Fig-
ure ). Clearly,W := {(–, ), (, ), (, –), (, )} is X-midconvex. Hence,mconvX(W ) =W .
One can show (it follows directly from the results of the next section) that
fmconvX(W ) = X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/42
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Figure 1 Example of X-midconvex hull and an X-fmidconvex hull of a given set - see Example 2.13.

3 Extremal points
We begin with the definition of an extremal point.

Definition . LetW ⊂RN . A point a ∈W is called an extremal point ofW if

∀u, v ∈ W :
u + v


= a ⇒ u = v = a.

We denote the set of all extremal points of W by extW . As we know [], by the Krein-
Milman theorem, a compact convex set in RN is the convex hull of its extremal points.
However, its analogue does not hold for X-midconvexity-just consider X = {, , , }
which is not the X-midconvex hull of the setW = {, } of its extremal points.
In this section, we prove a version of the classical Krein-Milman theorem for function

midconvexity. We begin with the following observation.

Observation . If W ⊂RN is nonempty and finite, then the extW 	= ∅.

Proof Take a convex hull ofW in RN . It is nonempty, convex and compact (becauseW is
finite). Therefore, [] it has an extremal point. �

We will need the notion of index.

Definition . LetW ⊂ X. We say that a sequence (x, . . . ,xn) ⊂W is a J-chain of length
n inW if either n =  or n≥  and

xk + (xk – xk–) ∈W for k ∈ {, . . . ,n}. ()

We call x the beginning and xn the end of the J-chain.

Condition () means that xk is themiddle of xk– and a certain point inW (or, in another
words, that the symmetric point to xk– with respect to xk belongs toW ).

Proposition . Let ∅ 	=W ⊂ X. Then for each x ∈ W , there exists a J-chain in W begin-
ning in extW and ending at x.

Proof Fix arbitrarily x ∈W and denote by Z the set of points z ofW such that there exists
a J-chain in W beginning at z and ending at x. Obviously x ∈ Z, and hence Z 	= ∅. By

http://www.journalofinequalitiesandapplications.com/content/2013/1/42
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Figure 2 Illustration of the setW from Example 3.6.

Observation ., there exists z ∈ extZ. Let (y, . . . , yn), y = z, yn = x, be the J-chain with
beginning at z and end at x.
We show that z ∈ extW . Suppose, for an indirect proof, that z /∈ extW . Since z ∈ W ,

there exist v,w ∈ W , v 	= w such that z = (v + w)/. Clearly, (v, y, . . . , yn) and (w, y, . . . , yn)
are J-chains starting at v and w, respectively, and with end at x. This implies that v,w ∈ Z,
which contradicts the assumption that z ∈ extZ. �

LetW ⊂ X be nonempty. By Observation ., extW 	= ∅. For x ∈W by iW (x), we denote
the length of the shortest J-chain inW beginning in extW and ending at x. It follows from
Proposition . that such a J-chain exists.
We also put

iW := sup
x∈W

iW (x).

iW (x) is called the index of x and iW -the index ofW .

Remark . It follows from the proof of Proposition . that if iW (x) = n, where n ∈ N,
then there exists an element x ∈ W such that iW (x) = n – . Therefore, if iW = n, n ∈ N,
then for each m ∈ {, . . . ,n}, we can find x ∈ W such that iW (x) = m. Hence, the set of
indices of elements ofW coincides with the set {, . . . ,n}.

One can easily notice that iW (x) =  if and only if x ∈ extW .
We illustrate the above notations by a simple example.

Example . Let N = , W = X = {(–,–), (–, ), (–, ), (, ), (, –), (, ), (, )}. One
can easily notice (see Figure ) that

extX =
{
(–,–), (–, ), (, –), (, )

}
.

We have

iW (–,–) = iW (–, ) = iW (, –) = iW (, ) = ,

iW (–, ) = iW (, ) = ,

iW (, ) = ,

iW = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/42


Tabor et al. Journal of Inequalities and Applications 2013, 2013:42 Page 9 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/42

Proposition . We assume that ∅ 	=W ⊂ X. Then

iW ≤ card(W ) – card(extW ).

Proof Let

Wk =
{
x ∈W : iW (x) ≤ k

}
for k ∈N.

Clearly, the sequence {Wk}k∈N is ascending. Since W is finite, there exists a k ∈ N such
thatWk =Wk+. Let k be the smallest integer with this property. Then

W �W � · · · �Wk ,

and hence

card(Wk) ≥ card(W) + k = card(extW ) + k,

which implies that

k ≤ card(Wk) – card(extW ).

We are going to show that Wk =W , which will complete the proof. Suppose that this is
not the case. Let P :=W \Wk . Let p be an extremal point of P. We will prove that p is an
extremal point ofW . Suppose that it is not the case. Then there exist q, r ∈W , q 	= r such
that

p =
q + r


.

Since p is an extremal point of P either q /∈ P or r /∈ P. Assume that q /∈ P. Then q ∈Wk and
since p+(p–q) = r ∈W , we obtain that p ∈Wk+. Hence,Wk+ 	=Wk , a contradiction. Thus
p is an extremal point ofW and hence p ∈W ⊂Wk , a contradiction.We have proved that
Wk =W . �

Now, we prove the main result of this section.

Theorem . Let ∅ 	=W ⊂ X be an X-fmidconvex set. Then

W = fmconvX(extW ).

Proof Evidently, we have

fmconvX(extW )⊂W .

Suppose that

W \ fmconvX(extW ) 	= ∅. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/42
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There exists a midconvex function f : X →R+ such that

f –
(
(–∞, ]

)
= fmconvX(extW ).

If follows from this equality and () that

C :=max
{
f (x) : x ∈W

}
> .

Let a ∈W be such that f (a) = C and that

iW (a) =min
{
iW (x) : x ∈W , f (x) = C

}
.

By Propositions . and ., there exists a finite J-chain inW starting in extW and ending
at a. Let (a, . . . ,an) be the shortest J-chain with these properties. Then n≥ , a – an– ∈
W and since iW (an–) = n – , we have that f (an–) < C. By midconvexity of f , we obtain

C = f (a) = f
(
an– + (a – an–)



)

≤ f (an–) + f (an – an–)


≤ f (an–)


+
C

< C,

a contradiction. �

Theorem . Let ∅ 	= W ⊂ X. If f : W → R is X-midconvex, then the maximum of f is
achieved at an extreme point of W .

Proof Consider the case when

W \ extW 	= ∅

and denote

C :=max
{
f (x) : x ∈W

}
.

For an indirect proof, suppose that

f (x) < C for x ∈ extW .

Since iW (x) =  iff x ∈ extW , we have then

min
{
iW (x) : f (x) = C

}
> .

We can find an a ∈W \ extW such that

f (a) = C and iW (a) =min
{
iW (x) : f (x) = C

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/42
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We choose the shortest J-chain (a, . . . ,an = a) in W starting in extW and ending at a.
Then a – an– ∈W and since iW (an–) = n – , we have that f (an–) < C. By midconvexity
of f , we obtain now

C = f (a) = f
(
an– + (a – an–)



)

≤ f (an–) + f (an – an–)


≤ f (an–)


+
C

< C,

a contradiction. �

4 Construction of X-fmidconvex hull
There is a problem to find a convenient procedure to determinate an X-fmidconvex hull
for a given set W ⊂ X. In this section, we present an algorithm for finding fmconvX(W ),
which can be easily implemented in high level programming languages.
We start with the following auxiliary result.

Proposition . Let ∅ 	=W ⊂ X and x̄ ∈ X. The following conditions are equivalent:
. x̄ /∈ fmconvX(W ),
. there exists an X-midconvex function f : X → R such that f |W ≡  and f (x̄) = .

Proof Observe first that multiplying a midconvex function by a positive real number, we
do not destroy midconvexity.
We show that () ⇒ (). Let f : X → R be an X-midconvex function such that f |W ≡ 

and f (x̄) = . We put

W :=
{
x ∈ X : f (x)≤ 

}
.

Then W ⊂ W, x̄ /∈ W and W is X-fmidconvex. By Proposition . we obtain that
W ∩ fmconvX(W ) is X-fmidconvex. It follows from Definition . that fmconvX(W ) ⊂
W. Thus x̄ /∈ fmconvX(W ).
For the proof of the converse implication, assume that x̄ /∈ fmconvX(W ). As we have

noticed directly after Definition . fmconvX(W ) is X-fmidconvex. Hence, there exists
an X-midconvex function g : X →R such that

fmconvX(W ) =
{
x ∈ X : g(x)≤ 

}
.

Then g(x̄) > . We put

f (x) :=


g(x̄)
·max

(
g(x), 

)
for x ∈ X.

By Proposition . f is X-midconvex. Furthermore, we have

f (x) =  for x ∈ fmconvX(W )

and f (x̄) = . �

http://www.journalofinequalitiesandapplications.com/content/2013/1/42
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Figure 3 Examples of X-fmidconvex hull of a set (X consists of all dots,W consists of big black dots,
and the X-fmidconvex hull ofW is represented by big dots).

Two examples of X-fmidconvex hull are presented in Figure . X consists of all dots,W
consists of big black dots, an X-fmidconvex hull of W is represented by big dots. Notice
that extW =W .
Proposition . gives the way to determine fmconvX(A). Namely, by condition () we can

eliminate from X, step by step, elements of the set X \ fmconvX(A).
To encode the result included in Proposition ., we introduce some additional nota-

tions. Let X = {x, . . . ,xn}. LetW ⊂ X be fixed. Without loss of generality, we may assume
that the elements {x, . . . ,xn} are ordered in such a way that

{x, . . . ,xn–cardW } = X \W and {xn–cardW+, . . . ,xn} =W . ()

We denote

K(X) :=
{
(x, y)

∣∣∣x, y ∈ X : x 	= y and
x + y


∈ X
}
.

Observe thatm := cardK(X) is finite asm ≤ n.
Let us now fix v ∈ X. We want to check if there exists an X-midconvex function f : X →

R such that f |W ≡  and f (v) = .
Such a function f has to fulfill the following condition:

f
(
x + y


)
≤ f (x) + f (y)


for (x, y) ∈ K(X). ()

We enumerate the elements of K(X) and write K(X) in the form

K(X) =
{(
yk , zk

)}
k∈{,...,m}.

Proposition . Let f : X →R, and let y := [f (x), . . . , f (xn)]T .We put

Af := [aij]i=,...,m;j=,...,n ∈ Mm×n,

where

aij =

⎧⎪⎪⎨
⎪⎪⎩
, if xj = yi+zi

 ,

– 
 , if xj = yi or xj = zi,

, otherwise,

and (yi, zi) ∈ K(X), i ∈ {, . . . ,m}.
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Then f is midconvex iff

Af y≤ m, ()

where m denotes zero in Rm (we will often omit the subscript m and write ).

Proof Observe that the system of inequalities () is equivalent to the following one:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f ( y

+z
 ) – 

 f (y
) – 

 f (z
)≤ ,

...

f ( y
m+zm
 ) – 

 f (y
m) – 

 f (z
m) ≤ 

()

for all (yi, zi) ∈ K(X), i ∈ {, . . . ,m}.
Let us now fix i ∈ {, . . . ,m} and consider the inequality corresponding to the ith element

of K(X) (the ith inequality of system ())

f
(
yi + zi



)
–


f
(
yi

)
–


f
(
zi

) ≤ .

It is equivalent to the following one:

[ai, . . . ,ain]

⎡
⎢⎢⎣
f (x)
...

f (xn)

⎤
⎥⎥⎦ ≤ ,

where [aij]j=,...,n is the ith row of the matrix Af . This finishes the proof. �

Remark . To save time andmemory in practical implementation, in Proposition . we
take into account only one of the pairs (y, z) and (z, y), since the inequalities f ( y+z ) ≤ f (y)+f (z)


and f ( z+y ) ≤ f (z)+f (y)

 are equivalent.

Proposition . Let f : X →R be such that f |W ≡ . Let Af be a matrix defined in Propo-
sition ..We put

AW := [Af ]i=,...,m;j=,...,n–cardW , yW :=
[
f (x), . . . , f (xn–cardW )

]T .
Then the following conditions are equivalent:
. f is midconvex,
. AWyW ≤ .

Proof Let Af = [Ai
f ]i=,...,n, where Ai

f denotes the ith column of the matrix Af . Then the
matrix Af can be represented as the following block matrix:

Af = [AWB],

where B := [Ai
f ]i=n–cardW+,...,n ∈ Mm×cardW .
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Now, we use condition (). By the condition f |W ≡ , we have that f (xi) =  for xi ∈ X,
i ∈ {n – cardW + , . . . ,n}. Thus

y =
[
f (x), . . . , f (xn–cardW ), , . . . , 

]T ,
which can be written as the following block vector:

y =

[
yW

cardW

]
.

By Proposition ., f is midconvex iff Af y ≤ , which is equivalent in our situation to
the following inequality:

[AWB]

[
yW

cardW

]
≤ m.

The above inequality is equivalent to the following one:

AWyW + BcardW ≤ m.

This completes the proof since BcardW = m. �

We illustrate the above considerations by a simple example.

Example . Let N = , X = {, , , , }, W = {, }. Then K(X) = {(, ), (, ), (, ),
(, )}. In this case, the system of linear inequalities () contains the following objects:

 ∈R, y =
[
f (), f (), f (), f (), f ()

]T ∈R,

A =

⎡
⎢⎢⎢⎣

 –/  –/ 
–/    –/
 –/  –/ 

–/    –/

⎤
⎥⎥⎥⎦ ∈M×.

If we additionally want to consider only functions such that f |W ≡ , we have to remove
the two last columns and consider the solutions of AWyW ≤  for yW = [f (), f (), f ()]T

and

AW =

⎡
⎢⎢⎢⎣

 –/ 
–/  
 –/ 

–/  

⎤
⎥⎥⎥⎦ ∈M×.

Making use of Remark ., we may replace the matrix AW by

AW =

[
 –/ 

–/  

]
∈ M×.

Further discussion of this example can be found in Example ..
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The main question is still unanswered: Does there exist an X-midconvex function
f : X →R such that f |W ≡  and f (v) = ? To answer this question we use linear program-
ming (shortly LP), which is an efficient technique for finding a solution of optimization
problems: to minimize or maximize a linear objective function subject to linear equal-
ity/inequality constrains []. It can be expressed in a canonical form:

maximize cTy subject to Ay ≤ b, y ≥ ,

where y represents the vector of variables (to be determined). In our case b = . The system
of inequalities Ax ≤ b denotes the constraints which specify a convex polygon, over which
the objective function is to be optimized.
We still need to ‘insert’ additional information that f (v) =  (which is equivalent to

f (v) > , as we can divide f by f (v)). In other words, we ask if we can find a function sat-
isfying the previously defined systems of inequalities and such that f (v) > . To do this,
we put c := [, . . . , ︸︷︷︸

i

, . . . , ]T , where i ∈ {, . . . ,n} is such that v = xi, xi ∈ X (according to

()), and find a solution to the system of inequalities defined above.
Now, we are ready to present a full algorithm for finding an X-fmidconvex hull of W ⊂

X:
for i in {, . . . ,n} do

c ← [, . . . , ︸︷︷︸
i

, . . . , ]T

if exists bounded solution to: LP{max cTy : Ay ≤ , y ≥ } then
xi ∈ fmconvX W

else
xi /∈ fmconvX W

end if
end for

Example . We will continue the discussion of Example .. By the previous consider-
ations, we have the following LP problem:

maximize cT

⎡
⎢⎣f ()
f ()
f ()

⎤
⎥⎦ subject to

[
 –/ 

–/  

]⎡
⎢⎣f ()
f ()
f ()

⎤
⎥⎦ ≤ ,

⎡
⎢⎣f ()
f ()
f ()

⎤
⎥⎦ ≥ .

Firstly, we check if  is in the X-fmidconvex hull of the set W . We put c = [, , ]T . It is
easy to get the following solution: f () = , f () =  and f () = a, a ∈ R, a ≥  (this means
that f () can be arbitrary, e.g., f () = ) this solution is bounded, so  ∈ fmconvX(W ). The
same consideration shows that also  ∈ fmconvX(W ). On the contrary, for  the value f ()
is unbounded so  /∈ fmconvX(W ). Finally, we obtain that fmconvX(W ) = {, , , }.

There are many methods for solving LP (checking whether a solution exists is just as
difficult as finding a solution): simplex algorithm of Dantzig [], criss-cross algorithm [],
projective algorithm of Karmarkar [], etc.
However, the method for finding an X-fmidconvex hull presented in this section is not

sufficiently efficient in practice because for each point of investigated space X, we solve
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LP. Moreover, if we use a classical simplex method, we can perform really badly since the
worst-case complexity of the simplex method has exponential time.
Sample implementation of the algorithm described in this section with nice graphi-

cal interface prepared in Java programming language is available at http://www.ii.uj.edu.
pl/~misztalk.
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