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Abstract
This paper is a continuation of the analysis of classical Kuhfittig iteration involving a
finite family of asymptotically quasi-nonexpansive mappings in the general setup of
uniformly convex hyperbolic spaces. We establish strong and �-convergence results
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convergence results extend and improve various results in the current literature.
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1 Introduction
Most of the problems in various disciplines of science are nonlinear in nature, whereas
fixed point theory proposed in the setting of normed linear spaces or Banach spaces ma-
jorly depends on the corresponding linear structures of those spaces. A nonlinear frame-
work for fixed point theory is a metric space embedded with a ‘convex structure.’ It is
remarked that the non-positively curved spaces play a significant role in many branches
of mathematics. The class of hyperbolic spaces - nonlinear in nature - is prominent among
non-positively curved spaces and provides rich geometrical structures for different results
with applications in topology, graph theory, multivalued analysis and metric fixed point
theory. The study of hyperbolic spaces has been largelymotivated and dominated by ques-
tions about hyperbolic groups, one of themain objects of study in geometric group theory.
Throughout this paper, we work in the setting of hyperbolic spaces introduced by

Kohlenbach [] which is more restrictive than the hyperbolic type introduced in [] and
more general than the concept of hyperbolic space in [].
A hyperbolic space is a metric space (X,d) together with a mappingW : X × [, ]→ X

satisfying
() d(u,W (x, y,α))≤ αd(u,x) + ( – α)d(u, y),
() d(W (x, y,α),W (x, y,β)) = |α – β|d(x, y),
() W (x, y,α) =W (y,x, ( – α)),
() d(W (x, z,α),W (y,w,α))≤ ( – α)d(x, y) + αd(z,w)
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for all x, y, z,w ∈ X and α,β ∈ [, ]. A nonempty subsetK of a hyperbolic spaceX is convex
if W (x, y,α) ∈ K for all x, y ∈ K and α ∈ [, ]. The class of hyperbolic spaces contains
normed spaces and convex subsets thereof, the Hilbert ball equipped with the hyperbolic
metric [],R-trees, Hadamardmanifolds as well as CAT() spaces in the sense of Gromov
(see [] for a detailed treatment).
The following example accentuates the importance of hyperbolic spaces.
Let BH be an open unit ball in a complex Hilbert spaces (H , 〈·〉) w.r.t. the metric

kBH (x, y) := arg tanh
(
 – σ (x, y)

) 
 ,

where

σ (x, y) =
( – ‖x‖)( – ‖x‖)

| – 〈x, y〉| for all x, y ∈ BH .

Then (BH ,kBH ,W ) is a hyperbolic space where W (x, y,α) defines a unique point z in a
unique geodesic segment [x, y] for all x, y ∈ BH . The above example is of importance for
metric fixed point theory of holomorphic mappings which are kBH -nonexpansive. For a
detailed discussion of the topic, we refer to [].
A hyperbolic space is uniformly convex [] if for any r >  and ε ∈ (, ], there exists a

δ ∈ (, ] such that for all u,x, y ∈ X, we have

d
(
W

(
x, y,




)
,u

)
≤ ( – δ)r

provided d(x,u)≤ r, d(y,u) ≤ r and d(x, y)≥ εr.
A map η : (,∞) × (, ] → (, ], which provides such a δ = η(r, ε) for given r >  and

ε ∈ (, ], is known as a modulus of uniform convexity of X. We call η monotone if it
decreases with r (for a fixed ε), i.e., ∀ε > , ∀r ≥ r >  (η(r, ε)≤ η(r, ε)).
Let K be a nonempty subset of a metric space (X,d), and let T be a self-mapping on K .

Denote by F(T) = {x ∈ K : T(x) = x} the set of fixed points of T . A self-mapping T on K is
said to be:

(i) nonexpansive if d(Tx,Ty) ≤ d(x, y) for x, y ∈ K ;
(ii) quasi-nonexpansive if d(Tx,p) ≤ d(x,p) for x ∈ K and for p ∈ F(T) �= ∅;
(iii) asymptotically nonexpansive [] if there exists a sequence kn ⊂ [,∞) and

limn→∞ kn =  and d(Tnx,Tny) ≤ ( + kn)d(x, y) for x, y ∈ K , n≥ ;
(iv) asymptotically quasi-nonexpansive if there exists a sequence kn ⊂ [,∞) and

limn→∞ kn =  and d(Tnx,p) ≤ ( + kn)d(x,p) for x ∈ K , p ∈ F(T), n≥ ;
(v) uniformly L-Lipschitzian if there exists a constant L >  such that

d(Tnx,Tny) ≤ Ld(x, y) for x, y ∈ K and n≥ .
It follows from the above definitions that a nonexpansivemapping is quasi-nonexpansive

and that an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive.
Moreover, an asymptotically nonexpansive mapping is uniformly L-Lipschitzian. How-
ever, the converse of these statements is not true, in general.
The fixed point property (fpp) of various nonlinear mappings has relevant applications

in many branches of nonlinear analysis and topology. On the other hand, there are certain
situations where it is hard to derive conditions for the (fpp) of certain nonlinearmappings.
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In such situations, the approximate fixed point property (afpp) is more desirable. More-
over, in a nonlinear domain, the (afpp) of various generalization nonexpansive mappings
is still being developed.
The problem of finding a common fixed point of a finite family of nonlinear mappings

acting on a nonempty convex domain often arises in applied mathematics, for instance,
in convex minimization problems and systems of simultaneous equations. A fundamental
result in the construction of common fixed points of a finite family of nonexpansive map-
pings is essentially due to Kuhfittig []. The following iteration is a translation of classical
Kuhfittig iteration for a finite family of nonexpansive mappings in hyperbolic spaces.
Let U = I , define

Ux =W (x,TUx,λ),

Ux =W (x,TUx,λ),

...

Ukx =W (x,TkUk–x,λ),

where δ ≤ λ ≤  – δ for some δ ∈ (, ).
Then the corresponding Kuhfittig iteration in a compact form is defined as follows:

x ∈ K , xn+ =W (xn,TkUk–xn,λ), n≥ . (.)

The classical Kuhfittig iteration converges strongly under the compactness condition
of K , whereas the weak convergence is established through Opial’s condition. Kuhfittig it-
eration is comparatively less developed for various nonlinear mappings in a more general
setup of spaces with non-positive sectional curvature such as hyperbolic spaces. To the
best of our knowledge, Kuhfittig iteration has never been used as a tool for the approx-
imation of common fixed points of a finite family of asymptotically quasi-nonexpansive
mappings. Moreover, Rhoades [] mentioned that one can replace λ in the Kuhfittig it-
eration with a sequence {λn}. Here a natural question arises:

Question Is Kuhfittig iteration valid for the class of asymptotically quasi-nonexpansive
mappings with a general sequence of control parameters δ ≤ λn ≤  – δ for some δ ∈ (, )
in the general setup of hyperbolic spaces?

The purpose of this paper is to provide an affirmative answer to the above question.
Our convergence results not only can be viewed as an analogue of various existing results
but also improve and generalize various results in the current literature; see, for example,
[–] and the references cited therein.

2 Preliminaries
We start this section with the concept of �-convergence which is essentially due to Lim
[] in the general setting of metric spaces. In , Kirk and Panyanak [] investigated
�-convergence inCAT() spaces and showed that�-convergence coincideswith the usual
weak convergence in Banach spaces. Moreover, both concepts share many useful proper-
ties in uniformly convex spaces.

http://www.journalofinequalitiesandapplications.com/content/2013/1/423
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Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, define a continuous
functional r(·, {xn}) : X → [,∞) by

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
.

The asymptotic center of a bounded sequence {xn} with respect to a subset K of X is
defined as follows:

AK
({xn}) = {

x ∈ X : r
(
x, {xn}

) ≤ r
(
y, {xn}

)
for any y ∈ K

}
.

This is the set of minimizers of the functional r(·, {xn}). If the asymptotic center is taken
with respect to X, then it is simply denoted by A({xn}). It is known that uniformly convex
Banach spaces and even CAT() spaces enjoy the property that ‘bounded sequences have
unique asymptotic centers with respect to closed convex subsets.’ The following lemma
is due to Leustean [] and ensures that this property also holds in a complete uniformly
convex hyperbolic space.

Lemma. [] Let (X,d,W ) be a complete uniformly convex hyperbolic spacewithmono-
tone modulus of uniform convexity. Then every bounded sequence {xn} in X has a unique
asymptotic center with respect to any nonempty closed convex subset K of X.

Recall that a sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. In this case, we write�– limn xn = x
and call x the�-limit of {xn}. A sequence {xn} is said to be quasi-Fejérmonotonew.r.t. a set
K if d(xn+,x)≤ d(xn,x) + εn for all x ∈ K and εn ≥  for all n≥ . This concept generalizes
the classical concept of Fejér monotone sequence in a sense that it satisfies the standard
Fejér monotonicity property within an additional error term εn. A mapping T : K → K is
semi-compact if every bounded sequence {xn} ⊂ K satisfying d(xn,Txn) →  has a conver-
gent subsequence.
In the sequel, we need the following useful results.

Lemma. [] Let (X,d,W ) be a uniformly convex hyperbolic spacewithmonotonemod-
ulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (, ). If
{xn} and {yn} are sequences in X such that lim supn−→∞ d(xn,x) ≤ c, lim supn−→∞ d(yn,x)≤ c
and limn−→∞ d(W (xn, yn,αn),x) = c for some c≥ , then limn→∞ d(xn, yn) = .

Lemma . [] Let K be a nonempty closed convex subset of a uniformly convex hyper-
bolic space, and let {xn} be a bounded sequence in K such that A({xn}) = {y} and r({xn}) = ρ .
If {ym} is another sequence in K such that limm→∞ r(ym, {xn}) = ρ , then limm→∞ ym = y.

Lemma . [] Let {an}and {bn} be two sequences of non-negative real numbers such that∑∞
n= bn < ∞. If an+ ≤ ( + bn)an, n≥ , then limn→∞ an exists.

http://www.journalofinequalitiesandapplications.com/content/2013/1/423
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3 Main results
Throughout this section, we assume that the mappings {Un(i)}ki= are nonexpansive and
satisfy F := (

⋂k
i= F(Ti)) ∩ (

⋂k
i= F(Un(i))) �= ∅. We are now in a position to prove our main

convergence results.

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X withmonotonemodulus of uniform convexity η, and let {Ti}ki= be a finite
family of uniformly L-Lipschitzian asymptotically quasi-nonexpansive self-mappings of K
with a sequence {tn} ⊂ [,∞) such that limn→∞ tn =  and

∑∞
n=(tn – ) < ∞. Assume that

F �= ∅, then the sequence {xn} defined as

x ∈ K , xn+ =W
(
xn,Tn

k Un(k–)xn,λn
)
, n≥ , (.)

�-converges to a common fixed point of {Ti}ki=.

Proof Let p ∈ F , then observe that

d(xn+,p) = d
(
W

(
xn,Tn

k Un(k–)xn,λn
)
,p

)
≤ ( – λn)d(xn,p) + λnd

(
Tn
k Un(k–)xn,p

)
≤ ( – λn)d(xn,p) + λntnd(Un(k–)xn,p)

= ( – λn)d(xn,p) + λntnd
(
W

(
xn,Tn

k–Un(k–)xn,λn
)
,p

)
≤ (

 – λ
n
)
tnd(xn,p) + λ

ntnd
(
Tn
k–Un(k–)xn,p

)
...

≤ (
 – λk–

n
)
tk–n d(xn,p) + λk–

n tk–n d
(
Tn
 xn,p

)
≤ (

 – λk–
n

)
tk–n d(xn,p) + λk–

n tk–n d(xn,p)

= tk–n d(xn,p). (.)

Since
∑∞

n=(tk–n – ) < ∞, therefore Lemma . implies that {d(xn,p)}∞n= is convergent.
Consequently, this fact asserts that the sequence {d(xn,p)}∞n= is bounded. Let M ∈ N be
a bound of the sequence {d(xn,p)}∞n=such that d(xn,p) ≤ M for all n ≥ . Let tn :=  + rn,
then observe the following variant of estimate (.):

d(xn+,p) ≤ ( + rn)k–d(xn,p)

≤ d(xn,p) + θk–rnM, (.)

where θk– =
(k–


)
+

(k–


)
+

(k–


)
+ · · · + (k–

k–
)
and θk–rnM is finite.

Hence, estimate (.) implies that {xn}∞n= is quasi-Fejér monotone w.r.t. F . Therefore,
{xn}∞n= is bounded, and hence Lemma . implies that {xn} has a unique asymptotic center
AK ({xn}) = {x}.
For the�-convergence of {xn}, we first show that the sequence {xn} is asymptotic regular

w.r.t. the kth-mapping Sk , that is, limn→∞ d(xn,Skxn) = . For this, we reason as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/423
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Since {d(xn,p)}∞n= is convergent, therefore, without loss of any generality, we can assume
that

lim
n→∞d(xn+,p) = d

(
W

(
xn,Snkxn,λn

)
,p

)
= c > , (.)

where Snk := Tn
k Un(k–). The case c =  is trivial. Moreover, observe that

lim sup
n→∞

d(xn,p) ≤ c and lim sup
n→∞

d
(
Snkxn,p

) ≤ c. (.)

It follows from estimates (.)-(.) and Lemma . that

lim
n→∞d

(
xn,Snkxn

)
= . (.)

Note that d(xn,xn+) = λnd(xn,Snkxn), therefore letting n→ ∞ and using (.), we have

lim
n→∞d(xn,xn+) = . (.)

Now observe that

d(xn,Skxn) ≤ d(xn,xn+) + d
(
xn+,Sn+k xn+

)
+ d

(
Sn+k xn+,Sn+k xn

)
+ d

(
Sn+k xn,Skxn

)
≤ ( + L)d(xn,xn+) + d

(
xn+,Sn+k xn+

)
+ d

(
Snkxn,xn

)
.

Taking the lim sup on both sides of the above estimate and using (.)-(.), we get the
required asymptotic regularity of the kth-mapping Sk , that is,

lim
n→∞d(xn,Skxn) = .

Let {un} be any subsequence of {xn} with AK ({un}) = {u}, then

lim
n→∞d(un,Skun) = . (.)

Next, we show that u ∈ F(Sk). For this, we define a sequence {zn} in K by zi = Siku.
So, we calculate

d(zi,un) ≤ d
(
Siku,S

i
kun

)
+ d

(
Sikun,S

i–
k un

)
+ · · · + d(Skun,un)

≤ tnd(u,un) +
r–∑
i=

d
(
Sikun,S

i+
k un

)
.

Since Sk is uniformly L-Lipschitzian with the Lipschitz constant LK , therefore, the above
estimate yields

d(zi,un) ≤ tnd(u,un) + rLKd(Skun,un).

Taking limsup on both sides of the above estimate and using (.), we have

r
(
zi, {un}

)
= lim sup

n→∞
d(zi,un) ≤ lim sup

n→∞
d(u,un) = r

(
u, {un}

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/423
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This implies that |r(zi, {un}) – r(u, {un})| →  as i → ∞. It follows from Lemma . that
limi→∞ Siku = u. As Sk is uniformly continuous, so we get that Sk(u) = Sk(limi→∞ Sikv) =
limi→∞ Si+k u = u. That is, u ∈ F(Sk) and hence u is the common fixed point of Tk and
Uk–. Reasoning as above - by utilizing the uniqueness of asymptotic centers - we get that
x = u. This infers that u is the unique asymptotic center of {xn} for every subsequence {un}
of {xn}.
To proceed further, we show that

lim
n→∞d

(
xn,Snk–xn

)
= ,

where Snk– = Tn
k–Un(k–).

For this, we reason as follows.
Observe that estimate (.) implies that

d(xn+,p) ≤ ( – δ)d(xn,p) + δtnd
(
W

(
xn,Snk–xn,λn

)
,p

)
.

Applying lim inf on both sides of the above estimate and utilizing the fact that δ ≤ λn ≤ –δ

and limn→∞ tn = , we get that

c≤ ( – δ)c + δ lim inf
n→∞ d

(
W

(
xn,Snk–xn,λn

)
,p

)
.

On simplification, we have

c≤ lim inf
n→∞ d

(
W

(
xn,Snk–xn,λn

)
,p

)
. (.)

On the other hand,

d
(
W

(
xn,Snk–xn,λn

)
,p

) ≤ ( – λn)d(xn,p) + λnd
(
Snk–xn,p

)
≤ ( – λn)d(xn,p) + λntnd(xn,p)

≤ ( – δ)d(xn,p) + δtnd(xn,p).

Taking limsup on both sides of the above estimate, we have

lim sup
n→∞

d
(
W

(
xn,Snk–xn,λn

)
,p

) ≤ c. (.)

Estimates (.)-(.) collectively imply that

lim
n→∞d

(
W

(
xn,Snk–xn,λn

)
,p

)
= c. (.)

Further, observe that

lim sup
n→∞

d
(
Snk–xn,p

) ≤ c and lim sup
n→∞

d(xn,p) ≤ c. (.)

Appealing to Lemma . and utilizing estimates (.)-(.), we have

lim
n→∞d

(
xn,Snk–xn

)
= .

http://www.journalofinequalitiesandapplications.com/content/2013/1/423
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Reasoning as above, we can show that:
(i) limn→∞ d(xn,Sk–xn) = ;
(ii) u is the common fixed point of Tk– and Uk–.
Continuing in a similar fashion, we can show that u is the common fixed point of Sk– :=

Tk–Uk–, Sk– := Tk–Uk–, . . . , S := TU. Hence u ∈ F :=
⋂k

i= F(Ti). This completes the
proof. �

The strong convergence of iteration (.) can easily be established under compactness
condition of K or T(K). Next, we give a necessary and sufficient condition for the strong
convergence of iteration (.).

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η, and let {Ti}ki= be a
finite family of uniformly Lipschitzian asymptotically quasi-nonexpansive self-mappings
of K with a sequence {tn} ⊂ [,∞) such that limn→∞ tn =  and

∑∞
n=(tn – ) < ∞. Assume

that F �= ∅, then the sequence {xn} defined in (.) converges strongly to a common fixed
point of {Ti}ki= if and only if lim infn→∞ d(xn,F) = .

Proof The necessity of the conditions is obvious. Thus, we only prove the sufficiency. It
follows from estimate (.) that {d(xn,p)}∞n= converges. Moreover, lim infn→∞ d(xn,F) = 
implies that limn→∞ d(xn,F) = . This completes the proof. �

Since the class of asymptotically nonexpansive mappings is properly contained in the
class of asymptotically quasi-nonexpansive mappings, therefore, we now list the following
useful corollaries of Theorems (.)-(.).

Corollary . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X withmonotonemodulus of uniform convexity η, and let {Ti}ki= be a finite
family of uniformly Lipschitzian asymptotically nonexpansive self-mappings of K with a
sequence {tn} ⊂ [,∞) such that limn→∞ tn =  and

∑∞
n=(tn – ) < ∞. Assume that F �= ∅,

then the sequence {xn} defined in (.) �-converges to a common fixed point of {Ti}ki=.

Corollary . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X withmonotonemodulus of uniform convexity η, and let {Ti}ki= be a finite
family of uniformly Lipschitzian asymptotically nonexpansive self-mappings of K with a
sequence {tn} ⊂ [,∞) such that limn→∞ tn =  and

∑∞
n=(tn – ) < ∞. Assume that F �= ∅,

then the sequence {xn} defined in (.) converges strongly to a common fixed point of {Ti}ki=
if and only if lim infn→∞ d(xn,F) = .

Concluding remarks (i) Following the line of action of the results proved so far, we can
prove these results with suitable changes for the following classes of nonlinear mappings:
(a) generalized asymptotically-quasi-nonexpansive mappings

(i.e., ‖Tnx – p‖ ≤ un‖x – p‖ + δn, where limn→∞ un =  and limn→∞ δn = );
(b) asymptotically nonexpansive mappings in the intermediate sense []

{i.e., lim supn→∞ supx,y∈C(‖Tnx – Tny‖ – ‖x – y‖) ≤ }.
Moreover, these proofs even hold for asymptotically weakly-quasi-nonexpansive map-

pings [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/423
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(ii) It is worth mentioning that Kuhfittig iteration for a finite family of nonexpansive
mappings is analyzed in the general setup of uniformly convex hyperbolic spaces resulting
in explicit and uniform rates of asymptotical regularity []; whereas for iteration (.),
there does not seem to exist a computable rate of asymptotic regularity, let alone a rate of
metastability (in the sense of Tao []) in cases where strong convergence holds.

Future work We intend to extract explicit and effective rates of metastability of Kuhfittig
iteration involving a finite family of asymptotically quasi-nonexpansive mappings in the
general setup of uniformly convex hyperbolic spaces.
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