REVIEW

Journal of Inequalities and Applications

Open Access

A further remark to paper 'Convergence theorems for the common solution for a finite family of ϕ -strongly accretive operator equations'

Zhigun Xue^{1*} and Haiyun Zhou²

*Correspondence: xuezhigun@126.com ¹Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China Full list of author information is available at the end of the article

Abstract

In this note, we point out several gaps in Gurudwan and Sharma (Appl. Math. Comput. 217(15):6748-6754, 2011) and Yang (Appl. Math. Comput. 218(21):10367-10369, 2012) and give the main results under weaker conditions. MSC: 47H10; 47H09; 46B20

Keywords: uniformly continuous; Φ -strongly accretive; multi-step iteration with errors; Banach space

1 Introduction

Recently, Gurudwan, Sharma [1] and Yang [2] studied the strong convergence of the sequence, respectively, which was defined by

$$\begin{aligned} x_0 &\in E, \\ x_n^1 &= a_n^1 x_n + b_n^1 S_1 x_n + c_n^1 u_n^1, \\ x_n^2 &= a_n^2 x_n + b_n^2 S_2 x_n^1 + c_n^2 u_n^2, \\ \vdots \\ x_{n+1} &= x_n^N = a_n^N x_n + b_n^N S_N x_n^{N-1} + c_n^N u_n^N, \quad n \ge 0, \end{aligned}$$

for approximation of a common solution of a finite family of uniformly continuous Φ -strongly accretive operator equations. Their results are as follows.

Theorem GS [1, Theorem 3.1] Let E be an arbitrary real Banach space and let $\{A_i\}_{i=1}^N$: $E \rightarrow E$ be uniformly continuous ϕ -strongly accretive operators and each range of either A_i or $(I - A_i)$ be bounded. Let, for i = 1, ..., N, $\{u_n^i\}_{n=1}^{\infty}$ be sequences in E and $\{a_n^i\}_{n=1}^{\infty}, \{b_n^i\}_{n=1}^{\infty}\}$ $\{c_n^i\}_{n=1}^{\infty}$ be real sequences in [0,1] satisfying

- (i) $a_n^i + b_n^i + c_n^i = 1$,
- (ii) $\sum_{n=0}^{\infty} b_n^N = \infty$, (iii) $\sum_{n=0}^{\infty} c_n < \infty$,
- (iv) $\lim_{n\to\infty} b_n^i = \lim_{n\to\infty} c_n^i = \lim_{n\to\infty} \frac{c_n^i}{b_n^i + c_n^i} = 0, \forall i = 1, \dots, N, n \ge 1.$

© 2013 Xue and Zhou; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For any given $f \in E$, define $\{S_i\}_{i=1}^N : E \to E$ by $S_i x = x - A_i x + f$, $\forall i = 1, ..., N$, $\forall x \in E$. Then the multi-step iterative sequence with errors $\{x_n\}_{n=1}^{\infty}$ defined by the above converges strongly to the unique solution of the operator equations $\{A_i x\}_{i=1}^N = f$.

On the basis of the above result, Yang [2] proved the following convergence theorem.

Thoerem Yang [2, Theorem 2] Let *E* be an arbitrary real Banach space and let $\{A_i\}_{i=1}^N$: $E \to E$ be uniformly continuous ϕ -strongly accretive operators and each range of either A_i or $(I - A_i)$ is bounded. Let for i = 1, ..., N, $\{u_n^i\}_{n=1}^\infty$ be bounded sequences in *E* and $\{a_n^i\}_{n=1}^\infty$, $\{b_n^i\}_{n=1}^\infty, \{c_n^i\}_{n=1}^\infty$ be real sequences in [0,1] satisfying

- (i) $a_n^i + b_n^i + c_n^i = 1$,
- (ii) $\sum_{n=0}^{\infty} b_n^N = \infty$,

(iii) $\lim_{n\to\infty} b_n^i = \lim_{n\to\infty} c_n^i = \lim_{n\to\infty} \frac{c_n^i}{b_n^i + c_n^i} = 0, \forall i = 1, \dots, N, n \ge 1.$

For any given $f \in E$, define $\{S_i\}_{i=1}^N : E \to E$ by $S_i x = (I - A_i)x + f$, $\forall i = 1, ..., N$, $\forall x \in E$. Then the multi-step iterative sequence with errors $\{x_n\}_{n=1}^{\infty}$ defined by the above converges strongly to the unique solution of the operator equations $\{A_i x\}_{i=1}^N = f$.

However, after careful reading of their works, we discovered that there exist some problems in references [1] and [2] as follows.

Problem 1 In the proof course of Theorem 3.1 of Gurudwan and Sharma [1], which happens in line 11 of page 6751. Here, it is defective that they obtained $||x - y|| \le \phi_i^{-1}(||A_ix - A_iy||)$, that is, $\langle A_ix - A_iy, j(x - y) \rangle \ge \phi(||x - y||) ||x - y|| \Rightarrow \phi(||x - y||) \le ||A_ix - A_iy||$, but we cannot deduce $||x - y|| \le \phi_i^{-1}(||A_ix - A_iy||)$. The reason is that it is possible $||A_ix - A_iy||$ does not belong to $R(\phi)$ (range of ϕ). A counterexample is as follows. Let us define $\phi : [0, +\infty) \rightarrow [0, +\infty)$ by $\phi(\alpha) = \frac{2^{\alpha}-1}{2^{\alpha}+1}$; then it can be easily seen that ϕ is increasing with $\phi(0) = 0$, but $\lim_{\alpha \to +\infty} \phi(\alpha) = 1$ and $\phi^{-1}(2)$ makes no sense (see [3]).

Problem 2 In the paper of Yang [2], he referred to the mistakes of $\|x_{n_m+j}^i - q\| < \epsilon$ for $j \ge 1$ to deduce $\|x_n - q\| \to 0$ $(n \to \infty)$ ' in [1] and cited an example, *i.e.*,

$$\{\nu_n\} = \{1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 6, 0, 0, \dots\}.$$
 (**)

Now, we want to clarify the fact. Let $\{\gamma_n\}$ be a real sequence, $\{\gamma_{n_m}\}$ be some infinite subsequence of $\{\gamma_n\}$ and $\{n_m\}$ be neither odd nor even sequence, then the conclusions are as follows:

- (C-i) $\lim_{n\to\infty} \gamma_n = 0 \Leftrightarrow \forall \epsilon > 0, \exists$ nonnegative integer n_0 such that $|\gamma_{n_m+j}| < \epsilon$ for $n_m \ge n_0, j \ge 1$.
- (C-ii) $\lim_{n\to\infty} \gamma_n = 0 \Rightarrow \lim_{m\to\infty} \gamma_{n_m} = 0$ and $\lim_{m\to\infty} \gamma_{n_m+j} = 0$ for $\forall j \ge 1$.

Indeed, the above example (**) does not satisfy the conclusion (C-i), it just illustrates the result (C-ii). Therefore, the note given by Yang [2] confused the conclusions (C-i) and (C-ii).

The aim of this paper is to generalize the results of papers [1] and [2]. For this, we need the following knowledge.

2 Preliminary

Let *E* be a real Banach space and E^* be its dual space. The normalized duality mapping $J: E \to 2^{E^*}$ is defined by

$$J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \}, \quad \forall x \in E,$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. The single-valued normalized duality mapping is denoted by *j*.

An operator $T : E \to E$ is said to be strongly accretive if there exists a constant k > 0, and for $\forall x, y \in E$, $\exists j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \geq k ||x - y||^2$$
,

without loss of generality, we assume that $k \in (0, 1)$. The operator T is called ϕ -strongly accretive if for any $x, y \in E$, there exist $j(x-y) \in J(x-y)$ and a strictly increasing continuous function $\phi : [0, +\infty) \rightarrow [0, +\infty)$ with $\phi(0) = 0$ such that

$$\langle Tx - Ty, j(x - y) \rangle \ge \phi (\|x - y\|) \|x - y\|.$$

It is obvious that a strongly accretive operator must be the ϕ -strongly accretive in the special case in which $\phi(t) = kt$, but the converse is not true in general. That is, the class of strongly accretive operators is a proper subclass of the class of ϕ -strongly accretive operators.

In order to obtain the main conclusion of this paper, we need the following lemmas.

Lemma 2.1 [1] Suppose that *E* is an arbitrary Banach space and $A : E \to E$ is a continuous ϕ -strongly accretive operator. Then the equation Ax = f has a unique solution for any $f \in E$.

Lemma 2.2 [4] Let *E* be a real Banach space and let $J : E \to 2^{E^*}$ be a normalized duality mapping. Then

$$\|x+y\|^{2} \le \|x\|^{2} + 2\langle y, j(x+y) \rangle, \tag{2.1}$$

for all $x, y \in E$ and $j(x + y) \in J(x + y)$.

Lemma 2.3 [5] Let $\{\delta_n\}_{n=0}^{\infty}$, $\{\lambda_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ be three nonnegative real sequences and ϕ : $[0, +\infty) \rightarrow [0, +\infty)$ be a strictly increasing and continuous function with $\phi(0) = 0$ satisfying the following inequality:

$$\delta_{n+1}^2 \le \delta_n^2 - \lambda_n \phi(\delta_{n+1}) + \gamma_n, \quad n \ge 0, \tag{2.2}$$

where $\lambda_n \in [0,1]$ with $\sum_{n=0}^{\infty} \lambda_n = \infty$, $\gamma_n = o(\lambda_n)$. Then $\delta_n \to 0$ as $n \to \infty$.

3 Main results

Theorem 3.1 Let *E* be an arbitrary real Banach space and $\{A_i\}_{i=1}^N : E \to E$ be *N* uniformly continuous ϕ -strongly accretive operators. For i = 1, 2, ..., N, let $\{u_n^i\}_{n=1}^{\infty}$ be bounded sequences in *E* and $\{a_n^i\}_{n=1}^{\infty}, \{b_n^i\}_{n=1}^{\infty}$, $\{c_n^i\}_{n=1}^{\infty}$ be real sequences in [0,1] satisfying

(i)
$$a_n^i + b_n^i + c_n^i = 1, i = 1, 2, ..., N;$$

(ii) $\sum_{n=1}^{\infty} b_n^N = +\infty;$
(iii) $\lim_{n\to\infty} b_n^i = \lim_{n\to\infty} c_n^i = 0, i = 1, 2, ..., N;$
(iv) $c_n^N = o(b_n^N).$

For any given $f \in E$, define $\{S_i\}_{i=1}^N : E \to E$ with $\bigcap_{i=1}^N F(S_i) \neq \emptyset$ by $S_i x = x - A_i x + f$, $\forall i = 1, 2, ..., N$, $\forall x \in E$, where $F(S_i) = \{x \in E : S_i x = x\}$. Then, for some $x_0 \in E$, the multi-step iterative sequence with errors $\{x_n\}_{n=1}^\infty$ defined by

$$\begin{aligned} x_{0} \in E, \\ x_{n}^{1} &= a_{n}^{1} x_{n} + b_{n}^{1} S_{1} x_{n} + c_{n}^{1} u_{n}^{1}, \\ x_{n}^{2} &= a_{n}^{2} x_{n} + b_{n}^{2} S_{2} x_{n}^{1} + c_{n}^{2} u_{n}^{2}, \\ \vdots \\ x_{n}^{N-1} &= a_{n}^{N-1} x_{n} + b_{n}^{N-1} S_{N-1} x_{n}^{N-2} + c_{n}^{N-1} u_{n}^{N-1}, \\ x_{n+1} &= x_{n}^{N} = a_{n}^{N} x_{n} + b_{n}^{N} S_{N} x_{n}^{N-1} + c_{n}^{N} u_{n}^{N}, \quad n \ge 0, \end{aligned}$$

converges strongly to the unique solution of the operator equations $\{A_i x\}_{i=1}^N = f$.

Proof Since $\{A_i\}_{i=1}^N : E \to E$ is ϕ -strongly accretive operator, we obtain that each equation $A_i x = f$ has the unique solution by Lemma 2.1, denote q_i , *i.e.*, q_i is the unique fixed point of S_i by $S_i x = x - A_i x + f$. Since $\bigcap_{i=1}^N F(S_i) \neq \emptyset$, then $\bigcap_{i=1}^N F(S_i)$ is a single set, let q. Meanwhile, there exists a strictly increasing continuous function $\phi : [0, +\infty) \to [0, +\infty)$ with $\phi(0) = 0$ such that

$$\langle A_i x - A_i q, j(x-q) \rangle \ge \phi (\|x-q\|),$$

for $x \in E$, $q \in F(T)$, that is,

$$\left\langle S_{i}x-x,j(x-q)\right\rangle \leq -\phi\left(\|x-q\|\right). \tag{(a)}$$

Choose some $x_0 \in E$ and $x_0 \neq S_i x_0$ such that $r_0 \in R(\Phi)$, where

$$r_0 = \max\{\|x_0 - S_1 x_0\| \cdot \|x_0 - q\|, \|x_0 - S_2 x_0\| \cdot \|x_0 - q\|, \dots, \|x_0 - S_N x_0\| \cdot \|x_0 - q\|\},\$$

 $R(\Phi)$ is the range of Φ . Indeed, if $\Phi(r) \to +\infty$ as $r \to +\infty$, then $r_0 \in R(\Phi)$; if $\sup\{\Phi(r) : r \in [0, +\infty)\} = r_1 < +\infty$ with $r_1 < r_0$, then for $q \in E$, there exists a sequence $\{w_n\}$ in E such that $w_n \to q$ as $n \to \infty$ with $w_n \neq q$. Since A_i is uniformly continuous, so is S_i . Furthermore, we obtain that $S_iw_n \to S_iq$ as $n \to \infty$, then $\{w_n - S_iw_n\}$ is the bounded sequence for i = 1, 2, ..., N. Hence, there exists the common natural number n_0 such that $||w_n - S_iw_n|| \cdot ||w_n - q|| < \frac{r_1}{2}$ for $n \ge n_0$ and i = 1, 2, ..., N, then we redefine $x_0 = w_{n_0}$ and $||x_0 - S_ix_0|| \cdot ||x_0 - q|| < \frac{r_1}{2}$. Thus, $\max_{1 \le i \le N}\{||x_0 - S_ix_0|| \cdot ||x_0 - q||\} \in R(\phi)$. It is to ensure that $\Phi^{-1}(r_0)$ is defined well. Step I. We show that $\{x_n\}$ is a bounded sequence.

Set $R = \Phi^{-1}(r_0)$, then from the above formula (@), we obtain that $||x_0 - q|| \le R$. Denote

$$B_1 = \{x \in E : ||x - q|| \le R\}, \qquad B_2 = \{x \in E : ||x - q|| \le 2R\}.$$

Since S_i is uniformly continuous, then S_i is bounded. We let

$$M = \max_{1 \le i \le N} \left\{ \sup_{x \in B_2} \left\{ \|S_i x - q\| + 1 \right\} \right\} + \max_{1 \le i \le N} \left\{ \sup_n \left\{ \|u_n^i - q\| \right\} \right\}.$$

Next, we want to prove that $x_n \in B_1$. If n = 0, then $x_0 \in B_1$. Now, assume that it holds for some n, *i.e.*, $x_n \in B_1$. We prove that $x_{n+1} \in B_1$. Suppose it is not the case, then $||x_{n+1} - q|| > R > \frac{R}{2}$. Since S_i is uniformly continuous for i = 1, 2, ..., N, then for $\epsilon_0 = \frac{\Phi(\frac{R}{2})}{8R}$, there exists common $\delta > 0$ such that $||S_ix - S_iy|| < \epsilon_0$ when $||x - y|| < \delta$. Denote

$$\tau_0 = \min\left\{1, \frac{R}{M}, \frac{\Phi(\frac{R}{2})}{8R(M+2R)}, \frac{\delta}{2M+5R}\right\}$$

Since $b_n^i, c_n^i \to 0$ as $n \to \infty$ for i = 1, 2, ..., p. Without loss of generality, we let $0 \le b_n^i, c_n^i \le \tau_0$ for any $n \ge 0$ and i = 1, 2, ..., N. Since $c_n^N = o(b_n^N)$, let $c_n^N < b_n^N \tau_0$. Now, estimate $||x_n^i - q||$ for i = 1, 2, ..., N. From the multi-step iteration, we have

$$\|x_{n}^{1} - q\|$$

$$\leq (1 - b_{n}^{1} - c_{n}^{1})\|x_{n} - q\| + b_{n}^{1}\|S_{1}x_{n} - q\| + c_{n}^{1}\|u_{n}^{1} - q\|$$

$$\leq R + \tau_{0}M$$

$$\leq 2R,$$
(3.1)

then $x_n^1 \in B_2$. Similarly, we have

$$\|x_n^2 - q\|$$

$$\leq (1 - b_n^2 - c_n^2) \|x_n - q\| + b_n^2 \|S_2 x_n^1 - q\| + c_n^2 \|u_n^2 - q\|$$

$$\leq R + \tau_0 M$$

$$\leq 2R, \qquad (3.2)$$

then $x_n^2 \in B_2$, we have

$$\begin{aligned} \|x_{n}^{N-1} - q\| \\ &\leq \left(1 - b_{n}^{N-1} - c_{n}^{N-1}\right) \|x_{n} - q\| + b_{n}^{N-1} \|S_{N-1}x_{n}^{N-2} - q\| + c_{n}^{N-1} \|u_{n}^{N-1} - q\| \\ &\leq R + \tau_{0}M \\ &\leq 2R, \end{aligned}$$
(3.3)

then $x_n^{N-1} \in B_2$. Therefore, we get

$$\|x_{n+1} - q\| \leq (1 - b_n^N - c_n^N) \|x_n - q\| + b_n^N \|S_N x_n^{N-1} - q\| + c_n^N \|u_n^N - q\| \leq R + \tau_0 M \leq 2R.$$
(3.4)

And we also have

$$\begin{aligned} \|x_{n+1} - x_n\| \\ &\leq b_n^N \|S_N x_n^{N-1} - x_n\| + c_n^N \|u_n^N - x_n\| \\ &\leq b_n^N (\|S_N x_n^{N-1} - q\| + \|x_n - q\|) + c_n^N (\|u_n^N - q\| + \|x_n - q\|) \\ &\leq \tau_0 [(\|S_N x^{N-1} - q\| + \|u_n^N - q\|) + 2\|x_n - q\|] \\ &\leq \tau_0 (M + 2R) \\ &\leq \frac{\Phi(\frac{R}{2})}{8R}, \end{aligned}$$
(3.5)

and

$$\begin{aligned} \|x_{n+1} - x_n^{N-1}\| \\ &\leq b_n^N \|S_N x_n^{N-1} - x_n\| + c_n^N \|u_n^N - x_n\| + b_n^{N-1} \|S_{N-1} x_n^{N-2} - x_n\| + c_n^{N-1} \|u_n^{N-1} - x_n\| \\ &\leq b_n^N (\|S_N x_n^{N-1} - q\| + \|x_n - q\|) + c_n^N (\|u_n^N - q\| + \|x_n - q\|) \\ &+ b_n^{N-1} (\|S_{N-1} x_n^{N-2} - q\| + \|x_n - q\|) + c_n^{N-1} (\|u_n^{N-1} - q\| + \|x_n - q\|) \\ &\leq \tau_0 [(\|S_N x_n^{N-1} - q\| + \|u_n^N - q\| + 2\|x_n - q\|) \\ &+ (\|S_{N-1} x_n^{N-2} - q\| + \|u_n^{N-1} - q\| + 2\|x_n - q\|)] \\ &\leq \tau_0 (2M + 4R) \\ &< \delta. \end{aligned}$$
(3.6)

By the uniform continuity of S_N , we have

$$\|S_N x_{n+1} - S_N x_n^{N-1}\| < \frac{\Phi(\frac{R}{2})}{8R}.$$

Using Lemma 2.2 and the above formulas, we have

$$\begin{aligned} \|x_{n+1} - q\|^2 \\ &= \|(x_n - q) + b_n^N (S_N x_n^{N-1} - x_n) + c_n^N (u_n^N - x_n)\|^2 \\ &\leq \|x_n - q\|^2 + 2b_n^N (S_N x_n^{N-1} - x_n, j(x_{n+1} - q)) + 2c_n^N (u_n^N - x_n, j(x_{n+1} - q)) \\ &\leq \|x_n - q\|^2 + 2b_n^N (S_N x_{n+1} - x_{n+1} + x_{n+1} - x_n - S_N x_{n+1} + S_N x_n^{N-1}, j(x_{n+1} - q)) \\ &+ 2c_n^N \|u_n^N - x_n\| \cdot \|x_{n+1} - q\| \\ &\leq \|x_n - q\|^2 - 2b_n^N \Phi (\|x_{n+1} - q\|) + 2b_n^N \|x_{n+1} - x_n\| \cdot \|x_{n+1} - q\| \\ &+ 2b_n^N \|S_N x_{n+1} - S_N x_n^{N-1}\| \cdot \|x_{n+1} - q\| + 2c_n^N (\|u_n^N - q\| + \|x_n - q\|) \|x_{n+1} - q\| \\ &\leq \|x_n - q\|^2 - 2b_n^N \Phi \left(\frac{R}{2}\right) + 2b_n^N \frac{\Phi(\frac{R}{2})}{8R} \cdot 2R + 2b_n^N \frac{\Phi(\frac{R}{2})}{8R} \cdot 2R + 2b_n^N \tau_0 (R + M) 2R \\ &\leq \|x_n - q\|^2 - b_n^N \Phi \left(\frac{R}{2}\right) + 2b_n^N \frac{\Phi(\frac{R}{2})}{8R(M + 2R)} (R + M) 2R \end{aligned}$$

$$\leq \|x_n - q\|^2 - \frac{b_n^N}{2} \Phi\left(\frac{R}{2}\right)$$

$$\leq R^2, \qquad (3.7)$$

which is a contradiction. So, $x_{n+1} \in B_1$, *i.e.*, $\{x_n\}$ is a bounded sequence, from which it follows that $\{x_n^1\}, \{x_n^2\}, \dots, \{x_n^{N-1}\}$ are all bounded sequences as well.

Step II. We want to prove $||x_n - q|| \to 0$ as $n \to \infty$.

Since $b_n^i, c_n^i \to 0$ as $n \to \infty$ for i = 1, 2, ..., N and $\{x_n\}, \{x_n^{N-1}\}$ are bounded. From (3.5) and (3.6), we obtain

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0, \qquad \lim_{n \to \infty} \|x_{n+1} - x_n^{N-1}\| = 0, \qquad \lim_{n \to \infty} \|S_N x_{n+1} - S_N x_n^{N-1}\| = 0.$$

By (3.7), we have

$$\begin{aligned} \|x_{n+1} - q\|^{2} \\ &= \left\| (x_{n} - q) + b_{n}^{N} (S_{N} x_{n}^{N-1} - x_{n}) + c_{n}^{N} (u_{n}^{N} - x_{n}) \right\|^{2} \\ &\leq \|x_{n} - q\|^{2} + 2b_{n}^{N} (S_{N} x_{n}^{N-1} - x_{n}, j(x_{n+1} - q)) + 2c_{n}^{N} (u_{n}^{N} - x_{n}, j(x_{n+1} - q)) \\ &\leq \|x_{n} - q\|^{2} + 2b_{n}^{N} (S_{N} x_{n+1} - x_{n+1} + x_{n+1} - x_{n} - S_{N} x_{n+1} + S_{N} x_{n}^{N-1}, j(x_{n+1} - q)) \\ &+ 2c_{n}^{N} \|u_{n}^{N} - x_{n}\| \cdot \|x_{n+1} - q\| \\ &\leq \|x_{n} - q\|^{2} - 2b_{n}^{N} \Phi (\|x_{n+1} - q\|) + 2b_{n}^{N} \|x_{n+1} - x_{n}\| \cdot \|x_{n+1} - q\| \\ &+ 2b_{n}^{N} \|S_{N} x_{n+1} - S_{N} x_{n}^{N-1}\| \cdot \|x_{n+1} - q\| + 2c_{n}^{N} \|u_{n}^{N} - x_{n}\| \cdot \|x_{n+1} - q\| \\ &= \|x_{n} - q\|^{2} - 2b_{n}^{N} \Phi (\|x_{n+1} - q\|) + o(b_{n}^{N}), \end{aligned}$$
(3.8)

where

$$2b_n^N \|x_{n+1} - x_n\| \cdot \|x_{n+1} - q\| + 2b_n^N \|S_N x_{n+1} - S_N x_n^{N-1}\|$$

$$\cdot \|x_{n+1} - q\| + 2c_n^N \|u_n^N - x_n\| \cdot \|x_{n+1} - q\| = o(b_n^N).$$

By Lemma 2.3, we obtain $\lim_{n\to\infty} ||x_n - q|| = 0$. This completes the proof.

Remark 3.2 Theorem 3.1 generalizes Theorem 3.1 of [1] and Theorem 2 of [2] in the following cases:

- (a) It is not necessary for each range of A_i or $I A_i$ to be bounded in [1] and [2].
- (b) The condition of $\{c_n^i\}$ is weakened to $c_n^N = o(b_n^N)$ from $\lim_{n\to\infty} \frac{c_{n-1}^i}{b_n^i + c_n^i} = 0$ (*i* = 1, 2, ..., *N*).
- (c) The proof method of our theorem differs from that of [1] and [2].

Theorem 3.3 Let E, $\{u_n^i\}$, $\{a_n^i\}$, $\{b_n^i\}$, $\{c_n^i\}$ (i = 1, 2, ..., N) be as in Theorem 3.1 and let $\{T_i\}_{i=1}^N : E \to E$ be N uniformly continuous ϕ -strongly pseudocontractive mappings. Then, for some $x_0 \in E$, the multi-step iterative sequence with errors $\{x_n\}_{n=1}^{\infty}$ defined by

$$x_0 \in E,$$

 $x_n^1 = a_n^1 x_n + b_n^1 T_1 x_n + c_n^1 u_n^1,$

$$\begin{aligned} x_n^2 &= a_n^2 x_n + b_n^2 T_2 x_n^1 + c_n^2 u_n^2, \\ \vdots \\ x_n^{N-1} &= a_n^{N-1} x_n + b_n^{N-1} T_{N-1} x_n^{N-2} + c_n^{N-1} u_n^{N-1}, \\ x_{n+1} &= x_n^N = a_n^N x_n + b_n^N T_N x_n^{N-1} + c_n^N u_n^N, \quad n \ge 0, \end{aligned}$$

converges strongly to the unique common fixed point of $\{T_i\}_{i=1}^N$.

Proof See [1].

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally in writing this paper, and read and approved the final manuscript.

Author details

¹Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China. ²Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang, 050003, China.

Acknowledgements

The authors are very grateful to Professor Yeol-Je Cho for good suggestions which helped to improve the manuscript. This work is supported by the Hebei Natural Science Foundation No. A2011210033.

Received: 2 September 2012 Accepted: 6 January 2013 Published: 30 January 2013

References

- 1. Gurudwan, N, Sharma, BK: Convergence theorem for the common solution for a finite family of *φ*-strongly accretive operator equations. Appl. Math. Comput. **217**(15), 6748-6754 (2011)
- Yang, L: A note on a paper 'Convergence theorem for the common solution for a finite family of *φ*-strongly accretive operator equations'. Appl. Math. Comput. 218(21), 10367-10369 (2012)
- 3. Rafiq, A: On iterations for families of asymptotically pseudocontractive mappings. Appl. Math. Lett. 24(1), 33-38 (2011)
- 4. Deimling, K, Nonlinear Functional Analysis. Springer, Berlin (1985)
- Moore, C, Nnoli, BVC: Iterative solution of nonlinear equations involving set-valued uniformly accretive operators. Comput. Math. Appl. 42(1-2), 131-140 (2001)

doi:10.1186/1029-242X-2013-35

Cite this article as: Xue and Zhou: A further remark to paper 'Convergence theorems for the common solution for a finite family of ϕ -strongly accretive operator equations'. *Journal of Inequalities and Applications* 2013 2013:35.