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1 Introduction
Recently, Gurudwan, Sharma [] and Yang [] studied the strong convergence of the se-
quence, respectively, which was defined by

x ∈ E,

xn = anxn + bnSxn + cnu

n,

xn = anxn + bnSx

n + cnu


n,

...

xn+ = xNn = aNn xn + bNn SNx
N–
n + cNn u

N
n , n≥ ,

for approximation of a common solution of a finite family of uniformly continuous
�-strongly accretive operator equations. Their results are as follows.

Theorem GS [, Theorem .] Let E be an arbitrary real Banach space and let {Ai}Ni= :
E → E be uniformly continuous φ-strongly accretive operators and each range of either Ai

or (I – Ai) be bounded. Let, for i = , . . . ,N , {uin}∞n= be sequences in E and {ain}∞n=, {bin}∞n=,
{cin}∞n= be real sequences in [, ] satisfying

(i) ain + bin + cin = ,
(ii)

∑∞
n= bNn = ∞,

(iii)
∑∞

n= cn < ∞,
(iv) limn→∞ bin = limn→∞ cin = limn→∞

cin
bin+cin

= , ∀i = , . . . ,N , n≥ .
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For any given f ∈ E, define {Si}Ni= : E → E by Six = x – Aix + f , ∀i = , . . . ,N , ∀x ∈ E. Then
the multi-step iterative sequence with errors {xn}∞n= defined by the above converges strongly
to the unique solution of the operator equations {Aix}Ni= = f .

On the basis of the above result, Yang [] proved the following convergence theorem.

Thoerem Yang [, Theorem ] Let E be an arbitrary real Banach space and let {Ai}Ni= :
E → E be uniformly continuous φ-strongly accretive operators and each range of either Ai

or (I – Ai) is bounded. Let for i = , . . . ,N , {uin}∞n= be bounded sequences in E and {ain}∞n=,
{bin}∞n=, {cin}∞n= be real sequences in [, ] satisfying

(i) ain + bin + cin = ,
(ii)

∑∞
n= bNn = ∞,

(iii) limn→∞ bin = limn→∞ cin = limn→∞
cin

bin+cin
= , ∀i = , . . . ,N , n≥ .

For any given f ∈ E, define {Si}Ni= : E → E by Six = (I –Ai)x + f , ∀i = , . . . ,N , ∀x ∈ E. Then
the multi-step iterative sequence with errors {xn}∞n= defined by the above converges strongly
to the unique solution of the operator equations {Aix}Ni= = f .

However, after careful reading of their works, we discovered that there exist some prob-
lems in references [] and [] as follows.

Problem  In the proof course of Theorem . of Gurudwan and Sharma [], which hap-
pens in line  of page . Here, it is defective that they obtained ‖x – y‖ ≤ φ–

i (‖Aix –
Aiy‖), that is, 〈Aix – Aiy, j(x – y)〉 ≥ φ(‖x – y‖)‖x – y‖ ⇒ φ(‖x – y‖) ≤ ‖Aix – Aiy‖, but we
cannot deduce ‖x – y‖ ≤ φ–

i (‖Aix – Aiy‖). The reason is that it is possible ‖Aix – Aiy‖
does not belong to R(φ) (range of φ). A counterexample is as follows. Let us define
φ : [, +∞) → [, +∞) by φ(α) = α–

α+ ; then it can be easily seen that φ is increasing with
φ() = , but limα→+∞ φ(α) =  and φ–() makes no sense (see []).

Problem  In the paper of Yang [], he referred to themistakes of ‘‖xinm+j –q‖ < ε for j ≥ 
to deduce ‖xn – q‖ →  (n→ ∞)’ in [] and cited an example, i.e.,

{νn} = {, , , , , , , , , , , , , , , , , , , , , , , . . .}. (**)

Now, we want to clarify the fact. Let {γn} be a real sequence, {γnm} be some infinite sub-
sequence of {γn} and {nm} be neither odd nor even sequence, then the conclusions are as
follows:

(C-i) limn→∞ γn =  ⇔ ∀ε > , ∃ nonnegative integer n such that |γnm+j| < ε for
nm ≥ n, j ≥ .

(C-ii) limn→∞ γn =  ⇒ limm→∞ γnm =  and limm→∞ γnm+j =  for ∀j ≥ .

Indeed, the above example (**) does not satisfy the conclusion (C-i), it just illustrates
the result (C-ii). Therefore, the note given by Yang [] confused the conclusions (C-i) and
(C-ii).
The aim of this paper is to generalize the results of papers [] and []. For this, we need

the following knowledge.
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2 Preliminary
Let E be a real Banach space and E* be its dual space. The normalized duality mapping
J : E → E* is defined by

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. The single-valued normalized duality
mapping is denoted by j.
An operator T : E → E is said to be strongly accretive if there exists a constant k > ,

and for ∀x, y ∈ E, ∃j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≥ k‖x – y‖,

without loss of generality, we assume that k ∈ (, ). The operator T is called φ-strongly
accretive if for any x, y ∈ E, there exist j(x–y) ∈ J(x–y) and a strictly increasing continuous
function φ : [, +∞)→ [, +∞) with φ() =  such that

〈
Tx – Ty, j(x – y)

〉 ≥ φ
(‖x – y‖)‖x – y‖.

It is obvious that a strongly accretive operator must be the φ-strongly accretive in the
special case in which φ(t) = kt, but the converse is not true in general. That is, the class
of strongly accretive operators is a proper subclass of the class of φ-strongly accretive
operators.
In order to obtain the main conclusion of this paper, we need the following lemmas.

Lemma . [] Suppose that E is an arbitrary Banach space and A : E → E is a continuous
φ-strongly accretive operator.Then the equation Ax = f has a unique solution for any f ∈ E.

Lemma . [] Let E be a real Banach space and let J : E → E* be a normalized duality
mapping. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, (.)

for all x, y ∈ E and j(x + y) ∈ J(x + y).

Lemma. [] Let {δn}∞n=, {λn}∞n= and {γn}∞n= be three nonnegative real sequences and φ :
[, +∞)→ [, +∞) be a strictly increasing and continuous function with φ() =  satisfying
the following inequality:

δn+ ≤ δn – λnφ(δn+) + γn, n≥ , (.)

where λn ∈ [, ] with
∑∞

n= λn = ∞, γn = o(λn). Then δn →  as n→ ∞.

3 Main results
Theorem . Let E be an arbitrary real Banach space and {Ai}Ni= : E → E be N uni-
formly continuous φ-strongly accretive operators. For i = , , . . . ,N , let {uin}∞n= be bounded
sequences in E and {ain}∞n=, {bin}∞n=, {cin}∞n= be real sequences in [, ] satisfying

http://www.journalofinequalitiesandapplications.com/content/2013/1/35
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(i) ain + bin + cin = , i = , , . . . ,N ;
(ii)

∑∞
n= bNn = +∞;

(iii) limn→∞ bin = limn→∞ cin = , i = , , . . . ,N ;
(iv) cNn = o(bNn ).

For any given f ∈ E, define {Si}Ni= : E → E with
⋂N

i= F(Si) �= ∅ by Six = x – Aix + f , ∀i =
, , . . . ,N , ∀x ∈ E, where F(Si) = {x ∈ E : Six = x}. Then, for some x ∈ E, the multi-step
iterative sequence with errors {xn}∞n= defined by

x ∈ E,

xn = anxn + bnSxn + cnu

n,

xn = anxn + bnSx

n + cnu


n,

...

xN–
n = aN–

n xn + bN–
n SN–xN–

n + cN–
n uN–

n ,

xn+ = xNn = aNn xn + bNn SNx
N–
n + cNn u

N
n , n ≥ ,

converges strongly to the unique solution of the operator equations {Aix}Ni= = f .

Proof Since {Ai}Ni= : E → E is φ-strongly accretive operator, we obtain that each equation
Aix = f has the unique solution by Lemma ., denote qi, i.e., qi is the unique fixed point of
Si by Six = x–Aix+ f . Since

⋂N
i= F(Si) �= ∅, then ⋂N

i= F(Si) is a single set, let q. Meanwhile,
there exists a strictly increasing continuous function φ : [, +∞)→ [, +∞) with φ() = 
such that

〈
Aix –Aiq, j(x – q)

〉 ≥ φ
(‖x – q‖),

for x ∈ E, q ∈ F(T), that is,

〈
Six – x, j(x – q)

〉 ≤ –φ
(‖x – q‖). (@)

Choose some x ∈ E and x �= Six such that r ∈ R(�), where

r =max
{‖x – Sx‖ · ‖x – q‖,‖x – Sx‖ · ‖x – q‖, . . . ,‖x – SNx‖ · ‖x – q‖},

R(�) is the range of �. Indeed, if �(r)→ +∞ as r → +∞, then r ∈ R(�); if sup{�(r) : r ∈
[, +∞)} = r < +∞ with r < r, then for q ∈ E, there exists a sequence {wn} in E such that
wn → q as n → ∞ with wn �= q. Since Ai is uniformly continuous, so is Si. Furthermore,
we obtain that Siwn → Siq as n → ∞, then {wn – Siwn} is the bounded sequence for i =
, , . . . ,N . Hence, there exists the commonnatural number n such that ‖wn–Siwn‖·‖wn–
q‖ < r

 for n ≥ n and i = , , . . . ,N , thenwe redefine x = wn and ‖x–Six‖·‖x–q‖ < r
 .

Thus, max≤i≤N {‖x – Six‖ · ‖x – q‖} ∈ R(φ). It is to ensure that �–(r) is defined well.
Step I. We show that {xn} is a bounded sequence.
Set R = �–(r), then from the above formula (@), we obtain that ‖x – q‖ ≤ R. Denote

B =
{
x ∈ E : ‖x – q‖ ≤ R

}
, B =

{
x ∈ E : ‖x – q‖ ≤ R

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/35
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Since Si is uniformly continuous, then Si is bounded. We let

M = max
≤i≤N

{
sup
x∈B

{‖Six – q‖ + 
}}

+ max
≤i≤N

{
sup
n

{∥∥uin – q
∥∥}}

.

Next, we want to prove that xn ∈ B. If n = , then x ∈ B. Now, assume that it holds for
some n, i.e., xn ∈ B. We prove that xn+ ∈ B. Suppose it is not the case, then ‖xn+ – q‖ >
R > R

 . Since Si is uniformly continuous for i = , , . . . ,N , then for ε =
�( R )
R , there exists

common δ >  such that ‖Six – Siy‖ < ε when ‖x – y‖ < δ. Denote

τ =min

{
,

R
M

,
�(R )

R(M + R)
,

δ

M + R

}
.

Since bin, cin →  as n→ ∞ for i = , , . . . ,p. Without loss of generality, we let ≤ bin, cin ≤
τ for any n≥  and i = , , . . . ,N . Since cNn = o(bNn ), let cNn < bNn τ. Now, estimate ‖xin – q‖
for i = , , . . . ,N . From the multi-step iteration, we have

∥∥xn – q
∥∥

≤ (
 – bn – cn

)‖xn – q‖ + bn‖Sxn – q‖ + cn
∥∥un – q

∥∥
≤ R + τM

≤ R, (.)

then xn ∈ B. Similarly, we have

∥∥xn – q
∥∥

≤ (
 – bn – cn

)‖xn – q‖ + bn
∥∥Sxn – q

∥∥ + cn
∥∥un – q

∥∥
≤ R + τM

≤ R, (.)

then xn ∈ B. · · · · · · , we have
∥∥xN–

n – q
∥∥

≤ (
 – bN–

n – cN–
n

)‖xn – q‖ + bN–
n

∥∥SN–xN–
n – q

∥∥ + cN–
n

∥∥uN–
n – q

∥∥
≤ R + τM

≤ R, (.)

then xN–
n ∈ B. Therefore, we get

‖xn+ – q‖
≤ (

 – bNn – cNn
)‖xn – q‖ + bNn

∥∥SNxN–
n – q

∥∥ + cNn
∥∥uNn – q

∥∥
≤ R + τM

≤ R. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/35
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And we also have

‖xn+ – xn‖
≤ bNn

∥∥SNxN–
n – xn

∥∥ + cNn
∥∥uNn – xn

∥∥
≤ bNn

(∥∥SNxN–
n – q

∥∥ + ‖xn – q‖) + cNn
(∥∥uNn – q

∥∥ + ‖xn – q‖)
≤ τ

[(∥∥SNxN– – q
∥∥ +

∥∥uNn – q
∥∥)

+ ‖xn – q‖]
≤ τ(M + R)

≤ �(R )
R

, (.)

and

∥∥xn+ – xN–
n

∥∥
≤ bNn

∥∥SNxN–
n – xn

∥∥ + cNn
∥∥uNn – xn

∥∥ + bN–
n

∥∥SN–xN–
n – xn

∥∥ + cN–
n

∥∥uN–
n – xn

∥∥
≤ bNn

(∥∥SNxN–
n – q

∥∥ + ‖xn – q‖) + cNn
(∥∥uNn – q

∥∥ + ‖xn – q‖)
+ bN–

n
(∥∥SN–xN–

n – q
∥∥ + ‖xn – q‖) + cN–

n
(∥∥uN–

n – q
∥∥ + ‖xn – q‖)

≤ τ
[(∥∥SNxN–

n – q
∥∥ +

∥∥uNn – q
∥∥ + ‖xn – q‖)

+
(∥∥SN–xN–

n – q
∥∥ +

∥∥uN–
n – q

∥∥ + ‖xn – q‖)]
≤ τ(M + R)

< δ. (.)

By the uniform continuity of SN , we have

∥∥SNxn+ – SNxN–
n

∥∥ <
�(R )
R

.

Using Lemma . and the above formulas, we have

‖xn+ – q‖

=
∥∥(xn – q) + bNn

(
SNxN–

n – xn
)
+ cNn

(
uNn – xn

)∥∥

≤ ‖xn – q‖ + bNn
〈
SNxN–

n – xn, j(xn+ – q)
〉
+ cNn

〈
uNn – xn, j(xn+ – q)

〉
≤ ‖xn – q‖ + bNn

〈
SNxn+ – xn+ + xn+ – xn – SNxn+ + SNxN–

n , j(xn+ – q)
〉

+ cNn
∥∥uNn – xn

∥∥ · ‖xn+ – q‖
≤ ‖xn – q‖ – bNn �

(‖xn+ – q‖) + bNn ‖xn+ – xn‖ · ‖xn+ – q‖
+ bNn

∥∥SNxn+ – SNxN–
n

∥∥ · ‖xn+ – q‖ + cNn
(∥∥uNn – q

∥∥ + ‖xn – q‖)‖xn+ – q‖

≤ ‖xn – q‖ – bNn �

(
R


)
+ bNn

�(R )
R

· R + bNn
�(R )
R

· R + bNn τ(R +M)R

≤ ‖xn – q‖ – bNn �

(
R


)
+ bNn

�(R )
R(M + R)

(R +M)R

http://www.journalofinequalitiesandapplications.com/content/2013/1/35
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≤ ‖xn – q‖ – bNn


�

(
R


)

≤ R, (.)

which is a contradiction. So, xn+ ∈ B, i.e., {xn} is a bounded sequence, from which it
follows that {xn}, {xn}, . . . , {xN–

n } are all bounded sequences as well.
Step II. We want to prove ‖xn – q‖ →  as n→ ∞.
Since bin, cin →  as n → ∞ for i = , , . . . ,N and {xn}, {xN–

n } are bounded. From (.)
and (.), we obtain

lim
n→∞‖xn+ – xn‖ = , lim

n→∞
∥∥xn+ – xN–

n
∥∥ = , lim

n→∞
∥∥SNxn+ – SNxN–

n
∥∥ = .

By (.), we have

‖xn+ – q‖

=
∥∥(xn – q) + bNn

(
SNxN–

n – xn
)
+ cNn

(
uNn – xn

)∥∥

≤ ‖xn – q‖ + bNn
〈
SNxN–

n – xn, j(xn+ – q)
〉
+ cNn

〈
uNn – xn, j(xn+ – q)

〉
≤ ‖xn – q‖ + bNn

〈
SNxn+ – xn+ + xn+ – xn – SNxn+ + SNxN–

n , j(xn+ – q)
〉

+ cNn
∥∥uNn – xn

∥∥ · ‖xn+ – q‖
≤ ‖xn – q‖ – bNn �

(‖xn+ – q‖) + bNn ‖xn+ – xn‖ · ‖xn+ – q‖
+ bNn

∥∥SNxn+ – SNxN–
n

∥∥ · ‖xn+ – q‖ + cNn
∥∥uNn – xn

∥∥ · ‖xn+ – q‖
= ‖xn – q‖ – bNn �

(‖xn+ – q‖) + o
(
bNn

)
, (.)

where

bNn ‖xn+ – xn‖ · ‖xn+ – q‖ + bNn
∥∥SNxn+ – SNxN–

n
∥∥

· ‖xn+ – q‖ + cNn
∥∥uNn – xn

∥∥ · ‖xn+ – q‖ = o
(
bNn

)
.

By Lemma ., we obtain limn→∞ ‖xn – q‖ = . This completes the proof. �

Remark . Theorem . generalizes Theorem . of [] and Theorem  of [] in the
following cases:
(a) It is not necessary for each range of Ai or I –Ai to be bounded in [] and [].
(b) The condition of {cin} is weakened to cNn = o(bNn ) from limn→∞

cin
bin+cin

= 
(i = , , . . . ,N ).

(c) The proof method of our theorem differs from that of [] and [].

Theorem . Let E, {uin}, {ain}, {bin}, {cin} (i = , , . . . ,N ) be as in Theorem . and let
{Ti}Ni= : E → E be N uniformly continuous φ-strongly pseudocontractive mappings. Then,
for some x ∈ E, the multi-step iterative sequence with errors {xn}∞n= defined by

x ∈ E,

xn = anxn + bnTxn + cnu

n,

http://www.journalofinequalitiesandapplications.com/content/2013/1/35


Xue and Zhou Journal of Inequalities and Applications 2013, 2013:35 Page 8 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/35

xn = anxn + bnTxn + cnu

n,

...

xN–
n = aN–

n xn + bN–
n TN–xN–

n + cN–
n uN–

n ,

xn+ = xNn = aNn xn + bNn TNxN–
n + cNn u

N
n , n≥ ,

converges strongly to the unique common fixed point of {Ti}Ni=.

Proof See []. �
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