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Abstract
Recently, Takahashi and Nunokawa (Appl. Math. Lett. 16:653-655, 2003) considered
the class SS∗(α,β) of analytic functions, which satisfy the condition
–πβ/2 < arg{zf ′(z)/f (z)} < πα/2 for all z in the unit disc U on the complex plane,
where 0 ≤ α < 1 and 0≤ β < 1. For α = β the class SS∗(α,β) is equal to the
well-known class SS∗(β) of strongly starlike functions of order β . In this work, we
derive a sufficient condition for analytic function to be in the class SS∗(α,β). Our
theorem is a generalization of the result of Nunokawa et al. (Bull. Inst. Math. Acad. Sin.
31(3):195-199, 2003).
MSC: Primary 30C45

Keywords: convex functions; starlike functions; starlike of order α; convex of order
α; strongly starlike functions; subordination

1 Introduction
Let A denote the class of functions with the series expansion

f (z) = z +
∞∑
k=

akzk

in the unit disc U = {z : |z| < }. We denote by S the subclass of A, consisting of univalent
functions. A function f ∈ S is said to be starlike of order α if

Re

{
zf ′(z)
f (z)

}
> α (z ∈ U), (.)

for some  ≤ α < , Robertson []. We denote by S∗(α) the class of functions starlike of
order α. We say that a function f ∈ S is strongly starlike of order β if and only if

∣∣∣∣arg
(
zf ′(z)
f (z)

)∣∣∣∣ < π


β (z ∈U),

for some β ( < β ≤ ). Let SS∗(β) denote the class of strongly starlike functions of or-
der β . The class SS∗(β) was introduced independently by Stankiewicz [, ] and by Bran-
nan and Kirvan []. In [] Takahashi and Nunokawa defined the following subclass of A:

SS∗(α,β) =
{
f ∈A :

–πβ


< arg

zf ′(z)
f (z)

<
πα


, z ∈ U

}
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for some  < α ≤  and for some  < β ≤ . We recall here the fact that in [] and in [],
a similar class was studied. Note that SS∗(min{α,β}) ⊂ SS∗(α,β) ⊂ SS∗(max{α,β}). Of
course for α = β the class SS∗(α,β) becomes the class SS∗(β). It is easily seen that
SS∗(α,β) ⊂ S∗. In [] Silverman examined the class Gb of mappings f ∈ S that satisfy
the condition

∣∣∣∣ +
zf ′′(z)
f ′(z)

zf ′(z)
f (z)

– 
∣∣∣∣ < b, z ∈ U,

for some positive b. In [] the following inclusion result for the class Gb was obtained.

Theorem . [] If  < b ≤ , then

Gb ⊂ S∗
(


 +

√
 + b

)
.

The result is sharp for all b.

In [] the authors obtained the following.

Theorem . [] If f belongs to the class Gb(β) with

b(β) =
β√

( – β)–β ( + β)+β
,

then f ∈ SS∗(β).

In this work, we consider the analogous problem for the classes Gb and SS∗(α,β).
Namely, given α, β , we look for possible great b such that Gb ⊂ SS∗(α,β). To obtain the
main theorem, we need the following version of the well-known Jack’s lemma.

Theorem . Let p be analytic in U with p() =  and p(z) 	= . If there exist two points
z ∈U and z ∈U such that |z| = |z| = r and for z ∈Ur = {z : |z| < r}

–
πβ


= argp(z) < argp(z) < argp(z) =

πα


, (.)

with some  < α ≤ ,  < β ≤ , then we have

zp′(z)
p(z)

= –i
α + β


m (.)

and

zp′(z)
p(z)

= i
α + β


m, (.)

where

m ≥  – t
 + t

, m ≥  + t
 – t

,
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and where

t = tan
π



(
α – β

α + β

)
. (.)

Proof The assumption (.) says that the domain p(Ur) lies in a sector between two rays
arg{w} = –πβ/ and arg{w} = πα/, and it contacts with the rays at p(z) and at p(z).
The idea of this proof is that we transform this sector into the unit disc, and then we will
use Jack’s lemma. We restrict our considerations to proving (.), the proof of (.) runs
analogously as that of (.). The function

q(z) = exp

{
–i

π (α – β)
(α + β)

}{
p(z)

} 
α+β (z ∈Ur) (.)

maps Ur onto the set q(Ur) on the right half-plane Re{ω} > . The boundary ∂q(Ur) is
tangent to the imaginary axis at q(z) and at q(z) because ∂p(Ur) is tangent to the sector
–πβ/ < argw < πα/ at p(z) and at p(z). Moreover, q(z) lies on the negative imaginary
axis, while q(z) lies on the positive imaginary axis. Denote q(z) = –ix, x > . The func-
tion

φ(z) =
q(z) – 
q(z) + 

(z ∈Ur)

maps the disc Ur onto the domain φ(Ur), contained in the unit disc U. Since

φ(z) =
q(z) – 
q(z) + 

=
–ix – 
–ix + 

=
x – 
x + 

–
xi
x + 

then Im{φ(z)} < , because x > . Moreover,

∣∣φ(z)∣∣ =
(
x – 
x + 

)

+
x

(x + )
= ,

hence φ(z) = eiγ with some γ ∈ (π , π ) such that

sinγ =
–x
 + x

, x > . (.)

Notice that

φ() = –i tan
π



(
α – β

α + β

)
= –it, (.)

with t given by (.), t ∈ (–, ). The following fractional transformation obtained from
φ(z)

F(z) =
φ(z) + it
 + itφ(z)

(z ∈Ur)

maps the disc Ur onto a domain contained in the unit disc U and tangent to the unit
circle at the points F(z) and at F(z). Since F() =  and |F(z)| attains its maximum at the
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point z, then by Jack’s lemma, there exists k ≥  such that

zF ′(z)
F(z)

= k

or, equivalently,

zφ′(z)( – |it|)
( + itφ(z))(φ(z) + it)

= k. (.)

Taking logarithmic derivative in (.), we find that

zp′(z)
p(z)

=
α + β


zq′(z)
q(z)

. (.)

Taking logarithmic derivative in

q(z) =
 + φ(z)
 – φ(z)

,

we obtain

zq′(z)
q(z)

=
zφ′(z)
 – φ(z)

. (.)

Using together (.), (.) and (.), we get

zp′(z)
p(z)

= k(α + β)
( + itφ(z))(φ(z) + it)
( – |it|)( – φ(z))

= k(α + β)
( – iteiγ )(eiγ + it)
( – t)( – eiγ )

= k(α + β)
( + t)eiγ – it(eiγ – )

( – t)( – eiγ )

= k(α + β)i
 + t sinγ + t

( – t) sinγ

= –i
α + β


( + t)(–/ sinγ ) – t

 – t
k. (.)

Since (–/ sinγ ) >  for γ ∈ (π , π ), and since k ≥ , then

zp′(z)
p(z)

= –i
α + β


m,

where

m =
( + t)(–/ sinγ ) – t

 – t
k

≥  + t – t
 – t

=
 – t
 + t

.
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Analogously, we may find that

zp′(z)
p(z)

= i
α + β


m,

where

m ≥  + t
 – t

. �

If we denote a = it, where by (.) t ∈ (–, ), then

min

{
 – t
 + t

,
 + t
 – t

}
=
 – |a|
 + |a| .

Therefore, under the assumptions of Theorem ., there exists

m ≥  – |a|
 + |a| , |a| = tan

π



(
α – β

α + β

)
,

such that

zp′(z)
p(z)

= –i
α + β


m

and

zp′(z)
p(z)

= i
α + β


m.

The above result is a corollary of Theorem . but it was given earlier in [], [] without
a proof. For a proof the authors of [] refereed to the paper [], but it probably has not
been published yet.

2 Main theorem
Our main result is contained in the following.

Theorem . Assume that  < α ≤ ,  < β ≤ . If f ∈ Gb(α,β) with

b(α,β) =min

{
δ(̃x–δ

 – ̃x–δ
 sin θ + x̃––δ

 )
 cos θ

,
δ(̃x–δ

 + ̃x–δ
 sin θ + x̃––δ

 )
 cos θ

}
,

where

δ =
α + β


, θ =

π



(
α – β

α + β

)
,

x̃ =
√
 – δ cos θ – δ sin θ

 – δ
, x̃ =

√
 – δ cos θ + δ sin θ

 – δ
, (.)

then f ∈ SS∗(α,β).
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Proof Assume that f ∈ Gb(α,β). Let us define the function p(z) = zf ′(z)/f (z). Then we have

 + zf ′′(z)
f ′(z)

zf ′(z)
f (z)

–  =
zp′(z)
p(z)

.

If f /∈ SS∗(α,β), then f (U) is not contained in the sector –πβ/ < argw < πα/, hence,
there exists a point z ∈U such that f (|z| < |z|) is contained in this sector, while f (z) lies on
the ray argw = –πβ/ or on the ray argw = πα/. To fix the next considerations, suppose
that argp(z) = –πβ/. We shall apply the considerations from the proof of Theorem ..
Using (.) with sinγ given in (.) we obtain

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ =
∣∣∣∣–iα + β


( + t) +x




x
– t

 – t
k
∣∣∣∣, (.)

where k ≥  and where

q(z) = –ix = exp

{
–i

π (α – β)
(α + β)

}{
p(z)

}/(α+β), x > . (.)

Applying (.) together with (.), we get

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ =
∣∣∣∣–iα + β


· ( + t) +x




x
– t

 – t
· k ·

(
–ix exp

(
i
π


· α – β

α + β

))– α+β


∣∣∣∣
=

∣∣∣∣α + β


( + t) +x




x
– t

 – t
kx

α+β
–


∣∣∣∣
=

δ( + t)
( – t)

(
x–δ
 –

tx–δ


 + t
+ x––δ



)
k, (.)

where

δ =
α + β


∈ (, ].

To estimate (.), let us consider the function

g(x) = x–δ –
t

 + t
x–δ + x––δ , x > .

Then we have

g ′
(x) = x––δ

(
( – δ)x +

tδ
 + t

x – ( + δ)
)
, x > ,

and

{
g ′
(x) = ,x > 

} ⇔ x = x̃ =
√
tδ + ( – δ)( + t) – tδ

( – δ)( + t)
.
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Hence g(x) takes its minimum at x̃, and so, (.) attains its minimum at x̃ too. Since
t = tan(θ/), then after some standard calculations, we get

x̃ =
√
tδ + ( – δ)( + t) – tδ

( – δ)( + t)
=

√
 – δ cos θ – δ sin θ

 – δ
,

the same as in (.). Therefore,

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ ≥ δ( + t)
( – t)

(
x̃–δ –

tx̃–δ

 + t
+ x̃––δ

)
.

Applying again t = tan(θ/), we obtain

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ ≥ δ( + t)
( – t)

(
x̃–δ –

tx̃–δ

 + t
+ x̃––δ

)
=

δ(̃x–δ
 – ̃x–δ

 sin θ + x̃––δ
 )

 cos θ
≥ b(α,β).

This contradicts the assumption that f ∈ Gb(α,β).
If argp(z) = πα/ similar argument also leads to the contradiction. Namely, assume

that f (|z| < |z|) is contained in the sector –πβ/ < argw < πα/, while f (z) lies on the ray
argw = πα/. Applying the previous considerations, we obtain

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ =
∣∣∣∣–iα + β


( + t) +x




–x
– t

 – t
k
∣∣∣∣, (.)

where k ≥  and where

q(z) = ix = exp

{
–i

π (α – β)
(α + β)

}{
p(z)

}/(α+β), x > . (.)

Applying (.) and (.), we get

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ =
∣∣∣∣iα + β


· ( + t) +x




x
+ t

 – t
· k ·

(
ix exp

(
i
π


· α – β

α + β

))– α+β


∣∣∣∣
=

∣∣∣∣α + β


( + t) +x




x
+ t

 – t
kx

α+β
–


∣∣∣∣
=

δ( + t)
( – t)

(
x–δ
 +

tx–δ


 + t
+ x––δ



)
k, (.)

where

δ =
α + β


∈ (, ].

To estimate (.), let us consider the function

g(x) = x–δ +
t

 + t
x–δ + x––δ , x > .

Then we have

g ′
(x) = x––δ

(
( – δ)x –

tδ
 + t

x – ( + δ)
)
, x > ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/383
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and

{
g ′
(x) = ,x > 

} ⇔ x = x̃ =
√
tδ + ( – δ)( + t) + tδ

( – δ)( + t)
.

Hence, g(x) takes its minimum at x̃, given in (.), and so, (.) attains its minimum at x̃,
too. Because t = tan(θ/), we obtain

x̃ =
√
tδ + ( – δ)( + t) + tδ

( – δ)( + t)
=

√
 – δ cos θ + δ sin θ

 – δ
.

Therefore,

∣∣∣∣zp′(z)
p(z)

∣∣∣∣ ≥ δ( + t)
( – t)

(̃
x–δ
 +

t̃x–δ


 + t
+ x̃––δ



)
=

δ(̃x–δ
 + ̃x–δ

 sin θ + x̃––δ
 )

 cos θ
≥ b(α,β).

This contradicts the assumption that f ∈ Gb(α,β). �

If α = β in the theorem above, then we get the following corollary.

Corollary . Assume that  < α < . If f ∈ Gb(α) with

b(α) =
α



{(
 + α

 – α

) –α–


+
(
 + α

 – α

) –α+


}
=

α√
( – α)–α( + α)+α

,

then f ∈ SS∗(α).

This is the result from Theorem ..
Putting α = /, β = / in Theorem ., we obtain

δ = /, θ = , x̃ = x̃ =
√


and

b(/, /) =min

{ √


,
√


}
=

√


.

Therefore, we may write the following corollary.

Corollary . If

∣∣∣∣ +
zf ′′(z)
f ′(z)

zf ′(z)
f (z)

– 
∣∣∣∣ < √


, z ∈U, (.)

then f is strongly starlike of order /.

Putting α = /, β = / in Theorem ., we obtain

δ =


, θ =

π


, x̃ =

√
(

√
 – )


, x̃ =

√
(

√
 + )
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and

b(α,β) =min

{ √(
√
 – )


√√

 + 
,

√(
√
 + )


√√

 + 

}
=

√(
√
 – )


√√

 + 
.

Therefore, we may write the following corollary.

Corollary . If f ∈ Gb(α,β) with

b(α,β) =
√(

√
 – )


√√

 + 
≈ .,

then f ∈ SS∗(/, /).

For some related sufficient conditions for starlikeness of order α, we refer to the recent
papers [] and [].

3 Differential subordinations
For two functions f , g ∈A, we say that f is subordinate to g , written as f ≺ g if and only if
there exists an analytic Schwarz function ω, with |ω(z)| < |z| in U such that f (z) = g(ω(z)).
In particular, if g is univalent in U, then we have the following equivalence

f (z) ≺ g(z) ⇐⇒ f () = g() and f
(|z| < 

) ⊂ g
(|z| < 

)
. (.)

The idea of subordination was used for defining many classes of functions studied in ge-
ometric function theory. Let us consider the class

S∗(A,B) =
{
f ∈A :

zf ′(z)
f (z)

≺  +Az
 + Bz

}
, – ≤ B < A≤ , (.)

introduced and investigated by Janowski []. For B = – and A =  – α the class S∗(A,B)
becomes the class of starlike functions of order α, (.).

Lemma . [], [, p.] Let � be a set in the complex plane C. Assume that ψ : C ×
U →C satisfies

ψ
(
q(ζ ),mζq′(ζ ); z

)
/∈ �, (.)

when m≥ , z ∈U and ζ ∈ ∂U \ {ζ ∈ ∂U : limz→ζ q(z) = ∞}. If p,q are analytic in U and

p() = q() and ψ
(
p(z),mzp′(z); z

) ∈ �, (.)

then p ≺ q.

Theorem . Assume that – ≤ B < A ≤  and that b( + |A|) ≤ |A – B|. If f ∈ Gb, then
f ∈ S∗(A,B).

http://www.journalofinequalitiesandapplications.com/content/2013/1/383
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Proof Note that

f ∈ Gb ⇔
∣∣∣∣zp′(z)
p(z)

∣∣∣∣ < b ⇔ zp′(z)
p(z)

≺ bz,

where p(z) = zf (z)/f (z). If b( + |A|) ≤ |A – B|, then

| + ζA| ≤
√ |A – B|

b
, for all |ζ | = .

Hence,
∣∣∣∣ A – B
( +Aζ )

∣∣∣∣ ≥ b, for all |ζ | = , ζ 	= –
A
,

and so,
∣∣∣∣mζ (A – B)
( +Aζ )

∣∣∣∣ ≥ b, for all |ζ | = , ζ 	= –
A

and for allm ≥ .

Therefore,

∣∣∣∣mζ ( +Aζ

+Bζ
)′

( +Aζ

+Bζ
)

∣∣∣∣ ≥ b, for all |ζ | = , ζ 	= –
B

and for allm ≥ 

or, equivalently,

∣∣∣∣mζq′(ζ )
q(ζ )

∣∣∣∣ ≥ b, for all |ζ | = , ζ 	= –
B

and for allm≥ .

Hence,

p(z) =
zf ′(z)
f (z)

≺ q(z) =
 +Az
 + Bz

or, equivalently, f ∈ S∗(A,B). �

The function

q(z) =
 + z/
 – z/

, z ∈ U

maps the unit disc onto the disc D(C,R) with the center C = / and the radius R = /.
Hence, putting A = /, B = –/, b = / in Theorem ., we obtain the following corol-
lary.

Corollary . If f ∈ G/, then

∣∣∣∣zf ′(z)
f (z)

–



∣∣∣∣ < 

.
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