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Abstract

In the present paper, we introduce a new band matrix F and define the sequence
space

~ fi f, p
Ep(F):{X:(Xk)ew:Z‘ﬁ(—kxk—kf—fo <oo;1§p§oo},
X +1

where f; is the kth Fibonacci number for every k € N. We also establish some
inclusion relations concerning this space and determine its .-, 8-, -duals. Further,
we characterize some matrix classes on the space £,(F) and examine some geometric

properties of this space.
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1 Introduction

Let w be the space of all real-valued sequences. Any vector subspace of w is called a se-
quence space. By Lo, ¢, ¢o and £, (1 < p < 00), we denote the sets of all bounded, con-
vergent, null sequences and p-absolutely convergent series, respectively. Also, we use the
conventions that e = (1,1,...) and e is the sequence whose only non-zero term is 1 in the
nth place for each n € N, where N ={0,1,2,...}.

Let X and Y be two sequence spaces and A = (a,x) be an infinite matrix of real num-
bers a,x, where 1,k € N. We write A = (a,x) instead of A = (ax);;_,- Then we say that A
defines a matrix mapping from X into Y and we denote it by writing A : X — Y if for ev-
ery sequence x = (xx)zo, € X, the sequence Ax = {A,(x)};2,, the A-transform of x, is in Y,
where

Au®) =Y awxi (neN). (L)
k=0

For simplicity in notation, here and in what follows, the summation without limits runs
from 0 to 0o. Also, if x € w, then we write x = () instead of x = (xx)2,-

By (X, Y), we denote the class of all matrices A such that A: X — Y. Thus, A € (X,Y)
if and only if the series on the right-hand side of (1.1) converges for each n € N and every
x € X and we have Ax € Y forall x € X.
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The matrix domain X, of an infinite matrix A in a sequence space X is defined by
Xa={x=(m)cw:Ax e X} (1.2)

which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of
a particular limitation method has recently been employed by several authors; see, for
instance, [1-12].

Let A denote the matrix A = (A,) defined by

1" * (n-1<k<n),

0 (0<k<n-1lork>n)

Ak =

or

()" * (m<k<n+l),

0 (O<k<nork>n+1).

Ak =

In the literature, the matrix domain X, is called the difference sequence space whenever
A is a normed or paranormed sequence space. The idea of difference sequence spaces was
introduced by Kizmaz [13]. In 1981, Kizmaz [13] defined the sequence spaces

X(A) = {x = (x) € 02 (v = xx0) € X}

for X = £, ¢ and cy. The difference space bv,, consisting of all sequences (x) such that
(%x —xx-1) is in the sequence space £, was studied in the case 0 < p <1 by Altay and Basar
[14] and in the case 1 < p < oo by Basar and Altay [4] and Colak et al. [15]. The paranormed
difference sequence space

AL(p) = {x = (x) € w: (%% — x141) € A(P)}

was examined by Ahmad and Mursaleen [16] and Malkowsky [17], where A(p) is any of the
paranormed spaces £ (p), c(p) and ¢y(p) defined by Simons [18] and Maddox [19].
Recently, Basar et al. [20] have defined the sequence spaces bv(u, p) and bv(u, p) by

bv(u,p) = {x =(xx) €Ew: Z|uk(xk —xk,l)}pk < oo}
k

and
bvoo(u,p) = {x =(x) Ew: sup|uk(xk —xk_l)’pk < oo},
keN

where u = (uy) is an arbitrary fixed sequence and 0 < px < H < oo for all k € N. These
spaces are generalization of the space bv,, for 1 < p < co. Quite recently, Kiris¢i and Basar
[21] have introduced and studied the generalized difference sequence spaces

X={x=(x)€w:B(rs)xecX}
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for X = £, £p, c and ¢y, where 1 < p < 0o and B(r, s)x = (sxx_1 + rxx) (7,5 # 0). Following
Kirisci and Basar [21], Sonmez [22] has examined the sequence space X(B) as the set of
all sequences whose B(r, s, t)-transforms are in the space X € {£,{,,c,co}, where B(r, s, t)
denotes the triple band matrix B(r,s,t) = {b,(r,s,t)} defined by

r (n=k),

s (m=k+1),
bnk(rr S, t) =

t (n=k+2),

0 otherwise

for all n,k € N and r,s,t € R — {0}. Also in [23-34], the authors studied some difference
sequence spaces.

In this paper, we define the Fibonacci difference matrix F by using the Fibonacci se-
quence {f,}%2, and introduce new sequence spaces Ep(ﬁ) and £ (F) related to the matrix
domain of F in the sequence spaces £, and £, respectively, where 1 < p < co. This study
is organized as follows.

In Section 2, we give some notations and basic concepts including the Fibonacci se-
quence and a BK-space. In Section 3, we define a new band matrix with Fibonacci num-
bers and introduce the sequence spaces ¢, (F) and £ (F). Also, we establish some inclusion
relations concerning these spaces and construct the basis of the space EI,,(IAD )forl <p<oo.
In Section 4, we determine the -, 8-, y-duals of the spaces £, (F) and €+ (F). In Section 5,
we characterize the classes (Ep(ﬁ),X) and (£ (F), X), where 1 <p<ooand X is any of the
spaces oo, {1, ¢ and ¢p. In the final section of the paper, we investigate some geometric
properties of the space Ep(ﬁ) forl<p<oo.

2 The Fibonacci difference sequence space ll,,(I:')
Define the sequence {f,};°, of Fibonacci numbers given by the linear recurrence relations

fo=f1=1 and f;1=fn,1+f;q,2, n=>2.

Fibonacci numbers have many interesting properties and applications in arts, sciences
and architecture. For example, the ratio sequences of Fibonacci numbers converges to
the golden ratio which is important in sciences and arts. Also, some basic properties of

Fibonacci numbers [35] are given as follows:

a1 5 .
lim 'Q = +—\/— =a (golden ratio),
n—>00 fn 2

D fi=fua-1 (neN),
k=0

1
—_- converges,
25 o

Soifu1 —f2 = (=1)"  (n>1) (Cassini formula).

Substituting for f,,; in Cassini’s formula yields f* | + ff,-1 — £ = (=1)"*1.
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A sequence space X is called a FK-space if it is a complete linear metric space with
continuous coordinates p,, : X — R (n € N), where R denotes the real field and p,(x) = x,,
for all x = (x) € X and every n € N. A BK space is a normed FK space, that is, a BK-space
is a Banach space with continuous coordinates. The space £, (1 < p < 00) is a BK-space
with [lx[], = (3 pog [%[7)""7 and co, ¢ and £, are BK-spaces with [|x|los = supy |xx].

A sequence (b,) in a normed space X is called a Schauder basis for X if for every
x € X, there is a unique sequence (o) of scalars such that x = ", by, i.e., limy,_, « [|x —
Yo o onbyll = 0.

The «-, 8- and y-duals of the sequence space X are respectively defined by

X% = {az = (ax) € w: ax = (arxy) € £, for all x = (xy) eX},

XP = {a = (ar) € w: ax = (arxy) € cs for all x = (xy) eX}
and
XY = {a = (ax) € w: ax = (arxy) € bs for all x = (xx) eX},

where ¢s and bs are the sequence spaces of all convergent and bounded series, respec-
tively [36].

We assume throughout that p,q > 1 with p™! + g7! = 1 and denote the collection of all
finite subsets of N by F.

3 The Fibonacci difference sequence spaces ﬁp(f-') and £, (F)

In this section, we define the Fibonacci band matrix £ = (f,,k) and introduce the sequence
spaces Zp(f-") and £ (F), where 1 < p < 00. Also, we present some inclusion theorems and
construct the Schauder basis of the space Zp(ﬁ) forl < p < oco.

Let f, be the nth Fibonacci number for every n € N. Then we define the infinite matrix

F=(fu) by
Sl (k= n-1),
J={ £~ k=n), (n,k € N).

0 (0O<k<n-lork>n)

Now, we introduce the Fibonacci difference sequence spaces £, (ﬁ ) and EOO(IAj ) as the set of

all sequences such that their F-transforms are in the space £, and £, respectively, i.e.,

Ep(ﬁ): {x:(xn)ea):z S X, —@xnlp«)o},
P fn+1 fn
1<p<oo,
and
7 fn fn+1
EN(F)z{x:(xn)ea):su Xy — —%X,_1| <007.
negﬁﬁl fn '
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With the notation of (1.2), the sequence spaces Zp(f-") and £ (F) may be redefined by
GLE) =) (1<p<oo) and Lo(F) = (Coo)p 3.1)

Define the sequence y = (y,), which will be frequently used, by the F-transform of a

sequence x = (x,,), i.e.,

fo
~ Xo =X n=0),
yn=Fal) = 12707 =0 e, (3.2)
fnil Xn — ?1 Xn-1 (ﬂ Z 1)

Now, we may begin with the following theorem which is essential in the text.

Theorem 3.1 Let 1 < p < co. Then Z,,(IA-") is a BK-space with the norm ||x||£p(ﬁ) = ||1A7x||p,
that is,

1/p
lell,, & = (Z|F ) (1<p<oo)

and
%l ¢ = sup|Fa(x)].
neN

Proof Since (3.1) holds, £, and £, are BK-spaces with respect to their natural norms and
the matrix F is a triangle; Theorem 4.3.12 of Wilansky [37, p.63] gives the fact that the
spaces EP(IA-") and £ (F) are BK-spaces with the given norms, where 1 < p < co. This com-

pletes the proof. 0

Remark 3.2 One can easily check that the absolute property does not hold on the spaces
€,(F) and £, (F), that is, lell,, iy 7 Ml 2y and el gy # 21l for at least one se-
quence in the spaces £ (F ) and Eoo (F), and this shows that ¢ (F Yand ¢ ( ) are the sequence

spaces of non-absolute type, where |x| = (Jxx]) and 1 < p < c0.

Theorem 3.3 The Fibonacci difference sequence space Ep(f-") of non-absolute type is lin-

early isomorphic to the space £, that is, Ep(f-") =, for1 <p <oo.

Proof To prove this, we should show the existence of a linear bijection between the spaces
L (IA-") and £, for 1 < p < oo. Consider the transformation T defined, with the notation of
(3.2), from £ (F) to £, byx — y=Tx. Then Tx =y = Fx e £, for every x € £,(F F). Also,
the linearity of T is clear. Further, it is trivial that x = 0 whenever Tx = 0 and hence T is
injective.

Furthermore, let y = (yx) € £, for 1 < p < oo and define the sequence x = (x) by

f2+
X = Z f:;ll y; (keN). (3.3)
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f_k _ ﬁ<+1
fin T R

Then, in the cases 1 < p < 00 and p = 0o, we get
lelly, & = (Z X1

o) (54

1/p
= (Z kal”) =yl < o0
k

p) lp

f/<+1 fk+1 2 )
fk+1 Zf;ﬁﬂ Zf}ﬁ+l

j=0

and
1%l & = sup|Fe(®)| = ¥l < 00,
keN

respectively. Thus, we have x € E,,(f-") (1 < p < 00). Hence, T is surjective and norm pre-
serving. Consequently, T is a linear bijection which shows that the spaces £, (F)and ¢ p are

linearly isomorphic for 1 < p < co. This concludes the proof. d
Now, we give some inclusion relations concerning the space Zp(ﬁ ).
Theorem 3.4 The inclusion £, C Ep(ﬁ) strictly holds for1 < p < oo.

Proof To prove the validity of the inclusion £, C Zp(f-") for 1 < p < o0, it suffices to show
the existence of a number M > 0 such that ”x”/zp(ﬁ) < M]|x|l, for every x € £,,.
Letx € £,and 1 < p < o0o. Since the inequalities% <1 and% <2hold forevery k € N,

we obtain with the notation of (3.2),

DB <D 27 (Il + 1200 ) <27 (Z lcil? + Y e |P)
k k k

k

and

sup‘Fk(x ’ < 35up|xk|,
keN

which together yield, as expected,
el iy < 4lall, (3.4)

for 1 < p < co. Further, since the sequence x = = (f2,) = (1,2%,3%,5%,...) is in £,(F) —
£y, the inclusion £, C Ep(ﬁ) is strict for 1 < p < oo. Similarly, one can easily prove that
inequality (3.4) also holds in the case p = 1, and so we omit the details. This completes the
proof. d

Theorem 3.5 Neither of the spaces bv, and Ep(ﬁ ) includes the other one, where 1 < p < 0.

Proof Lete=(1,1,1,...) and x = (xy) = (szﬂ). Then, since Fx = (1,0,0,...) € £y and Ax =
(Lfofss ffas -+ s feeifien2s - - -) € £y, we conclude that x is in £, (F) but not in bv,. Now, consider
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the equation

f/<+1 fk

_ lfk2 _fk2+1| _ |(_1)k _fkf/<+1| (k c N)

fkfk+1 fkfk+1

Then |(=1)* —fifis1] > fifcs1 whenever k is odd, which implies that the series Y, | % —f§—21 |

is not convergent, where 1 < p < oo. Thus, Fe = (j% - %) is not in £, for 1 < p < oo.
Additionally, since Ae = (1,0,0,...), the sequence e is in £,. Hence, the sequence spaces
ﬁp(f-") and bv, overlap but neither contains the other, as asserted. g

Theorem 3.6 If1 <p<s, then Zp(f-") C 4,(F).

Proof Letl<p<sandxe Ep(f-"). Then we obtain from Theorem 3.1 that y € £,, where y
is the sequence given by (3.2). Thus, the well-known inclusion £, C £, yields y € £;. This
means that x € Es(ﬁ) and hence, the inclusion Ep(ﬁ) - es(ﬁ) holds. This completes the
proof. d

Now, we give a sequence of the points of the space Zp(ﬁ) which forms a basis for the
space Ep(f-") 1=<p<o).

Theorem 3.7 Let 1 < p < 00 and define the sequence c© ¢ Ep(ﬁ) for every fixed k € N by

() = (;2 < en). (35)
fkf”—]:l (n>k)

Then the sequence (c(k)),fio is a basis for the space Zp(f-"), and every x € Kp(ﬁ) has a unique
representation of the form

x=Y Fi(w)c®. (3.6)
k

Proof Let1 < p < oco. Then it is obvious by (3.5) that F(c®) = ek ¢ £, (k € N) and hence
¢® € ¢,(F) for all k € N.
Further, let x € £ p(ﬁ ) be given. For every non-negative integer m, we put

m
2 = Z Fr(x)c®.
k=0

Then we have that

R 0 (0<n<m),
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Now, for any given ¢ > 0, there is a non-negative integer 7, such that
00 r
~ p e
S B < (—) .
2
n=mp+1
Therefore, we have for every m > m, that

o 1p 0 1/p
n A &
o = ||zp([v) = ( E n ) = ( E n ) =5 <8

n=m+1 n=mop+1

which shows that lim,,_, oo [|x — 27 ”zp([f) =0 and hence x is represented as in (3.6).

Finally, let us show the uniqueness of the representation (3.6) of x € £, (E). For this, sup-
pose thatx =), we(x)c®. Since the linear transformation T defined from Ep(ﬁ) to £, in
the proof of Theorem 3.3 is continuous, we have

ZMk(x ZMk Snk = pin(x)  (n €N).

Hence, the representation (3.6) of x € Zp(ﬁ) is unique. This concludes the proof. O

4 The a-, - and y-duals of the space ¢, (F)

In this section, we determine the «-, 8- and y -duals of the sequence space ¢ ( ) of non-

absolute type. Since the case p = 1 can be proved by analogy, we omit the proof of that case

and consider only the case 1 < p < 0o in the proof of Theorems 4.5 and 4.6, respectively.
The following known results [38] are fundamental for our investigation.

Lemma 4.1 A = (ax) € (¢, £1) if and only if

sup Z Zank

KeF ") ek

<00, l<p=<oo.

Lemma 4.2 A = (au) € (£p,c) if and only if

lim a,; exists forallk €N, (4.1)
n— o0

sup2|ank|q<oo, l<p<oo. (4.2)
neN k

Lemma 4.3 A = (a,) € (U, €) if and only if (4.1) holds and

lim Z |aux| = ‘ l1m Ak |.
n—00

Lemma 4.4 A = (au) € (€p, o) if and only if (4.2) holds with 1 < p < oco.

Theorem 4.5 The a-dual of the space ¢ p(ﬁ ) is the set

fn+1 1 }
=(ax) Ew: sup ,
{ ¢ 2 gfkfu

e]—'k

where 1 < p < 00.
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Proof Let1 < p < oo. For any fixed sequence a = (a,) € w, we define the matrix B = (b,x)
by

fn2+l
bnk = Sk

a, (0<k=<n),
(k> n)

for all n,k € N. Also, for every x = (x,,) € w, we put y = Fx. Then it follows by (3.2) that

n 2

fn+1
ApXp = An)k = B (V) (Vl € N) (44‘)
2

Thus, we observe by (4.4) that ax = (a,x,) € £; whenever x € Kp(l:") ifand only if By € £;
whenever y € £,. Therefore, we derive by using Lemma 4.1 that

n+l
sup - <00,
which implies that (£ ( ))* =d. O

Theorem 4.6 Define the sets dy, ds and d, by

oo 2

~ f‘+1

dzz{az(ak)ea): E ! aj exists forall k e N ¢,
=k fkfk+l

n 2 q
a=(ax) € w:sup <oo}
o= fotor o35 e
and
n 00 2
]+1 ) j+1
d { (ax) e w: hmzszfku ;j_zkfkﬁ<+1a/<oo}'

Then (£,(E))? = dy N ds and (Lo (F))P = dy N dy, where 1< p < co.

Proof Let a = (ax) € w and consider the equality

Zﬂkxk = ;ak<2£kff ) Z(kaf ﬂ,)yk =D,(y), (4.5)

k=0 \ j=k

where D = (d,) is defined by

n
kafkﬂ aj (0 S k S }’l),

Ak = n,keN.

0 (k> n),

Then we deduce from Lemma 4.2 with (3.2) that ax = (a;xx) € ¢s whenever x = (x;) €
¢,(F) if and only if Dy € c whenever y = () € £,. Thus, (ax) € (£,(F))* if and only if (a;) €

Page 9 of 15
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Ziz and (ay) € 213 by (4.1) and (4.2), respectively. Hence, (Ep(ﬁ))ﬂ =d, N 213. It is clear that
one can also prove the case p = 0o by the technique used in the proof of the case 1 < p < 0o
with Lemma 4.3 instead of Lemma 4.2. So, we leave the detailed proof to the reader. [

Theorem 4.7 (ZP(IA-"))V = (:\13, where 1< p < 00.

Proof This result can be obtained from Lemma 4.4 by using (4.5). O

5 Some matrix transformations related to the sequence space Zp(ﬁ)
In this section, we characterize the classes (Ep(lA-"),X), where 1 < p < oo and X is any of the
spaces £, £1, ¢ and ¢y.

For simplicity in notation, we write

o0
61 Z /+1
nk =
= Jfifir

forall k,n e N.
The following lemma is essential for our results.

Lemma 5.1 (see [21, Theorem 4.1]) Let A be an FK-space, U be a triangle, V be its inverse
and | be an arbitrary subset of w. Then we have A = (ayk) € (Ay, 1) if and only if

c = (ciﬁ) € (hc) forallmeN
and

C=(cm) € (A ),
where

o _ dikanvic (0 <k<m),

Ok = 0 (k> m)
and ¢ = Z}Ofk Vi for all k,m,n € N.

Now, we list the following conditions:

m q
sup < 00, (5.1)
meNkXO: ;fkf+
W}l_r)réo Zf i =au Vnmkel, (5.2)
mh_r)réoz Z <f1 : ayj| = Z |@| foreachneN, (5.3)
K+ k
sup ) |7 < 00, (5.4)

neN A
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sup Z Zank < 00, (5.5)
NeF e
lim du =ax; keN, (5.6)
n— 00
lim ij ] = ; G, (5.7)
lim ;ank =0, (5.8)
sup |dux| < 0o, (5.9)
nkeN
m f2

sup Ayl < 00, (5.10)
k,meN Zf k+1 "
sup Z || < 00, (5.11)
keN

sup ZZM < o0. (5.12)
NKeF | eN kek

Then, by combining Lemma 5.1 with the results in [38], we immediately derive the fol-

lowing results.

Theorem 5.2
() A=(an) e (i (F), ly) if and only (5.2), (5.9) and (5.10) hold.
(b) A = (au) € (t1(F),c) if and only if (5.2), (5.6), (5.9) and (5.10) hold.
(©) A =(aun) € ((F),co) if and only if (5.2), (5.6) with ay = 0, (5.9) and (5.10) hold.
d) A = (any) € (¢1(F), €) if and only (5.2), (5.10) and (5.11) hold.

Theorem 5.3 Let 1< p < oco. Then we have
(@) A=(aw) e, (F), ¢ o) if and only lf(5 1), (5.2) and (5.4) hold.
(b) A=(aw) e, (F), c) ifand only if (5.1), ), (5.4) and (5.6) hold.
() A=(au) e, (F), o) ifand only if (5.1) 1 5.2), (5.4) and (5.6) with a; = 0 hold.
(d) A=(au) e, (F), t1) if and only if (5.1), 5 (5.2) and (5.5) hold.

Theorem 5.4
() A= (am) € (lo(F), l) ifand only (5.2), (5.3) and (5.4) with q = 1 hold.
(b) A = (an) € b (E),0) if and only (5.2), (5.3), (5.6) and (5.7) hold.
(©) A =(aun) € (boo(E), co) if and only (5.2), (5.3) and (5.8) hold.
d) A= (an) € (Ls(E), ) ifand only (5.2), (5.3) and (5.12) hold.

6 Some geometric properties of the space K,,(ﬁ') (1<p<o0)
In this section, we study some geometric properties of the space Kp(ﬁ ) for 1< p < oco.

For these properties, we refer to [3, 39-47].

A Banach space X is said to have the Banach-Saks property if every bounded sequence
(x,) in X admits a subsequence (z,) such that the sequence {f(z)} is convergent in the

norm in X [40], where

ti(z) = %(zo +zi+---+zr) (keN). (6.1)
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A Banach space X is said to have the weak Banach-Saks property whenever, given any
weakly null sequence (x,,) C X, there exists a subsequence (z,) of (x,) such that the se-
quence {tx(z)} is strongly convergent to zero.

In [43], Garcia-Falset introduces the following coefficient:

R(X) = sup{limianx,, — x|l : (%) C B(X), %, — 0, € B(X)}, (6.2)
n—o0
where B(X) denotes the unit ball of X.
Remark 6.1 A Banach space X with R(X) < 2 has the weak fixed point property [44].

Let 1 < p < 0o. A Banach space is said to have the Banach-Saks type p or the property
(BS), if every weakly null sequence (xy) has a subsequence (xx,) such that for some C > 0,

Zxkz <C(n+1D"" (6.3)

1=0

for all n € N ( see [45]).
Now, we may give the following results related to some geometric properties, mentioned

A

above, of the space £,(F), where 1 < p < co.
Theorem 6.2 Let 1< p < 00. Then the space (Zp(f-") has the Banach-Saks type p.

Proof Let (g,) be a sequence of positive numbers for which }_ ¢, <1/2, and also let (x,)
be a weakly null sequence in B(Zp(ﬁ)). Set zy = x9 = 0 and z; = x,,; = %;. Then there exists
m; € N such that

[e¢}

Z z1(i)e?

i=my+1

<é&1. (6.4‘)
£p(F)

Since (x,) being a weakly null sequence implies x,, — 0 coordinatewise, there is an 1, €
N such that
my
an(i)e(l) <€
i=0 ep(ﬁ)

when n > n,. Set z; = x,,,. Then there exists an m, > m; such that

oo

> z(i)e?

i=mp+1

< &j.
p(F)

Again using the fact that x, — 0 coordinatewise, there exists an 73 > 1, such that

<&,
&(F)

ma
Z x,(i)e?
i=0

when n > n3.
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If we continue this process, we can find two increasing subsequences (m;) and (#;) such
that

Neld
n

< 8,‘
tp(E)

for each # > n;,; and
o0

> z(e

i=mj+1

< Ej,

ep(F)

where b; = L Hence,

Lp(F)

n
275
j=0

(Zz,(l)e(‘ Zl zj(i)e(i) + Z z/(i)e(i)>
j=0

i=mj_1+1 i=mj+l Zp(f’)

=

Z( X/: Z/(i)e(”)

j=0 Ni=mj_1+1

n
+2 E 8]'.
j=0

tp(F)
On the other hand, it can be seen that ||x|| () < 1. Therefore, we have that

» 12

—z, —le,( 1)

333 ;

[p(F j=0 i= m_1+1

n o0
=22
j=0 i=0

Z( > Z;(i)e“’)

j=0 Ni=mj_1+1

—z,() ’fl 7(i —1)’

<(m+1).
Hence, we obtain
n mj
Z( > z,(i)e(‘)) <(n+1)'2.
j=0 i:m1;1+l

By using the fact that 1 < (1 +1)'7 for all n € N and 1 < p < 00, we have

<m+D)"P +1<2m+1)"2.
tp(F)

Hence, Ep(lA-" ) has the Banach-Saks type p. This concludes the proof. O
Remark 6.3 Note that R(ﬁp(f-")) =R(ly) = 217 since ¢ ( ) is linearly isomorphic to £,,.
Hence, by Remarks 6.1 and 6.3, we have the following theorem.

Theorem 6.4 The space Ep(f-') has the weak fixed point property, where 1 < p < 0.
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