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Abstract
We estimate |Arg{p(z)}| for functions of the form p(z) = 1 + a1z + a2z2 + a3z3 + · · · in
the unit disc D = {z : |z| < 1} under several assumptions. By using Nunokawa’s lemma,
we improve a few of Mocanu’s results obtained by differential subordinations. Some
applications for strongly starlikeness and convexity are formulated.
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1 Introduction
Let H be the class of functions analytic in the unit disk D = {z ∈ C : |z| < }, and denote
by A the class of analytic functions in D and usually normalized, i.e., A = {f ∈ H : f () =
, f ′() = }.
Let SS∗(β) denote the class of strongly starlike functions of order β ,  < β ≤ ,

SS∗(β) :=
{
f ∈A :

∣∣∣∣Arg zf ′(z)
f (z)

∣∣∣∣ < βπ


, z ∈D

}
,

which was introduced in [] and []. We say that f ∈ A is in the class SC∗(β) of strongly
convex functions of order β when zf ′(z) ∈ SS∗(β). We say that f ∈ H is subordinate to
g ∈ H in the unit disc D, written f ≺ g if and only if there exists an analytic function w ∈
H such that w() = , |w(z)| <  and f (z) = g[w(z)] for z ∈ D ⊆ g(D). In particular, if g is
univalent in D then the subordination principle says that f ≺ g if and only if f () = g()
and f (|z| < r)⊆ g(|z| < r) for all r ∈ (, ).

2 Main result
In this section, we investigate conditions, under which a function f ∈ A is strongly star-
like or strongly convex. We also estimate |Arg{p(z)}| for functions of the form p(z) =
 + az + az + az + · · · in the unit disc D, under several assumptions, and then we use
this estimation for the case p(z) = zf ′(z)/f (z). By using Nunokawa’s lemma [], we improve
a fewMocanu’s [, ] results obtained by differential subordinations. Some sufficient con-
ditions for functions to be in several subclasses of strongly starlike functions can also be
found in the recent papers [] and [–].

Theorem . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D. If

∣∣Arg{f ′(z)
}∣∣ < απ


≈ ., z ∈D, (.)
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where α = /( + β) = /( – (log)/π ) ≈ ., β =  – (log)/π ≈ ., then

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣ < π


, z ∈D, (.)

or f is starlike in D.

Proof By (.), we have

{
f ′(z)

}/α ≺  + z
 – z

, z ∈D.

Let z = ρeiθ , ρ ∈ [, ), θ ∈ (–π ,π ]. The function w(z) = ( + z)/( – z) is univalent in D and
maps |z| < ρ <  onto the open disc D(C,R) with the center C = ( + ρ)/( – ρ) and the
radius R = (ρ)/( – ρ). Then by the subordination principle under univalent function,

{
f ′(xeiθ )}/α ∈ D(C,R) for all x ∈ [,ρ), θ ∈ (–π ,π ]. (.)

A simple geometric observation yields to

∣∣Arg{(f ′(ρeiθ))/α}∣∣ ≤ sin–
R
C

= sin–
ρ

 + ρ for all ρ ∈ [, ), θ ∈ (–π ,π ]. (.)

Therefore, applying the same idea as [, pp.-] for z = reiθ , r ∈ [, ), θ ∈ (–π ,π ],
we have

∣∣∣∣Arg
{
f (z)
z

}∣∣∣∣ =
∣∣∣∣Arg

{∫ r


f ′(ρeiθ)dρ

}∣∣∣∣
≤

∫ r



∣∣Arg{f ′(ρeiθ )}∣∣dρ

= α

∫ r



∣∣Arg{(f ′(ρeiθ))/α}∣∣dρ

≤ α

∫ r


sin–

ρ
 + ρ dρ

= α

{
ρ sin–

ρ
 + ρ – log

(
 + ρ)}∣∣∣∣

ρ=r

ρ=

= α

{
r sin–

r
 + r

– log
(
 + r

)}
.

The function

h(r) = r sin–
r

 + r
– log

(
 + r

)
, r ∈ [, )

is increasing because h′(r) = sin–{r/( + r)} > . Now, letting r → –, we obtain

∣∣∣∣Arg
{
f (z)
z

}∣∣∣∣ ≤ α(π/ – log) =
απ



{
 –

log
π

}

=
π


αβ , z ∈D.
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Using this and (.), we obtain

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣ ≤ ∣∣Arg{f ′(z)
}∣∣ +

∣∣∣∣Arg
{
f (z)
z

}∣∣∣∣
<

απ


+

π


αβ

=
α( + β)π



=
π


, z ∈D.

It completes the proof. �

Remark . Theorem . is an improvement of Mocanu’s result in [].

Theorem . Let p(z) =  +
∑∞

n= anzn be analytic in the unit disc D. If

Re
{
p(z) + zp′(z)

}
> , z ∈D, (.)

then

∣∣Arg{p(z)}∣∣ < π


– log = . . . . , z ∈ D. (.)

Proof By (.), we have

p(z) + zp′(z) ≺  + z
 – z

, z ∈ D. (.)

Let z = ρeiθ , ρ ∈ [, ), θ ∈ (–π ,π ]. The subordination principle used for (.) gives

∣∣∣∣p(xeiθ ) + xeiθp′(xeiθ ) –  + ρ

 – ρ

∣∣∣∣ < ρ
 – ρ for all x ∈ [,ρ), θ ∈ (–π ,π ]. (.)

A simple geometric observation yields to

∣∣Arg{p(ρeiθ) + ρeiθp′(ρeiθ )}∣∣ ≤ sin–
ρ

 + ρ for all ρ ∈ [, ), θ ∈ (–π ,π ]. (.)
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Therefore, for z = reiθ , r ∈ [, ), θ ∈ (–π ,π ], we have

∣∣Arg{p(z)}∣∣ =
∣∣∣∣Arg

{
zp(z)
z

}∣∣∣∣
=

∣∣∣∣Arg
{∫ z

 (tp(t))
′ dt

z

}∣∣∣∣
=

∣∣∣∣Arg
{∫ z

 (p(t) + tp′(t)) dt
z

}∣∣∣∣
=

∣∣∣∣Arg
{∫ r

 (p(ρe
iθ ) + ρeiθp′(ρeiθ ))eiθ dρ

reiθ

}∣∣∣∣
=

∣∣∣∣Arg
{∫ r



(
p
(
ρeiθ

)
+ ρeiθp′(ρeiθ))dρ

}
–Arg{r}

∣∣∣∣
≤

∫ r



∣∣Arg{p(ρeiθ) + ρeiθp′(ρeiθ)}∣∣dρ.

Therefore, by using (.), we have

∣∣Arg{p(z)}∣∣ ≤ α

∫ r


sin–

ρ
 + ρ dρ

= α

{
ρ sin–

ρ
 + ρ – log

(
 + ρ)}∣∣∣∣

ρ=r

ρ=

< α

{
ρ sin–

ρ
 + ρ – log

(
 + ρ)}∣∣∣∣

ρ=

ρ=

=
π


– log = . . . . , z ∈D.

It leads to the desired conclusion. �

Remark . Theorem . is an improvement of Mocanu’s result in [], where instead of
γ = π

 – log = . . . . is

θ =max

{
θ :

∣∣∣∣Arg
{


eiθ

log
(
 + eiθ

)
– 

}∣∣∣∣
}
= . . . . .

Substituting p(z) = f (z)/z, f ∈A, in Theorem . leads to the following corollary.

Corollary . If f ∈A and it satisfies

Re
{
f ′(z)

}
> , z ∈D,

then

∣∣∣∣Arg
{
f (z)
z

}∣∣∣∣ < π


– log = . . . . , z ∈D.

Substituting p(z) = zf ′(z)/f (z), f ∈A, in Theorem . gives the following corollary.
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Corollary . If f ∈A and it satisfies

Re

{
zf ′(z)
f (z)

(
 +

zf ′′(z)
f ′(z)

)
–

(
zf ′(z)
f (z)

)}
> , z ∈D,

then

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣ < π


– log = . . . . , z ∈D.

This means that f is strongly starlike of order  – (log)/π = . . . . .

Substituting p(z) =  + zf ′′(z)/f ′(z), f ∈A, in Theorem . gives the following corollary.

Corollary . If f ∈A and it satisfies

Re

{
 +

zf ′′(z)
f ′(z)

(
 +

zf ′′′(z)
f ′′(z)

)
–

(
zf ′′(z)
f ′(z)

)}
> , z ∈D,

then

∣∣∣∣Arg
{
 +

zf ′′(z)
f ′(z)

}∣∣∣∣ < π


– log = . . . . , z ∈D.

This means that f is strongly convex of order  – (log)/π = . . . . .

Theorem . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D, and suppose that

∣∣f ′(z) – 
∣∣ < , z ∈ D. (.)

Then we have

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣ < ( + r) sin– r +
√
 – r – , (.)

where r = |z| < , and, therefore, we have

Re

{
zf ′(z)
f (z)

}
>  for |z| < r, (.)

where . < r < . is the positive root of the equation

sin– r =
π – (

√
 – r – )

( + r)
. (.)

Proof From (.), we have f ′(z) ≺  + z, so the subordination principle gives

∣∣Arg{f ′(z)
}∣∣ ≤ sin– |z|, z ∈D (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/426
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and for z = reiθ ,

∣∣∣∣Arg
{
f (z)
z

}∣∣∣∣ =
∣∣∣∣Arg

{


reiθ

∫ r


f ′(ρeiθ)eiθ dρ

}∣∣∣∣
=

∣∣∣∣Arg
{∫ r


f ′(ρeiθ )dρ

}∣∣∣∣
≤

∫ r



∣∣Arg{f ′(ρeiθ)}∣∣dρ

<
∫ r


sin– ρ dρ.

Then we have

∫ r


sin– ρ dρ = r sin– r +

√
 – r – .

Therefore, and from (.), we have

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣
≤ ∣∣Arg{f ′(z)

}∣∣ +
∣∣∣∣Arg

{
f (z)
z

}∣∣∣∣
< sin– r + r sin– r +

√
 – r – , |z| = r < .

The function

G(r) = ( + r) sin– r +
√
 – r – 

= sin– r +
∫ r


sin– ρ dρ

increases in [, ] as the sum of two increasing functions.Moreover,G() = ,G() = π –,
and it satisfies

G(.) = . . . . <
π


= . . . . <G(.) = . . . . .

Therefore, the equation (.) has the solution r, . < r < ., and

Re

{
zf ′(z)
f (z)

}
>  for |z| < r ≈ ..

This completes the proof. �

Theorem . Let f (z) = z +
∑∞

n= anzn be analytic in the unit disc D, and suppose that

∣∣f ′(z) – 
∣∣ < α, z ∈D, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/426
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with α ∈ (, /
√
]. Then f is strongly starlike of order β ,where β ∈ (, ] is the positive root

of the equation

sin–
{
α
√
 – α/ +

α


√
 – α

}
=

πβ


. (.)

Proof We have f ′(z) ≺ +αz. Applying the result from [, p.] we have also that f (z)/z ≺
 + αz/ in D. This shows that

∣∣Arg{f ′(z)
}∣∣ ≤ sin– α|z|, z ∈ D, (.)

and
∣∣∣∣Arg

{
f (z)
z

}∣∣∣∣ ≤ sin–
α|z|


, z ∈D. (.)

Therefore, using (.) and (.), we have

∣∣∣∣Arg
{
zf ′(z)
f (z)

}∣∣∣∣
≤ ∣∣Arg{f ′(z)

}∣∣ +
∣∣∣∣Arg

{
f (z)
z

}∣∣∣∣
< sin– α + sin–

α


, z ∈D.

For α ∈ (, /
√
], we have α + (α/) ≤ , so we can use the formula

sin– α + sin–
α


= sin–

{
α
√
 – α/ +

α


√
 – α

}
.

The function

H(α) = sin–
{
α
√
 – α/ +

α


√
 – α

}

= sin– α + sin–
α



increases in the segment [, /
√
] as the sum of two increasing functions. Moreover,

H() = , H(/
√
) = π/, so the equation (.) has in (, ] the solution β . This com-

pletes the proof. �

Putting α = /
√
, we get β =  and Theorem . becomes the result from [, p.]:

[∣∣f ′(z) – 
∣∣ < /

√
, z ∈ D

] ⇒ [
Re

{
zf ′(z)/f (z)

}
> , z ∈D

]
.

Theorem . Let p(z) =  +
∑∞

n= cnzn be analytic in the unit disc D, and suppose that

∣∣∣∣Arg
{
p(z) + α

(
zp′(z)
p(z)

)}∣∣∣∣ < tan–
|α|δ(β) sin(( + β)π/)

 + |α|δ(β) cos(( + β)π/)
–

πβ


, z ∈D, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/426
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where α < ,  < β < , and

δ(β) =
β



((
 – β

 + β

)β+

+
(
 – β

 + β

)β–)
and |α| > sin(πβ/)

δ(β)
.

Then Arg{p(z)} < βπ

 in D.

Proof Suppose that there exists a point z ∈D such that

∣∣Arg{p(z)}∣∣ < πβ


for |z| < |z| (.)

and

∣∣Arg{p(z)}∣∣ = πβ


,

then by Nunokawa’s lemma [], we have

{
p(z)

}/β = ±ia, a >  and
zp′(z)
p(z)

= ikβ ,

where

k ≥ 


(
a +


a

)
when Arg

{
p(z)

}
=

πβ



and

k ≤ –



(
a +


a

)
when Arg

{
p(z)

}
= –

πβ


,

moreover,

βk
aβ

≥ δ(β). (.)

For the case Arg{p(z)} = πβ

 , we have from (.),

Arg

{
p(z) + α

(
zp′(z)
p(z)

)}
= Arg

{
p(z)

}
+Arg

{
 + α

(
zp′(z)
p(z)

)}

=
πβ


+Arg

{
 +

|α|βk
aβ

e–iπ (+β)/
}

≤ –
{
tan–

( |α|δ(β) sin π (+β)


 + |α|δ(β) cos π (+β)


)
–

πβ



}
.

This contradicts (.), and for the case Arg{p(z)} = –πβ

 , applying the same method as
above, we have

Arg

{
p(z) + α

(
zp′(z)
p(z)

)}
≥

{
tan–

( |α|δ(β) sin π (+β)


 + |α|δ(β) cos π (+β)


)
–

πβ



}
.

This contradicts also (.), and, therefore, it completes the proof. �
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Theorem . Let p(z) =  +
∑∞

n= cnzn be analytic in the unit disc D, and suppose that

∣∣∣∣Arg
{
p(z) + α

(
zp′(z)
p(z)

)}∣∣∣∣
<

π



{
β +


π
tan–

|α|δ(β) sin(( – β)π/)
 + |α|δ(β) cos(( – β)π/)

}
for z ∈D, (.)

where  < α,  < β < , and

δ(β) =
β



((
 – β

 + β

)β+

+
(
 – β

 + β

)β–)
and α >

sin(πβ/)
δ(β)

.

Then Arg{p(z)} < πβ

 in D.

Proof The proof runs as the previous proof, take α >  into account. Suppose that there
exists a point z ∈ D such that

∣∣Arg{p(z)}∣∣ < πβ


for |z| < |z| (.)

and

∣∣Arg{p(z)}∣∣ = πβ


,

then by Nunokawa’s lemma [], we have for the case Arg{p(z)} = πβ

 ,

Arg

{
p(z) + α

(
zp′(z)
p(z)

)}
= Arg

{
p(z)

}
+Arg

{
 + α

(
zp′(z)
p(z)

)}

=
πβ


+Arg

{
 +

αβk
aβ

eiπ (+β)/
}

≤ πβ


+ tan–

( |α|δ(β) sin π (+β)


 + |α|δ(β) cos π (+β)


)
πβ


.

This contradicts (.), and for the case Arg{p(z)} = –πβ

 , applying the same method as
above, we have

Arg

{
p(z) + α

(
zp′(z)
p(z)

)}
≤ –

{
πβ


+ tan–

( |α|δ(β) sin π (+β)


 + |α|δ(β) cos π (+β)


)
πβ



}
.

This contradicts also (.), and, therefore, it completes the proof. �
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of Technology, Al. Powstańców Warszawy 12, Rzeszów, 35-959, Poland. 5Department of Mathematics and Computer
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