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Abstract
Let Rn+ be an n-dimensional upper half Euclidean space, and let α be any real number
satisfying 0 < α < n. In our previous paper (Cao and Dai in J. Math. Anal. Appl.
389:1365-1373, 2012), we considered the single equation

u(x) =
∫
Rn+

( 1
|x – y|n–α –

1
|x* – y|n–α

)
ur(y)dy, (.)

where x* = (x1, . . . , xn–1, –xn) is the reflection of the point x about the ∂Rn+. We obtained
the monotonicity and nonexistence of positive solutions to equation (0.1) under
some integrability conditions when r > n

n–α . In (Zhuo and Li in J. Math. Anal. Appl.
381:392-401, 2011), the authors discussed the following system of integral equations
in Rn+:

{
u(x) =

∫
Rn+
( 1
|x–y|n–α – 1

|x*–y|n–α )v
q(y)dy,

v(x) =
∫
Rn+
( 1
|x–y|n–α – 1

|x*–y|n–α )u
p(y)dy

(.)

with 1
q+1 +

1
p+1 =

n–α
n . They obtained rotational symmetry of positive solutions of (0.2)

about some line parallel to xn-axis under the assumption u ∈ Lp+1(Rn+) and v ∈ Lq+1(Rn+).
In this paper, we derive nonexistence results of such positive solutions for (0.2). In
particular, we present a simple and more general method for the study of symmetry
and monotonicity which has been extensively used in various forms on a half-space.

AMS Subject Classification: 35B05; 35B45
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1 Introduction
By a Liouville-type theorem, we here mean the statement of nonexistence of nontrivial
(bounded or not) solutions on the whole space or on a half-space. In the last two decades,
Liouville-type theorems have been widely used, in conjunction with rescaling arguments,
to derive a priori estimates for solutions of boundary value problems.
Let Rn

+ be the n-dimensional upper half Euclidean space

Rn
+ =

{
x = (x,x, . . . ,xn) ∈ Rn|xn > 

}
.
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In our previous paper [], we studied the integral equation in Rn
+:

u(x) =
∫
Rn+

(


|x – y|n–α
–


|x* – y|n–α

)
ur(y)dy, u(x) > ,x ∈ Rn

+. (.)

For r > n
n–α

( < α < n), we obtained the following Liouville-type theorem.

Theorem . [] Suppose r > n
n–α

. If the solution u of (.) satisfies u ∈ L
n(r–)

α (Rn
+) and is

nonnegative, then u≡ .

The result above motivates us to further study positive solutions of the systems of inte-
gral equations in Rn

+,

⎧⎨
⎩u(x) =

∫
Rn+
( 
|x–y|n–α – 

|x*–y|n–α )vq(y)dy,

v(x) =
∫
Rn+
( 
|x–y|n–α – 

|x*–y|n–α )up(y)dy,
(.)

where p and q satisfy


q + 

+


p + 
=
n – α

n
.

This is the so-called critical case.
In [] Zhuo and Li discussed regularity and rotational symmetry of solutions for integral

system (.).

Theorem . [] Let (u, v) be a pair of positive solutions of (.) with p,q ≥ . Assume
that u ∈ Lp+(Rn

+) and v ∈ Lq+(Rn
+), then every positive solution (u, v) of (.) is rotationally

symmetric about some line parallel to xn-axis.

They also showed close relationships between integral equation (.) and the following
PDEs system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–�) α
 u = vq, u > , in Rn

+;

(–�) α
 v = up, v > , in Rn

+;

u = (–�)u = · · · = (–�) α
 –u = , on ∂Rn

+;

v = (–�)v = · · · = (–�) α
 –v = , on ∂Rn

+,

(.)

where α is an even number.

Theorem. [] Let (u, v) be a pair of solutions of (.) up to a constant, then (u, v) satisfies
(.).

In this paper, we use a simple and more general method to derive that the solution pair
(u, v) of (.) is strictlymonotonically increasing with respect to the variable xn and further
present the nonexistence of positive solutions of (.) under some integrability conditions.
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Theorem . Let (u, v) be a pair of positive solutions of (.) with p,q ≥ . Assume that
u ∈ Lp+(Rn

+) and v ∈ Lq+(Rn
+), then both u and v are strictly monotonically increasing with

respect to the variable xn.

Theorem . Let (u, v) be a pair of positive solutions of (.) with p,q ≥ . Assume that
u ∈ Lp+(Rn

+) and v ∈ Lq+(Rn
+) are nonnegative, then u = v ≡ .

2 Properties of the function G(x,y)
In this section, we introduce some properties of the function G(x, y) which is defined on
a half-space. By using the properties, one could find a simple and general method for the
study of symmetry and monotonicity which has been used in various forms defined in a
half-space. More precisely, for x, y ∈ Rn

+, define

G(x, y) =


|x – y|n–α
–


|x* – y|n–α

,

where x* = (x, . . . ,xn–, –xn) is a reflection of the point x about the ∂Rn
+.

Let λ be a positive real number. Define

�λ =
{
x = (x,x, . . . ,xn) ∈ Rn| < xn < λ

}
,

Tλ =
{
x ∈ Rn

+|xn = λ
}

and

�C
λ = Rn

+\�λ,

the complement of �λ in Rn
+.

Let

xλ = (x,x, . . . ,xn–, λ – xn)

be a reflection of the point x = (x,x, . . . ,xn) about the plane Tλ.
To this end, for x, y ∈ Rn

+, define

d(x, y) = |x – y|

and

θ (x, y) =

⎧⎨
⎩xnyn, if x, y ∈ Rn

+,

, x /∈ Rn
+ or y /∈ Rn

+.

Then, for x, y ∈ Rn
+, x �= y, we have the following expression:

G(x, y) =H
(
d(x, y), θ (x, y)

)
.

Here H : (,∞)× [,∞)→ R,

H(s, t) =

sγ

–


(s + t)γ
, γ =

n – α


.
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The following lemma states some properties of the function G(x, y). Here we present a
proof.

Lemma .
(i) For any x, y ∈ �λ, x �= y, we have

G
(
xλ, yλ

)
>max

{
G

(
xλ, y

)
,G

(
x, yλ

)}
(.)

and

G
(
xλ, yλ

)
–G(x, y) >

∣∣G(
xλ, y

)
–G

(
x, yλ

)∣∣. (.)

(ii) For any x ∈ �λ, y ∈ �C
λ , it holds

G
(
xλ, y

)
>G(x, y). (.)

Proof Since x, y ∈ �λ, it is easy to verify that

d
(
xλ, yλ

)
= d(x, y) < d

(
xλ, y

)
(.)

and

θ
(
xλ, yλ

)
> θ

(
xλ, y

)
> θ (x, y). (.)

In fact,

θ
(
xλ, yλ

)
– θ

(
xλ, y

)
= (λ – xn)(λ – yn) – (λ – xn)yn

= (λ – xn)(λ – yn) > ,

θ
(
xλ, y

)
– θ (x, y) = (λ – xn)yn – xnyn

= (λ – xn)yn > ,

i.e.,

θ
(
xλ, yλ

) ≥ max
{
θ
(
xλ, y

)
, θ

(
x, yλ

)}
≥ min

{
θ
(
xλ, y

)
, θ

(
x, yλ

)} ≥ θ (x, y). (.)

Consider

G(x, y) =H(s, t) =

sγ

–


(s + t)γ

with

s = d(x, y) and t = θ (x, y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/37


Cao and Dai Journal of Inequalities and Applications 2013, 2013:37 Page 5 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/37

Then, for s, t > , we have

∂H
∂s

= (–γ )
(


sγ+

–


(s + t)γ+

)
< , (.)

∂H
∂t

=
γ

(s + t)γ+
> , (.)

∂H
∂t ∂s

= –
γ (γ + )
(s + t)γ+

< . (.)

(i) From (.), (.), (.) and (.), we obtain (.).
While by (.) and (.), we have

G
(
xλ, yλ

)
–G(x, y) =

∫ θ (xλ ,yλ)

θ (x,y)

∂H(d(x, y), t)
∂t

dt

>
∫ θ (xλ ,yλ)

θ (x,y)

∂H(d(xλ, y), t)
∂t

dt

≥
∫ θ (xλ ,y)

θ (x,yλ)

∂H(d(xλ, y), t)
∂t

dt

=
∣∣H(

d
(
xλ, y

)
, θ

(
xλ, y

))
–H

(
d
(
x, yλ

)
, θ

(
x, yλ

))∣∣
=

∣∣G(
xλ, y

)
–G

(
x, yλ

)∣∣.
Here we have used the fact that d(xλ, y) = d(x, yλ).
(ii) Noticing that for x ∈ �λ and y ∈ �C

λ , we have

∣∣xλ – y
∣∣ < |x – y| and θ

(
xλ, y

)
> θ (x, y).

Then (.) follows immediately from (.) and (.).
This completes the proof of Lemma .. �

Remark The properties of the function G(x, y) defined on a half-space are very similar to
the properties of Green’s function for a poly-harmonic operator on the ball with Dirichlet
boundary conditions. One could find this interesting relation from [, ] and [].

3 The proof of main theorems
In this section, by using the method of moving planes in integral forms, we derive the
nonexistence of positive solutions to integral system (.) and obtain a new Liouville-type
theorem on a half-space. To prove the theorems, we need several lemmas.
Let λ > ,

�λ =
{
x ∈ Rn| < xn < λ

}
,

�̃λ = {xλ|x ∈ �λ}.

Set

uλ(x) = u
(
xλ

)
and vλ(x) = v

(
xλ

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/37
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Lemma . Let (u, v) be any pair of positive solutions of (.). For any x ∈ �λ, we have

u(x) – uλ(x)≤
∫

�λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)][
vq(y) – vqλ(y)

]
dy, (.)

v(x) – vλ(x)≤
∫

�λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)][
up(y) – upλ(y)

]
dy. (.)

Proof Obviously, we have

u(x) =
∫

�λ

G(x, y)vq(y)dy +
∫

�λ

G
(
x, yλ

)
vqλ(y)dy

+
∫

�C
λ \�̃λ

G(x, y)vq(y)dy,

uλ(x) =
∫

�λ

G
(
xλ, y

)
vq(y)dy +

∫
�λ

G
(
xλ, yλ

)
vqλ(y)dy

+
∫

�C
λ \�̃λ

G
(
xλ, y

)
vq(y)dy.

Now, by properties (.) and (.) of the function G(x, y) and the pair of positive solutions
of (.), we have

u(x) – uλ(x) ≤
∫

�λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)](
vq(y) – vqλ(y)

)
dy

+
∫

�C
λ \�̃λ

[
G(x, y) –G

(
xλ, y

)]
vq(y)dy

≤
∫

�λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)](
vq(y) – vqλ(y)

)
dy.

Similarly, we could derive the second inequality in the lemma. This completes the proof
of Lemma .. �

Proof of Theorem . To prove Theorem ., we compare (u(x), v(x)) and (uλ(x), vλ(x)) on
�λ. The proof consists of two steps.
In the first step, we start from the very low end of our region R

n
+, i.e., xn = . We will

show that for λ sufficiently small,

uλ(x)≥ u(x) and vλ(x)≥ v(x), ∀x ∈ �λ. (.)

In the second step, we will move our plane Tλ toward the positive direction of xn-axis
as long as inequality (.) holds.
Step . Define

�u
λ =

{
x|x ∈ �λ,u(x) > uλ(x)

}
,

and

�v
λ =

{
x|x ∈ �λ, v(x) > vλ(x)

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/37
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We show that for sufficiently small positive λ, �u
λ and �v

λ must both be measure zero. In
fact, by Lemma ., it is easy to verify that

u(x) – uλ(x) ≤
∫

�λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)](
vp(y) – vpλ(y)

)
dy

=
∫

�λ\�v
λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)](
vp(y) – vpλ(y)

)
dy

+
∫

�v
λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)](
vp(y) – vpλ(y)

)
dy

≤
∫

�v
λ

[
G

(
xλ, yλ

)
–G

(
x, yλ

)](
vp(y) – vpλ(y)

)
dy

≤
∫

�v
λ

G
(
xλ, yλ

)[
vp(y) – vpλ(y)

]
dy

≤ p
∫

�v
λ


|x – y|n–α

ψ
p–
λ (y)

[
v(y) – vλ(y)

]
dy

≤ p
∫

�v
λ


|x – y|n–α

vp–(y)
[
v(y) – vλ(y)

]
dy,

where ψλ(y) is valued between v(y) and vλ(y). Therefore, on �v
λ we have

 ≤ vλ(y) ≤ ψλ(y) ≤ v(y).

It follows from the Hardy-Littlewood-Sobolev inequality that

‖uλ – u‖Lp+(�u
λ )

≤ C
∥∥vq–(vλ – v)

∥∥
L(q+)/q(�v

λ)
. (.)

Then by the Hölder inequality,

‖uλ – u‖Lp+(�u
λ )

≤ C‖v‖q–Lq+(�v
λ)
‖vλ – v‖Lq+(�v

λ)
. (.)

Similarly, one can show that

‖vλ – v‖Lq+(�v
λ)

≤ C‖u‖p–Lp+(�u
λ )

‖uλ – u‖Lp+(�u
λ )
. (.)

Combining (.) and (.), we arrive at

‖uλ – u‖Lp+(�u
λ )

≤ C‖v‖q–Lq+(�v
λ)
‖u‖p–Lp+(�u

λ )
‖uλ – u‖Lp+(�u

λ )
. (.)

By the conditions that u ∈ Lp+(Rn
+) and v ∈ Lq+(Rn

+), we can choose sufficiently small pos-
itive λ such that

C‖v‖q–Lq+(�v
λ)
‖u‖p–Lp+(�u

λ )
≤ 


.

Now, inequality (.) implies ‖uλ –u‖Lp+(�u
λ )
= , and therefore�u

λ must be measure zero.
Similarly, one can show that �v

λ is measure zero. Therefore, (.) holds. This completes
Step .

http://www.journalofinequalitiesandapplications.com/content/2013/1/37
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Step . (Move the plane to the limiting position to derive symmetry and monotonicity.)
Inequality (.) provides a starting point to move the plane Tλ. Now, we start from the

neighborhood of xn =  and move the plane up as long as (.) holds to the limiting posi-
tion. We will show that the solution u(x) must be symmetric about the limiting plane and
be strictly monotonically increasing with respect to the variable xn. More precisely, define

λ = sup
{
λ|u(x)≤ uμ(x) and v(x)≤ vμ(x),∀x ∈ �μ,μ ≤ λ

}
.

Suppose that for such a λ, we will show that both u(x) and v(x) must be symmetric about
the plane Tλ by using a contradiction argument. Assume that on �λ , we have

u(x)≤ uλ (x) and v(x)≤ vλ (x), but u(x) �≡ uλ (x) or v(x) �≡ vλ (x).

We show that the plane can be moved further up. More precisely, there exists an ε > 
depending on n, α, and the solution (u(x), v(x)) such that

u(x)≤ uλ(x) and v(x)≤ vλ(x) on �λ for all λ in [λ,λ + ε). (.)

In the case

v(x) �≡ vλ (x) on �λ ,

by Lemma ., we have in fact u(x) < uλ (x) in the interior of �λ . Let

�u
λ

=
{
x ∈ �λ |u(x) ≥ uλ (x)

}
and �v

λ
=

{
x ∈ �λ |v(x)≥ vλ (x

}
.

Then, obviously, �u
λ

has measure zero and limλ→λ �u
λ ⊂ �u

λ
. The same is true for that

of v. From (.) and (.), we deduce

‖uλ – u‖Lp+(�u
λ )

≤ C‖v‖q–Lq+(�v
λ)
‖u‖p–Lp+(�u

λ )
‖uλ – u‖Lp+(�u

λ )
. (.)

Again, the conditions that u ∈ Lp+(Rn
+) and v ∈ Lq+(Rn

+) ensure that one can choose ε

sufficiently small, so that for all λ in [λ,λ + ε),

C‖v‖q–Lq+(�v
λ)
‖u‖p–Lp+(�u

λ )
≤ 


.

Now, by (.), we have ‖uλ – u‖Lp+(�u
λ )
= , therefore �u

λ must be measure zero. Similarly,
�v

λ must also be measure zero. This verifies (.), therefore both u(x) and v(x) are sym-
metric about the plane Tλ . Also, themonotonicity easily follows from the argument. This
completes the proof of Theorem .. �

Proof of Theorem . To prove the theorem, firstly we will show that the plane cannot stop
at xn = λ for some λ < +∞, that is, we will prove that λ = +∞.
Suppose that λ < +∞, the process of Theorem . shows that the plane xn = λ is the

symmetric points of the boundary ∂Rn
+ with respect to the plane Tλ , and we derive that

http://www.journalofinequalitiesandapplications.com/content/2013/1/37
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u(x) =  and v(x) =  when x is on the plane xn = λ. This contradicts the pair of positive
solutions (u(x), v(x)) of (.), thus λ = +∞.
Besides, we know that both u(x) and v(x) of positive solutions of (.) are strictly mono-

tonically increasing in the positive direction of xn-axis, but u ∈ Lp+(Rn
+) and v ∈ Lq+(Rn

+),
so we come to the conclusion that the pair of positive solutions (u(x), v(x)) of (.) does
not exist.
This completes the proof of Theorem .. �
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