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Abstract

We study screen conformal Einstein half lightlike submanifolds M of a Lorentzian
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1 Introduction

The theory of lightlike submanifolds is used in mathematical physics, in particular, in gen-
eral relativity as lightlike submanifolds produce models of different types of horizons [1,
2]. Lightlike submanifolds are also studied in the theory of electromagnetism [3]. Thus,
large number of applications but limited information available, motivated us to do the
research on this subject matter. As for any semi-Riemannian manifold, there is a natural
existence of lightlike subspaces, Duggal and Bejancu published their work [3] on the gen-
eral theory of lightlike submanifolds to fill a gap in the study of submanifolds. Since then,
there has been very active study on lightlike geometry of submanifolds (see up-to date
results in two books [4, 5]). The class of lightlike submanifolds of codimension 2 is com-
posed of two classes by virtue of the rank of its radical distribution, named by half lightlike
and coisotropic submanifolds [6, 7]. Half lightlike submanifold is a special case of general
r-lightlike submanifold such that r = 1, and its geometry is more general form than that
of coisotropic submanifold or lightlike hypersurface. Much of the works on half lightlike
submanifolds will be immediately generalized in a formal way to general r-lightlike sub-
manifolds of arbitrary codimension n and arbitrary rank r. For this reason, we study half
lightlike submanifold M of a semi-Riemannian manifold M.

Ageshe and Chafle [8] introduced the notion of a semi-symmetric non-metric connec-
tion on a Riemannian manifold. Although now, we have lightlike version of a large variety
of Riemannian submanifolds, the theory of lightlike submanifolds of semi-Riemannian
manifolds, equipped with semi-symmetric metric connections, has not been introduced
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until quite recently. Yasar et al. [9] studied lightlike hypersurfaces in a semi-Riemannian
manifold admitting a semi-symmetric non-metric connection. Recently, Jin and Lee [10]
and Jin [11-13] studied half lightlike and r-lightlike submanifolds of a semi-Riemannian
manifold with a semi-symmetric non-metric connection.

In this paper, we study the geometry of screen conformal Einstein half lightlike sub-
manifolds M of a Lorentzian space form M (¢) of constant curvature ¢ admitting a semi-
symmetric non-metric connection subject to the conditions; (1) the structure vector field
of M is tangent to M, and (2) the canonical normal vector field of M is conformal Killing.
The reason for this geometric restriction on M is due to the fact that such a class admits
an integrable screen distribution and a symmetric Ricci tensor of M. We prove a charac-
terization theorem for such a half lightlike submanifold.

2 Semi-symmetric non-metric connection
Let (M,%) be a semi-Riemannian manifold. A connection V on M is called a semi-
symmetric non-metric connection [8] if V and its torsion tensor T satisfy

(V@Y. 2) = -7 (Y)§X, 2) - m(Z2)g(X, Y), (21)
TX,Y)=7(V)X - 7(X)Y, (2.2)

for any vector fields X, Y and Z on M, where 7 is a 1-form associated with a non-vanishing
vector field ¢, which is called the structure vector field of M, by

n(X) =g(X, ). (2.3)

In the entire discussion of this article, we shall assume the structure vector field ¢ to be
unit spacelike, unless otherwise specified.

A submanifold (M, g) of codimension 2 is called half lightlike submanifold if the radi-
cal distribution Rad(TM) = TM N TM* is a subbundle of the tangent bundle TM and the
normal bundle TM* of rank 1. Therefore, there exist complementary non-degenerate dis-
tributions S(TM) and S(TM~) of Rad(TM) in TM and TM~ respectively, which are called
the screen and co-screen distributions of M, respectively, such that

TM = Rad(TM) ®ortn S(TM), TM™* = Rad(TM) ®oren S(TM™), (2.4)

where @on denotes the orthogonal direct sum. We denote such a half lightlike sub-
manifold by M = (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M
and by I'(E) the F(M) module of smooth sections of a vector bundle E over M. Choose
L € T'(S(TM™1)) as a unit vector field with (L, L) = 1. We may assume that L to be unit
spacelike vector field without loss of generality, i.e., §(L,L) = 1. We call L the canonical
normal vector field of M. Consider the orthogonal complementary distribution S(TM)~*
to S(TM) in TM. Certainly, Rad(TM) and S(TM™) are subbundles of S(TM)"*. As S(TM~)
is non-degenerate, we have

S(TM)* = S(TM*) @oren S(TM™) ™,

where S(TM*)* is the orthogonal complementary to S(TM™1) in S(TM)*. For any null sec-
tion £ of Rad(TM) on a coordinate neighborhood U/ C M, there exists a uniquely defined
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lightlike vector bundle 1tr(TM) and a null vector field N of 1tr(TM)),, satisfying
EN)=1,  FN,N)=FN,X)=FN,L)=0, VX el (S(IM)).

We call N, 1tr(TM) and tr(TM) = S(TM™*) @ or, 1tr(TM) the lightlike transversal vector field,
lightlike transversal vector bundle and transversal vector bundle of M with respect to the
screen distribution, respectively [6]. Then TM is decomposed as follows:

TM = TM & tr(TM) = {Rad(TM) & tr(TM)} @oren, S(TM)
= {Rad(TM) @ 1tr(TM) } Boren S(TM) Soren S(TM™). (2.5)

Given a screen distribution S(TM), there exists a unique complementary vector bundle
tr(TM) to TM in ™ im- Using (2.4) and (2.5), there exists a local quasi-orthonormal frame
field of M along M given by

F={,N,L,W,}, acil,.. m] (2.6)

where {W,} is an orthonormal frame field of S(TM),,,.

In the entire discussion of this article, we shall assume that ¢ is tangent to M, and we
take X,Y,Z, W € I'(TM), unless otherwise specified. Let P be the projection morphism of
TM on S(TM) with respect to the first decomposition of (2.4). Then the local Gauss and
Weingartan formulas of M and S(TM) are given respectively by

VxY = VxY + B(X,Y)N + D(X, Y)L, (2.7)
VxN = -A, X + T(X)N + p(X)L, (2.8)
VxL = -A, X + p(X)N, (2.9)
VxPY = ViPY + C(X,PY)E, (2.10)
Vx€ = —AIX - T(X)E, (2.11)

where V and V* are induced linear connections on TM and S(TM), respectively, B and D
are called the local lightlike, and screen second fundamental forms of M, respectively, C is
called the local second fundamental form on S(TM), Ay, Ag‘ and A; are called the shape
operators, and t, p and ¢ are 1-forms on TM. We say that

h(X,Y) = B(X,Y)N + D(X,Y)L
is the second fundamental form tensor of M. Using (2.1), (2.2) and (2.7), we have

(Vxg)(Y, Z2) = BX, Y)n(Z) + BX, Z)n(Y) - (Y)g(X, Z) - n(2)g(X, Y), (2.12)
TX,Y) = 7(Y)X - 7(X)Y, (2.13)

and B and D are symmetric on TM, where T is the torsion tensor with respect to the
induced connection V, and 7 is a 1-form on TM such that

n(X) =g(X,N).
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From the facts B(X,Y) = E(%{Yf) and D(X,Y) = :Q'(%XY,L), we know that B and D are
independent of the choice of the screen distribution S(7M) and satisfy

B(X,&) =0, D(X, &) = -¢(X). (2.14)

In case ¢ is tangent to M, the above three local second fundamental forms on M and
S(TM) are related to their shape operators by

g(Aix,Y)=B(X,Y),  Z(AIX,N)=0, (215)
gA X, Y)=DX,Y) +¢X)n(Y), A X,N)=pX), (2.16)

g X, PY) = C(X,PY) - fg(X,PY) - n()m(PY),  FAXN)=—fn(X),  (217)

where f is the smooth function given by f =  (N). From (2.15) and (2.17), we show that A}
and A,; are S(TM)-valued, and A is self-adjoint operator and satisfies

A% =0, (2.18)

that is, & is an eigenvector field of A} corresponding to the eigenvalue 0.
In general, the screen distribution S(7M) is not necessarily integrable. The following
result gives equivalent conditions for the integrability of S(TM).

Theorem 2.1 [10] Let M be a half lightlike submanifold of a semi-Riemannian manifold
M admitting a semi-symmetric non-metric connection. Then the following assertions are
equivalent:

(1) The screen distribution S(TM) is an integrable distribution.

(2) Cissymmetric, ie., C(X,Y)=C(Y,X) forall X,Y € T (S(TM)).

(3) The shape operator A,, is a self-adjoint with respect to g, i.e.,

gAX,Y)=g(X,AY), VX,Y e (S(TM)).

Just as in the well-known case of locally product Riemannian or semi-Riemannian man-
ifolds [2—4, 7], if S(TM) is an integrable distribution, then M is locally a product manifold
M =Cy x M*, where C; is a null curve tangent to Rad(TM), and M* is a leaf of the integrable
screen distribution S(TM).

3 Structure equations

Denote by R, R and R* the curvature tensors of the semi-symmetric non-metric con-
nection V on M, the induced connection V on M and the induced connection V* on
S(TM), respectively. Using the Gauss-Weingarten formulas for M and S(TM), we obtain
the Gauss-Codazzi equations for M and S(TM):

R(X,Y)Z=R(X,Y)Z +B(XX,Z)A,Y - B(Y,Z)A X
+D(X,2)A,Y - D(Y, Z)A, X

+{(VxB)(Y,Z) - (VyB)(X, Z)
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+B(Y,Z)[t1(X) -7 (X)] - BX, 2)[z(Y) -7 (V)]

+D(Y, Z)p(X) - DX, Z)p(Y) N

+{(VxD)(Y, Z) - (VyD)(X, Z) + B(Y, Z) p(X)

~B(X,Z)p(Y) - D(Y, Z)n(X) + DX, Z)n (V) }L, 3.1)
R(X,Y)N = —Vx(A, Y) + Vy(A, X) + A, [X, Y]

+T(XA Y — (VA X + p(X)A, Y — p(Y)A, X

+{B(Y,A X) - B(X,A,Y) +2dt(X,Y)

+¢(X)p(Y) - $(Y)p(X)}N

+{D(Y,A X) - D(X,A,Y) +2dp(X,Y)

+p(X)T(Y) - p(Y)T(X)}L, (3.2)
R(X,Y)L=—Vx(A,Y) + Vy(A,X) + A, [X,Y]

+ (XA Y —p(Y)A, X

+{B(Y,A,X) - B(X,A,Y) +2d¢(X,Y)

+1(X)¢(Y) - 1(V)p(X) |N

+{D(Y,A,X) - D(X,A,Y) + p(X)p(Y) — p(Y)$(X)}L, (3.3)
R(X,Y)PZ = R*(X,Y)PZ + C(X,PZ)A;Y — C(Y,PZ)A: X

+{(VxO)(Y, PZ) - (VyC)(X,PZ)
+CX,P2)[t(Y) + (V)] - C(Y,PZ)[t(X) + (X)]}£, (3.4)

R(X,Y)E = =V (AFY) + Vy(AEX) + AL [X, Y] + T (V)AL X

—T(X)ALY + {C(Y,ALX) - C(X,AfY) - 2dt(X,Y)]&. (3.5)

A semi-Riemannian manifold M of constant curvature c is called a semi-Riemannian
space form and denote it by M(c). The curvature tensor R of M(c) is given by

RX,Y)Z=cg(Y,2)X -3(X,2)Y}, VX,Y,ZeT(TM). (3.6)

Taking the scalar product with & and L to (3.6), we obtain E(T?(X, Y)Z,£) = 0 and
§(E(X, Y)Z,L) =0 for any X, Y, Z € I'(TM). From these equations and (3.1), we get
R(X,Y)Z = R(X,Y)Z + B(X,Z)A,)Y - B(Y,Z)A,, X
+DX,2)A,Y -D(Y,2)A, X, VX,Y,ZeT'(TM). (3.7)
4 Screen conformal half lightlike submanifolds
Definition1 A half lightlike submanifold M of a semi-Riemannian manifold M is said to

be irrotational [14] if %XS € I'(TM) for any X € T'(TM).
From (2.7) and (2.14), we show that the above definition is equivalent to

D(X,&)=0=¢(X), VXeT(IM).
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Theorem 4.1 Let M be an irrotational half lightlike submanifold of a semi-Riemannian
manifold M admitting a semi-symmetric non-metric connection such that ¢ is tangent to M.
Then ¢ is conjugate to any vector field X on M, i.e., ¢ satisfies h(X,¢) = 0.

Proof Taking the scalar product with & to (3.2) and N to (3.1) such that Z = & by turns and
using (2.14), (3.5) and the fact that ¢ = 0, we obtain

Z(RX,Y)E,N) = BX, A, Y) - B(Y, A, X) - 2dt(X, Y)
= C(Y,A:X) - C(X,AY) - 2d7(X, Y).

From these two representations, we obtain
B(X,A,Y)-B(Y,A X) = C(Y,A{X) - C(X,ALY).
Using (2.15);, (2.17); and the fact that A7 is self-adjoint, we have
7 (AFX)n(Y) = 7 (ALY )n(X).
Replacing Y by & to this equation and using (2.18), we have
B(X,¢) =7 (A{X) =0. (4.1)

As D is symmetric and ¢ = 0, we show that A, is self-adjoint. Taking the scalar product
with L to (3.2) and N to (3.3) with ¢ = 0 by turns, we obtain

ZRX YN, L) = F(Vx(A,Y) - Vy(A4,X) - A, [X,Y],N)

=D(Y,A,X)-DX,A,Y)+2dp(X,Y) + p(X)T(Y) - p(Y)T(X).
Using these two representations and (2.16),, we show that

D(Y,AX)-D(X,A,Y) +2dp(X,Y) + p(X)T(Y) — p(Y)T(X)

=Z(Vx(4,Y),N) -Z(Vy(4,X),N) - p([X, Y]).
Applying Vx to Z(A4, Y, N) = p(Y) and using (2.1), (2.7) and (2.8), we have

Z(Vx(A,Y),N) = X(p(Y)) + (A, Y)n(X) + fg(X,A,Y)

+g(A,Y, A X) - t(X)p(Y).
Substituting this equation into the last equation and using (2.16);, we have
(A, X)n(Y) =7 (A, Y)n(X).
Replacing Y by & to this equation, we have

(A, X) =7(A, E)n(X).
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Taking X = &€ and Y = ¢ to (2.16),, we get w(A, &) = 0. Therefore, we have
D(X,¢)=7m(4,X)=0. (4.2)
From (4.1) and (4.2), we show that 4(X, ) = 0 for all X € I'(TM). (I

Definition 2 A half lightlike submanifold M of a semi-Riemannian manifold M is screen
conformal [4, 5, 7] if the second fundamental forms B and C satisfy

CX,PY)=¢B(X,Y), VX, YeD(TM), (4.3)
where ¢ is a non-vanishing function on a coordinate neighborhood U/ in M.

Theorem 4.2 Let M be an irrotational half lightlike submanifold of a semi-Riemannian
space form M(c) admitting a semi-symmetric non-metric connection such that ¢ is tangent
to M. If M is screen conformal, then ¢ = 0.

Proof Substituting (3.6) into (3.2) and using the fact that ¢ = 0, we have

(VxB)(Y,Z) - (VyB)(X, Z)

=B(Y,Z){m(X) - t(X)} - BX, Z){= (Y) -t (V) }. (4.4)

Taking the scalar product with N to (3.1) and (3.4) by turns and using (2.16),, (2.17), and
(3.6), we have the following two forms of g(R(X, Y)PZ,N):

{cg(Y,PZ) - fB(Y, PZ)}n(X) - {cg(X, PZ) - fB(X, PZ) }n(Y)
+ p(X)D(Y, PZ) — p(Y)D(X, PZ)
= (VxOIY, PZ) - (VyC)(X,PZ) + C(X, PZ){m (Y) + T(Y)}

- C(Y,PZ){7(X) + t(X)}. (4.5)
Applying Vx to C(Y,PZ) = ¢B(Y,PZ), we have
(VxC)Y,PZ) = X[@]B(Y,PZ) + o(VxB)(Y,PZ).
Substituting this into (4.5) and using (4.4), we obtain

c{g(Y, PZ)n(X) - g(X, PZ)n(Y)}
= {X[p] - 207(X) + fn(X)}B(Y, PZ) - p(X)D(Y, PZ)

—{Ylg] - 201(Y) +fn(Y)}B(X, PZ) + p(Y)D(X, PZ). (4.6)
Replacing Z by ¢ to (4.5) and using (4.1) and (4.2), we have ¢ = 0. a

Remark 4.3 If M is screen conformal, then, from (4.3), we show that C is symmetric on
S(TM). By Theorem 2.1, S(TM) is integrable and M is locally a product manifold C; x M*,
where C; is a null curve tangent to Rad(7M) and M* is a leaf of S(TM).
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5 Main theorem
Let Ric be the Ricci curvature tensor of M and R©®? the induced Ricci type tensor on M
given respectively by

Ric(X,Y) = trace{Z — INQ(Z,X)Y}, VX,Y € T(TM),

ROP(X,Y) = trace{Z — R(Z,X)Y}, VX,Y e T(TM).
Using the quasi-orthonormal frame field (2.6) on M, we show [10] that

RO2(X,Y) = Ric(X, Y) + B(X, Y)trA,, + D(X,Y)trA,
—g(A X, ALY) - g(A, X, ALY) + p(X)p(Y)
~Z(R, V)X, N) ~Z(R(L, X)Y, L),
where trA,, is the trace of A, . From this, we show that R®? is not symmetric. The tensor
field R©? is called the induced Ricci curvature tensor [4, 5] of M, denoted by Ric, if it is

symmetric. M is called Ricci flat if its induced Ricci tensor vanishes on M. It is known [10]
that R®? is symmetric if and only if the 1-form 7 is closed, i.e., dT = 0.

Remark 5.1 If the induced Ricci type tensor R%? is symmetric, then there exists a null
pair {£, N} such that the corresponding 1-form t satisfies = 0 [3, 4], which is called a
canonical null pair of M. Although S(TM) is not unique, it is canonically isomorphic to
the factor vector bundle S(TM)* = TM/Rad(TM) [14]. This implies that all screen distri-
bution are mutually isomorphic. For this reason, in case dt = 0, we consider only lightlike

hypersurfaces M endow with the canonical null pair such that = 0.
We say that M is an Einstein manifold if the Ricci tensor of M satisfies
Ric = «g.

It is well known that if dim M > 2, then « is a constant.

Let dimM = m + 3. In case M is a semi-Riemannian space form M(c), we have

ROP(X,Y) = meg(X,Y) + BX,Y)trA, + D(X,Y)trA,

~g(A X ALY) —g(A, X, AL Y) + p(X)g(Y). (5.1)

Due to (2.15) and (2.17), we show that M is screen conformal if and only if the shape
operators A, and A; are related by

AGX = pATX —fX = n(X)¢. (5.2)

Assume that ¢ = 0. As D is symmetric, A, is self-adjoint. Using this, (5.1) and (5.2), we
show that R©*?) is symmetric. Thus, we can take 7 = 0. As 7 = 0, (4.4) reduce to

(VxB)(Y,Z) - (VyB)(X,Z) =n(X)B(Y, Z) - n (Y)B(X, Z). (5.3)

Page 8 of 13
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Definition 3 A vector field X on M is said to be conformal Killing (3, 5,15] if Lxg = —26%
for a scalar function 8, where £ denotes the Lie derivative on M , that is,

(Zx:@(Y»Z) =X(@,2)-3(x,Y],2)-g(¥,[X,2]), VY,Ze I (TM).
In particular, if § = 0, then X is called a Killing vector field on M.

Theorem 5.2 Let M be a half lightlike submanifold of a semi-Riemannian manifold M
admitting a semi-symmetric non-metric connection. If the canonical normal vector field L
is a conformal Killing one, then L is a Killing vector field.

Proof Using (2.1) and (2.2), forany X, Y, Z € I'(TZT/I), we have
(LD, 2) =3V X,Z) +3(Y,V2X) - 22 (X)Z(Y, 2).

As L is a conformal Killing vector field, we have g—'(%XL, Y)=-D(X,Y) by (2.9) and (2.16).
This implies (ELE)(X, Y)=-2D(X,Y) for any X, Y € I'(TM). Thus, we have

D(X,Y)=8g(X,Y), VX,YeT(TM). (5.4)
Taking X = Y = ¢ and using (4.2), we get § = 0. Thus, L is a Killing vector field. O

Remark 5.3 Calin [16] proved the following result. For any lightlike submanifolds M of
indefinite almost contact metric manifolds M, if ¢ is tangent to M, then it belongs to S(TM).
Duggal and Sahin also proved this result (see pp.318-319 of [5]). After Calin’s work, many
earlier works [17-19], which were written on lightlike submanifolds of indefinite almost
contact metric manifolds or lightlike submanifolds of semi-Riemannian manifolds, admit-
ting semi-symmetric non-metric connections, obtained their results by using the Calin’s
result described in above. However, Jin [12, 13] proved that Cédlin’s result is not true for
any lightlike submanifolds M of a semi-Riemannian space form M(c), admitting a semi-

symmetric non-metric connection.

For the rest of this section, we may assume that the structure vector field ¢ of M belongs
to the screen distribution S(TM). In this case, we show that f = 0.

Theorem 5.4 Let M be a screen conformal Einstein half lightlike submanifold of a
Lorentzian space form M(), admitting a semi-symmetric non-metric connection such that
¢ belongs to S(TM). If the canonical normal vector field L is conformal Killing, then M is
Ricci flat. Moreover, if the mean curvature of M is constant, then M is locally a product
manifold Cy x Cy x M"Y, where C; and Cy are null and non-null curves, and M™! is an
(m — 1)-dimensional Euclidean space.

Proof As L is conformal Killing vector field, D = A, = 0 by (5.4) and Theorem 5.2. There-
fore, from (2.14), we show that ¢ = 0, i.e., M is irrotational. By Theorem 4.2, we also have
¢ =0. Using (2.15), (4.1) and (5.2) with f = 0, from (5.1), we have

S(AIX,ALY) —ag(AEX,Y) + ¢ kg(X,Y) =0 (5.5)
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due to ¢ = 0, where o = trA}. As g(A{¢,X) = B(¢,X) = 0 for all X € I'(TM) and S(TM) is
non-degenerate, we show that

Ai¢ =0. (5.6)
Taking X = Y = ¢ to (5.5) and using (5.6), we have ¢~k = 0. Thus, (5.5) reduce to
g(AIX,ALY) —ag(AfX,Y) =0,  «=0. (5.7)

From the second equation of (5.7), we show that M is Ricci flat.

As M is screen conformal and M is Lorentzian, S(TM) is an integrable Riemannian vec-
tor bundle. Since £ is an eigenvector field of A}, corresponding to the eigenvalue 0 due
to (2.15), and A} is S(TM)-valued real self-adjoint operator, A; has m real orthonormal
eigenvector fields in S(TM) and is diagonalizable. Consider a frame field of eigenvectors
{§,E1,...,En} of A} such that {E;,...,E,} is an orthonormal frame field of S(TM) and
AZE; = ME;. Put X = Y = E; in (5.7), each eigenvalue ; is a solution of

x—ax=0.
As this equation has at most two distinct solutions 0 and «, there exists p € {0,1,...,m}
suchthat A =---=X,=0and A,,; =--- = A, =, by renumbering if necessary. As trA} =

0p + (m — p)a, we have

a=trA; = (m-pa.

Sop=m-1,ie,
0
Af =

Consider two distributions D, and D, on S(TM) given by

D, = {X € T'(S(TM)) | A{X =0 and X #0},

Dy = {U €T (S(TM)) | AfU = all and U #0}.

Clearly we show that D, N D, = {0} as « # 0. In the sequel, we take X,Y € I'(D,),
U,v e I'(Dy) and Z, W € T'(S(TM)). Since X and U are eigenvector fields of the real
self-adjoint operator A}, corresponding to the different eigenvalues 0 and o respectively,
we have g(X, U) = 0. From this and the fact that B(X, U) = g(Ag‘X, U) = 0, we show that
Dy L, D, and D, L, D,, respectively. Since {E;}1<i<m-1 and {E,,} are vector fields of D,
and D,, respectively, and D, and D,, are mutually orthogonal, we show that D, and D,
are non-degenerate distributions of rank (m — 1) and rank 1, respectively. Thus, the screen
distribution S(TM) is decomposed as S(TM) = Dy @orth D,-


http://www.journalofinequalitiesandapplications.com/content/2013/1/403

Jin Journal of Inequalities and Applications 2013, 2013:403
http://www.journalofinequalitiesandapplications.com/content/2013/1/403

From (5.7), we get A7 (A}, —aP) = 0. Let W € ImA}. Then there exists Z € I'(S(TM)) such
that W = A;Z. Then (Af —aP)W =0 and W € I'(D,). Thus, ImA; C I'(Dy). By duality,
we have Im(A} —aP) C I'(D,).

Applying Vx to B(Y, U) = 0 and using (2.15) and A7Y = 0, we obtain

(VxB)(Y, U) = —-g(A;VxY, U).
Substituting this into (5.3) and using (2.12) and A7X = A7Y = 0, we get
gAilx, YL u)=o.
As ImA; C I'(D,) and D, is non-degenerate, we get Af [X,Y] = 0. This implies that
[X,Y] e I'(D,). Thus, D, is an integrable distribution.
Applying V;; to B(X,Y) =0 and Vy to B(U,Y) = 0, we have
(VuB)(X,Y) =0, (VxB)(U,Y) = —ag(VxY, U).
Substituting this two equations into (5.3), we have ag(VxY,U) = 0. As
g(AFVxY,U) = B(VxY,U) = ag(VxY,U) =0
and ImA; C I'(D,) and D, is non-degenerate, we get A VxY = 0. This implies that VxY €
['(D,). Thus, D, is an auto-parallel distribution on S(TM).

As A{¢ =0, ¢ belongs to D,. Thus, 7(U) = 0 for any U € I'(Dy). Applying Vx to
g(U,Y) =0 and using (2.12) and the fact that D, is auto-parallel, we get g(VxU,Y) = 0.
This implies that VxU € I'(Dy,).

Applying Vi to B(V,X) = 0 and using AX = 0, we obtain

(VuB)(V,X) = —ag(V, VyX).

Substituting this into (5.3) and using the fact that D, L, D,, we get
g(V,VuX) =g(U,VyX).

Applying V;; to g(V,X) = 0 and using (2.12), we get
gVuV,X) =n(X)g(U, V) - g(V, VyX).

Taking the skew-symmetric part of this and using (2.13), we obtain
g(lu,v],x)=o0.

This implies that [U, V] € I'(Dy) and D, is an integrable distribution.

Now we assume that the mean curvature H = ﬁ trB = ﬁ trAz of M is a constant.
As trAf = a, we see that « is a constant. Applying Vy to B(U,V) = ag(U,V) and Vy
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to B(X, V) = 0 by turns and using the facts that VxU € I'(TM), D, L, Dy, D, 1, D, and
B(X,VyV) = g(A;X,Vy V) = 0, we have

(VxB)(U,V) =0, (VuB)(X, V) = —ag(VuX, V).

Substituting these two equations into (5.3) and using D, L ; D,, we have
gVuX, V) =rn(X)g(U, V).

Applying V; to g(X, V) = 0 and using (2.12), we obtain
gX, VyuV) = (X)g(U, V) -g(VuX, V) = 0.

Thus, D, is also an integrable and auto-parallel distribution.

Since the leaf M* of S(TM) is a Riemannian manifold and S(TM) = Dy, ®orth D,, Where
D, and D, are auto-parallel distributions of M*, by the decomposition of the theorem of de
Rham [20], we have M* = C; x M™~!, where C, is aleaf of D,, and M is a totally geodesic
leaf of D,. Consider the frame field of eigenvectors {§, Ey, ..., E,} of A7 such that {E}; is
an orthonormal frame field of S(TM), then B(E;,E;) = C(E;,E;) =0 for 1 <i<j < m and
B(E,E;)) = C(E,E;)=0for1 <i<m-1.From (3.1) and (3.4), we have E(ﬁ(Ei,Ej)Ej,Ei) =
g(R*(E;, Ej)E;, E;) = 0. Thus, the sectional curvature K of the leaf M™! of D, is given by

g(R*(E;, E))E,, E;) _
g(E;, E)g(E;, E)) — g*(E;, Ej)

K(E;,E)) =

Thus, M is a local product C; x Cy x M™1, where C; is a null curve, C, is a non-null curve,
and M is an (m — 1)-dimensional Euclidean space. O
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