On the improvement of Mocanu's conditions

M Nunokawa', S Owa², NE Cho ${ }^{3 *}$, J Sokółł and E Yavuz Duman ${ }^{5}$

Correspondence:
necho@pknu.ac.kr
${ }^{3}$ Pukyong National University, Pusan, 608-737, Korea Full list of author information is available at the end of the article

Abstract

We estimate $|\operatorname{Arg}\{p(z)\}|$ for functions of the form $p(z)=1+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ in the unit disc $\mathbb{D}=\{z:|z|<1\}$ under several assumptions. By using Nunokawa's lemma, we improve a few of Mocanu's results obtained by differential subordinations. Some applications for strongly starlikeness and convexity are formulated. MSC: Primary 30C45; secondary 30C80 Keywords: Nunokawa's lemma; strongly starlike functions of order alpha; strongly convex functions of order alpha; subordination

1 Introduction

Let \mathcal{H} be the class of functions analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and denote by \mathcal{A} the class of analytic functions in \mathbb{D} and usually normalized, i.e., $\mathcal{A}=\{f \in \mathcal{H}: f(0)=$ $\left.0, f^{\prime}(0)=1\right\}$.

Let $\mathcal{S S}^{*}(\beta)$ denote the class of strongly starlike functions of order $\beta, 0<\beta \leq 1$,

$$
\mathcal{S S}^{*}(\beta):=\left\{f \in \mathcal{A}:\left|\operatorname{Arg} \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\beta \pi}{2}, z \in \mathbb{D}\right\}
$$

which was introduced in [1] and [2]. We say that $f \in \mathcal{A}$ is in the class $\mathcal{S C}^{*}(\beta)$ of strongly convex functions of order β when $z f^{\prime}(z) \in \mathcal{S} \mathcal{S}^{*}(\beta)$. We say that $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in the unit disc \mathbb{D}, written $f<g$ if and only if there exists an analytic function $w \in$ \mathcal{H} such that $w(0)=0,|w(z)|<1$ and $f(z)=g[w(z)]$ for $z \in \mathbb{D} \subseteq g(\mathbb{D})$. In particular, if g is univalent in \mathbb{D} then the subordination principle says that $f \prec g$ if and only if $f(0)=g(0)$ and $f(|z|<r) \subseteq g(|z|<r)$ for all $r \in(0,1)$.

2 Main result

In this section, we investigate conditions, under which a function $f \in \mathcal{A}$ is strongly starlike or strongly convex. We also estimate $|\operatorname{Arg}\{p(z)\}|$ for functions of the form $p(z)=$ $1+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ in the unit disc \mathbb{D}, under several assumptions, and then we use this estimation for the case $p(z)=z f^{\prime}(z) / f(z)$. By using Nunokawa's lemma [3], we improve a few Mocanu's $[4,5]$ results obtained by differential subordinations. Some sufficient conditions for functions to be in several subclasses of strongly starlike functions can also be found in the recent papers [6] and [7-11].

Theorem 2.1 Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in the unit disc \mathbb{D}. If

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right|<\frac{\alpha \pi}{2} \approx 1.0076658, \quad z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

where $\alpha=1 /(1+\beta)=1 /(2-(\log 4) / \pi) \approx 0.641548, \beta=1-(\log 4) / \pi \approx 0.5587$, then

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi}{2}, \quad z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

or f is starlike in \mathbb{D}.

Proof By (2.1), we have

$$
\left\{f^{\prime}(z)\right\}^{1 / \alpha} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{D} .
$$

Let $z=\rho e^{i \theta}, \rho \in[0,1), \theta \in(-\pi, \pi]$. The function $w(z)=(1+z) /(1-z)$ is univalent in \mathbb{D} and maps $|z|<\rho<1$ onto the open disc $D(C, R)$ with the center $C=\left(1+\rho^{2}\right) /\left(1-\rho^{2}\right)$ and the radius $R=(2 \rho) /\left(1-\rho^{2}\right)$. Then by the subordination principle under univalent function,

$$
\begin{equation*}
\left\{f^{\prime}\left(x e^{i \theta}\right)\right\}^{1 / \alpha} \in D(C, R) \quad \text { for all } x \in[0, \rho), \theta \in(-\pi, \pi] \tag{2.3}
\end{equation*}
$$

A simple geometric observation yields to

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\left(f^{\prime}\left(\rho e^{i \theta}\right)\right)^{1 / \alpha}\right\}\right| \leq \sin ^{-1} \frac{R}{C}=\sin ^{-1} \frac{2 \rho}{1+\rho^{2}} \quad \text { for all } \rho \in[0,1), \theta \in(-\pi, \pi] \tag{2.4}
\end{equation*}
$$

Therefore, applying the same idea as [3, pp.1292-1293] for $z=r e^{i \theta}, r \in[0,1), \theta \in(-\pi, \pi]$, we have

$$
\begin{aligned}
\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| & =\left|\operatorname{Arg}\left\{\int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) \mathrm{d} \rho\right\}\right| \\
& \leq \int_{0}^{r}\left|\operatorname{Arg}\left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}\right| \mathrm{d} \rho \\
& =\alpha \int_{0}^{r}\left|\operatorname{Arg}\left\{\left(f^{\prime}\left(\rho e^{i \theta}\right)\right)^{1 / \alpha}\right\}\right| \mathrm{d} \rho \\
& \leq \alpha \int_{0}^{r} \sin ^{-1} \frac{2 \rho}{1+\rho^{2}} \mathrm{~d} \rho \\
& =\left.\alpha\left\{\rho \sin ^{-1} \frac{2 \rho}{1+\rho^{2}}-\log \left(1+\rho^{2}\right)\right\}\right|_{\rho=0} ^{\rho=r} \\
& =\alpha\left\{r \sin ^{-1} \frac{2 r}{1+r^{2}}-\log \left(1+r^{2}\right)\right\} .
\end{aligned}
$$

The function

$$
h(r)=r \sin ^{-1} \frac{2 r}{1+r^{2}}-\log \left(1+r^{2}\right), \quad r \in[0,1)
$$

is increasing because $h^{\prime}(r)=\sin ^{-1}\left\{2 r /\left(1+r^{2}\right)\right\}>0$. Now, letting $r \rightarrow 1^{-}$, we obtain

$$
\begin{aligned}
\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| & \leq \alpha(\pi / 2-\log 2)=\frac{\alpha \pi}{2}\left\{1-\frac{\log 4}{\pi}\right\} \\
& =\frac{\pi}{2} \alpha \beta, \quad z \in \mathbb{D} .
\end{aligned}
$$

Using this and (2.1), we obtain

$$
\begin{aligned}
\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| & \leq\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right|+\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| \\
& <\frac{\alpha \pi}{2}+\frac{\pi}{2} \alpha \beta \\
& =\frac{\alpha(1+\beta) \pi}{2} \\
& =\frac{\pi}{2}, \quad z \in \mathbb{D} .
\end{aligned}
$$

It completes the proof.

Remark 2.2 Theorem 2.1 is an improvement of Mocanu's result in [4].

Theorem 2.3 Let $p(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}$ be analytic in the unit disc \mathbb{D}. If

$$
\begin{equation*}
\mathfrak{R e}\left\{p(z)+z p^{\prime}(z)\right\}>0, \quad z \in \mathbb{D} \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
|\operatorname{Arg}\{p(z)\}|<\frac{\pi}{2}-\log 2=0.877649 \ldots, \quad z \in \mathbb{D} \tag{2.6}
\end{equation*}
$$

Proof By (2.5), we have

$$
\begin{equation*}
p(z)+z p^{\prime}(z) \prec \frac{1+z}{1-z}, \quad z \in \mathbb{D} . \tag{2.7}
\end{equation*}
$$

Let $z=\rho e^{i \theta}, \rho \in[0,1), \theta \in(-\pi, \pi]$. The subordination principle used for (2.7) gives

$$
\begin{equation*}
\left|p\left(x e^{i \theta}\right)+x e^{i \theta} p^{\prime}\left(x e^{i \theta}\right)-\frac{1+\rho^{2}}{1-\rho^{2}}\right|<\frac{2 \rho}{1-\rho^{2}} \quad \text { for all } x \in[0, \rho), \theta \in(-\pi, \pi] . \tag{2.8}
\end{equation*}
$$

A simple geometric observation yields to

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{p\left(\rho e^{i \theta}\right)+\rho e^{i \theta} p^{\prime}\left(\rho e^{i \theta}\right)\right\}\right| \leq \sin ^{-1} \frac{2 \rho}{1+\rho^{2}} \quad \text { for all } \rho \in[0,1), \theta \in(-\pi, \pi] . \tag{2.9}
\end{equation*}
$$

Therefore, for $z=r e^{i \theta}, r \in[0,1), \theta \in(-\pi, \pi]$, we have

$$
\begin{aligned}
|\operatorname{Arg}\{p(z)\}| & =\left|\operatorname{Arg}\left\{\frac{z p(z)}{z}\right\}\right| \\
& =\left|\operatorname{Arg}\left\{\frac{\int_{0}^{z}(t p(t))^{\prime} \mathrm{d} t}{z}\right\}\right| \\
& =\left|\operatorname{Arg}\left\{\frac{\int_{0}^{z}\left(p(t)+t p^{\prime}(t)\right) \mathrm{d} t}{z}\right\}\right| \\
& =\left|\operatorname{Arg}\left\{\frac{\int_{0}^{r}\left(p\left(\rho e^{i \theta}\right)+\rho e^{i \theta} p^{\prime}\left(\rho e^{i \theta}\right)\right) e^{i \theta} \mathrm{~d} \rho}{r e^{i \theta}}\right\}\right| \\
& =\left|\operatorname{Arg}\left\{\int_{0}^{r}\left(p\left(\rho e^{i \theta}\right)+\rho e^{i \theta} p^{\prime}\left(\rho e^{i \theta}\right)\right) \mathrm{d} \rho\right\}-\operatorname{Arg}\{r\}\right| \\
& \leq \int_{0}^{r}\left|\operatorname{Arg}\left\{p\left(\rho e^{i \theta}\right)+\rho e^{i \theta} p^{\prime}\left(\rho e^{i \theta}\right)\right\}\right| \mathrm{d} \rho .
\end{aligned}
$$

Therefore, by using (2.9), we have

$$
\begin{aligned}
|\operatorname{Arg}\{p(z)\}| & \leq \alpha \int_{0}^{r} \sin ^{-1} \frac{2 \rho}{1+\rho^{2}} \mathrm{~d} \rho \\
& =\left.\alpha\left\{\rho \sin ^{-1} \frac{2 \rho}{1+\rho^{2}}-\log \left(1+\rho^{2}\right)\right\}\right|_{\rho=0} ^{\rho=r} \\
& <\left.\alpha\left\{\rho \sin ^{-1} \frac{2 \rho}{1+\rho^{2}}-\log \left(1+\rho^{2}\right)\right\}\right|_{\rho=0} ^{\rho=1} \\
& =\frac{\pi}{2}-\log 2=0.8776491464 \ldots, \quad z \in \mathbb{D} .
\end{aligned}
$$

It leads to the desired conclusion.

Remark 2.4 Theorem 2.3 is an improvement of Mocanu's result in [5], where instead of $\gamma_{0}=\frac{\pi}{2}-\log 2=0.8776491464 \ldots$ is

$$
\theta_{1}=\max \left\{\theta:\left|\operatorname{Arg}\left\{\frac{2}{e^{i \theta}} \log \left(1+e^{i \theta}\right)-1\right\}\right|\right\}=0.91106219 \ldots .
$$

Substituting $p(z)=f(z) / z, f \in \mathcal{A}$, in Theorem 2.3 leads to the following corollary.

Corollary 2.5 If $f \in \mathcal{A}$ and it satisfies

$$
\mathfrak{R e}\left\{f^{\prime}(z)\right\}>0, \quad z \in \mathbb{D}
$$

then

$$
\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right|<\frac{\pi}{2}-\log 2=0.877649 \ldots, \quad z \in \mathbb{D} .
$$

Substituting $p(z)=z f^{\prime}(z) / f(z), f \in \mathcal{A}$, in Theorem 2.3 gives the following corollary.

Corollary 2.6 Iff $\in \mathcal{A}$ and it satisfies

$$
\mathfrak{\Re e}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}\right\}>0, \quad z \in \mathbb{D},
$$

then

$$
\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi}{2}-\log 2=0.877649 \ldots, \quad z \in \mathbb{D}
$$

This means that f is strongly starlike of order $1-(\log 4) / \pi=0.558728799 \ldots$.

Substituting $p(z)=1+z f^{\prime \prime}(z) / f^{\prime}(z), f \in \mathcal{A}$, in Theorem 2.3 gives the following corollary.

Corollary 2.7 Iff $\in \mathcal{A}$ and it satisfies

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(2+\frac{z f^{\prime \prime \prime}(z)}{f^{\prime \prime}(z)}\right)-\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right\}>0, \quad z \in \mathbb{D}
$$

then

$$
\left|\operatorname{Arg}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\pi}{2}-\log 2=0.877649 \ldots, \quad z \in \mathbb{D}
$$

This means thatf is strongly convex of order $1-(\log 4) / \pi=0.558728799 \ldots$

Theorem 2.8 Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in the unit disc \mathbb{D}, and suppose that

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<1, \quad z \in \mathbb{D} \tag{2.10}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<(1+r) \sin ^{-1} r+\sqrt{1-r^{2}}-1 \tag{2.11}
\end{equation*}
$$

where $r=|z|<1$, and, therefore, we have

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad \text { for }|z|<r_{0}, \tag{2.12}
\end{equation*}
$$

where $0.902<r_{0}<0.903$ is the positive root of the equation

$$
\begin{equation*}
\sin ^{-1} r=\frac{\pi-2\left(\sqrt{1-r^{2}}-1\right)}{2(1+r)} \tag{2.13}
\end{equation*}
$$

Proof From (2.10), we have $f^{\prime}(z) \prec 1+z$, so the subordination principle gives

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right| \leq \sin ^{-1}|z|, \quad z \in \mathbb{D} \tag{2.14}
\end{equation*}
$$

and for $z=r e^{i \theta}$,

$$
\begin{aligned}
\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| & =\left|\operatorname{Arg}\left\{\frac{1}{r r^{i \theta}} \int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} \mathrm{~d} \rho\right\}\right| \\
& =\left|\operatorname{Arg}\left\{\int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) \mathrm{d} \rho\right\}\right| \\
& \leq \int_{0}^{r}\left|\operatorname{Arg}\left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}\right| \mathrm{d} \rho \\
& <\int_{0}^{r} \sin ^{-1} \rho \mathrm{~d} \rho .
\end{aligned}
$$

Then we have

$$
\int_{0}^{r} \sin ^{-1} \rho \mathrm{~d} \rho=r \sin ^{-1} r+\sqrt{1-r^{2}}-1 .
$$

Therefore, and from (2.14), we have

$$
\begin{aligned}
& \left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| \\
& \quad \leq\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right|+\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| \\
& \quad<\sin ^{-1} r+r \sin ^{-1} r+\sqrt{1-r^{2}}-1, \quad|z|=r<1 .
\end{aligned}
$$

The function

$$
\begin{aligned}
G(r) & =(1+r) \sin ^{-1} r+\sqrt{1-r^{2}}-1 \\
& =\sin ^{-1} r+\int_{0}^{r} \sin ^{-1} \rho \mathrm{~d} \rho
\end{aligned}
$$

increases in $[0,1]$ as the sum of two increasing functions. Moreover, $G(0)=0, G(1)=\pi-1$, and it satisfies

$$
G(0.902)=1.57030 \ldots<\frac{\pi}{2}=1.5707963 \ldots<G(0.903)=1.573753 \ldots
$$

Therefore, the equation (2.13) has the solution $r_{0}, 0.902<r_{0}<0.903$, and

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad \text { for }|z|<r_{0} \approx 0.903
$$

This completes the proof.

Theorem 2.9 Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in the unit disc \mathbb{D}, and suppose that

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<\alpha, \quad z \in \mathbb{D}, \tag{2.15}
\end{equation*}
$$

with $\alpha \in(0,2 / \sqrt{5}]$. Then f is strongly starlike of order β, where $\beta \in(0,1]$ is the positive root of the equation

$$
\begin{equation*}
\sin ^{-1}\left\{\alpha \sqrt{1-\alpha^{2} / 4}+\frac{\alpha}{2} \sqrt{1-\alpha^{2}}\right\}=\frac{\pi \beta}{2} . \tag{2.16}
\end{equation*}
$$

Proof We have $f^{\prime}(z) \prec 1+\alpha z$. Applying the result from [4, p.118] we have also that $f(z) / z \prec$ $1+\alpha z / 2$ in \mathbb{D}. This shows that

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right| \leq \sin ^{-1} \alpha|z|, \quad z \in \mathbb{D} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| \leq \sin ^{-1} \frac{\alpha|z|}{2}, \quad z \in \mathbb{D} \tag{2.18}
\end{equation*}
$$

Therefore, using (2.17) and (2.18), we have

$$
\begin{aligned}
& \left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| \\
& \quad \leq\left|\operatorname{Arg}\left\{f^{\prime}(z)\right\}\right|+\left|\operatorname{Arg}\left\{\frac{f(z)}{z}\right\}\right| \\
& \quad<\sin ^{-1} \alpha+\sin ^{-1} \frac{\alpha}{2}, \quad z \in \mathbb{D}
\end{aligned}
$$

For $\alpha \in(0,2 / \sqrt{5}]$, we have $\alpha^{2}+(\alpha / 2)^{2} \leq 1$, so we can use the formula

$$
\sin ^{-1} \alpha+\sin ^{-1} \frac{\alpha}{2}=\sin ^{-1}\left\{\alpha \sqrt{1-\alpha^{2} / 4}+\frac{\alpha}{2} \sqrt{1-\alpha^{2}}\right\} .
$$

The function

$$
\begin{aligned}
H(\alpha) & =\sin ^{-1}\left\{\alpha \sqrt{1-\alpha^{2} / 4}+\frac{\alpha}{2} \sqrt{1-\alpha^{2}}\right\} \\
& =\sin ^{-1} \alpha+\sin ^{-1} \frac{\alpha}{2}
\end{aligned}
$$

increases in the segment $[0,2 / \sqrt{5}]$ as the sum of two increasing functions. Moreover, $H(0)=0, H(2 / \sqrt{5})=\pi / 2$, so the equation (2.16) has in $(0,1]$ the solution β. This completes the proof.

Putting $\alpha=2 / \sqrt{5}$, we get $\beta=1$ and Theorem 2.15 becomes the result from [4, p.118]:

$$
\left[\left|f^{\prime}(z)-1\right|<2 / \sqrt{5}, z \in \mathbb{D}\right] \Rightarrow\left[\mathfrak{R e}\left\{z f^{\prime}(z) / f(z)\right\}>0, z \in \mathbb{D}\right] .
$$

Theorem 2.10 Let $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ be analytic in the unit disc \mathbb{D}, and suppose that

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{p(z)+\alpha\left(\frac{z p^{\prime}(z)}{p(z)}\right)\right\}\right|<\tan ^{-1} \frac{|\alpha| \delta(\beta) \sin ((1+\beta) \pi / 2)}{1+|\alpha| \delta(\beta) \cos ((1+\beta) \pi / 2)}-\frac{\pi \beta}{2}, \quad z \in \mathbb{D} \tag{2.19}
\end{equation*}
$$

where $\alpha<0,0<\beta<1$, and

$$
\delta(\beta)=\frac{\beta}{2}\left(\left(\frac{1-\beta}{1+\beta}\right)^{\beta+1}+\left(\frac{1-\beta}{1+\beta}\right)^{\beta-1}\right) \quad \text { and } \quad|\alpha|>\frac{\sin (\pi \beta / 2)}{\delta(\beta)} \text {. }
$$

Then $\operatorname{Arg}\{p(z)\}<\frac{\beta \pi}{2}$ in \mathbb{D}.
Proof Suppose that there exists a point $z_{0} \in \mathbb{D}$ such that

$$
\begin{equation*}
|\operatorname{Arg}\{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for }|z|<\left|z_{0}\right| \tag{2.20}
\end{equation*}
$$

and

$$
\left|\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2}
$$

then by Nunokawa's lemma [12], we have

$$
\left\{p\left(z_{0}\right)\right\}^{1 / \beta}= \pm i a, \quad a>0 \quad \text { and } \quad \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \beta,
$$

where

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}
$$

and

$$
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2}
$$

moreover,

$$
\begin{equation*}
\frac{\beta k}{a^{\beta}} \geq \delta(\beta) \tag{2.21}
\end{equation*}
$$

For the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}$, we have from (2.21),

$$
\begin{aligned}
\operatorname{Arg}\left\{p\left(z_{0}\right)+\alpha\left(\frac{z p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right\} & =\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}+\operatorname{Arg}\left\{1+\alpha\left(\frac{z p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}\right)\right\} \\
& =\frac{\pi \beta}{2}+\operatorname{Arg}\left\{1+\frac{|\alpha| \beta k}{a^{\beta}} e^{-i \pi(1+\beta) / 2}\right\} \\
& \leq-\left\{\tan ^{-1}\left(\frac{|\alpha| \delta(\beta) \sin \frac{\pi(1+\beta)}{2}}{1+|\alpha| \delta(\beta) \cos \frac{\pi(1+\beta)}{2}}\right)-\frac{\pi \beta}{2}\right\} .
\end{aligned}
$$

This contradicts (2.19), and for the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2}$, applying the same method as above, we have

$$
\operatorname{Arg}\left\{p\left(z_{0}\right)+\alpha\left(\frac{z p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right\} \geq\left\{\tan ^{-1}\left(\frac{|\alpha| \delta(\beta) \sin \frac{\pi(1+\beta)}{2}}{1+|\alpha| \delta(\beta) \cos \frac{\pi(1+\beta)}{2}}\right)-\frac{\pi \beta}{2}\right\} .
$$

This contradicts also (2.19), and, therefore, it completes the proof.

Theorem 2.11 Let $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ be analytic in the unit disc \mathbb{D}, and suppose that

$$
\begin{align*}
& \left|\operatorname{Arg}\left\{p(z)+\alpha\left(\frac{z p^{\prime}(z)}{p(z)}\right)\right\}\right| \\
& \quad<\frac{\pi}{2}\left\{\beta+\frac{2}{\pi} \tan ^{-1} \frac{|\alpha| \delta(\beta) \sin ((1-\beta) \pi / 2)}{1+|\alpha| \delta(\beta) \cos ((1-\beta) \pi / 2)}\right\} \quad \text { for } z \in \mathbb{D} \tag{2.22}
\end{align*}
$$

where $0<\alpha, 0<\beta<1$, and

$$
\delta(\beta)=\frac{\beta}{2}\left(\left(\frac{1-\beta}{1+\beta}\right)^{\beta+1}+\left(\frac{1-\beta}{1+\beta}\right)^{\beta-1}\right) \quad \text { and } \quad \alpha>\frac{\sin (\pi \beta / 2)}{\delta(\beta)} .
$$

Then $\operatorname{Arg}\{p(z)\}<\frac{\pi \beta}{2}$ in \mathbb{D}.

Proof The proof runs as the previous proof, take $\alpha>0$ into account. Suppose that there exists a point $z_{0} \in \mathbb{D}$ such that

$$
\begin{equation*}
|\operatorname{Arg}\{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for }|z|<\left|z_{0}\right| \tag{2.23}
\end{equation*}
$$

and

$$
\left|\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2}
$$

then by Nunokawa's lemma [12], we have for the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}$,

$$
\begin{aligned}
\operatorname{Arg}\left\{p\left(z_{0}\right)+\alpha\left(\frac{z p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right\} & =\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}+\operatorname{Arg}\left\{1+\alpha\left(\frac{z p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}\right)\right\} \\
& =\frac{\pi \beta}{2}+\operatorname{Arg}\left\{1+\frac{\alpha \beta k}{a^{\beta}} e^{i \pi(1+\beta) / 2}\right\} \\
& \leq \frac{\pi \beta}{2}+\tan ^{-1}\left(\frac{|\alpha| \delta(\beta) \sin \frac{\pi(1+\beta)}{2}}{1+|\alpha| \delta(\beta) \cos \frac{\pi(1+\beta)}{2}}\right) \frac{\pi \beta}{2} .
\end{aligned}
$$

This contradicts (2.22), and for the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2}$, applying the same method as above, we have

$$
\operatorname{Arg}\left\{p\left(z_{0}\right)+\alpha\left(\frac{z p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right\} \leq-\left\{\frac{\pi \beta}{2}+\tan ^{-1}\left(\frac{|\alpha| \delta(\beta) \sin \frac{\pi(1+\beta)}{2}}{1+|\alpha| \delta(\beta) \cos \frac{\pi(1+\beta)}{2}}\right) \frac{\pi \beta}{2}\right\} .
$$

This contradicts also (2.22), and, therefore, it completes the proof.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors jointly worked on the results, and they read and approved the final manuscript.

Author details

${ }^{1}$ University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba, 260-0808, Japan. ${ }^{2}$ Kinki University, Higashi-Osaka, Osaka, 577-8502, Japan. ${ }^{3}$ Pukyong National University, Pusan, 608-737, Korea. ${ }^{4}$ Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, Rzeszów, 35-959, Poland. ${ }^{5}$ Department of Mathematics and Computer Science, İstanbul Kültür University, İstanbul, Turkey.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0007037).
Dedicated to Professor Hari M Srivastava.

Received: 4 April 2013 Accepted: 21 August 2013 Published: 8 September 2013

References

1. Stankiewicz, J: Quelques problèmes extrèmaux dans les classes des fonctions α-angulairement ètoilèes. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20, 59-75 (1966)
2. Brannan, DA, Kirwan, WE: On some classes of bounded univalent functions. J. Lond. Math. Soc. 1(2), 431-443 (1969)
3. Nunokawa, M, Owa, S, Yavuz Duman, E, Aydoğan, M: Some properties of analytic functions relating to the Miller and Mocanu result. Comput. Math. Appl. 61, 1291-1295 (2011)
4. Mocanu, PT: Some starlikeness conditions for analytic functions. Rev. Roum. Math. Pures Appl. 33(1-2), 117-124 (1988)
5. Mocanu, PT: New extensions of the theorem of R. Singh and S. Singh. Mathematica 37(60), 171-182 (1995)
6. Aouf, MK, Dziok, J, Sokół, J: On a subclass of strongly starlike functions. Appl. Math. Lett. 24, 27-32 (2011)
7. Sokół, J: On sufficient condition to be in a certain subclass of starlike functions defined by subordination. Appl. Math. Comput. 190, 237-241 (2007)
8. Sokół, J: On functions with derivative satisfying a geometric condition. Appl. Math. Comput. 204, 116-119 (2008)
9. Sokół, J: Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 49, 349-353 (2009)
10. Srivastava, HM: Generalized hypergeometric functions and associated families of k-starlike functions. Gen. Math. 15(2-3), 201-226 (2007)
11. Srivastava, HM, Lashin, AY: Subordination properties of certain classes of multivalently analytic functions. Math. Comput. Model. 52, 596-602 (2010)
12. Nunokawa, M: On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad., Ser. A, Math. Sci. 69(7), 234-237 (1993)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1029-242X-2013-426
 Cite this article as: Nunokawa et al.: On the improvement of Mocanu's conditions. Journal of Inequalities and Applications 2013 2013:426.

