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1 Introduction
Let X and Y be metric spaces with metrics dX and dY , respectively. A map f : X → Y is
called an isometry if dY (f (x), f (y)) = dX(x, y) for every x, y ∈ X. Mazur and Ulam [] treated
the theory of isometry for the first time. They have proved the following theorem.

Mazur-Ulam theorem Let f be an isometric transformation from a real normed vector
space X onto a real normed vector space Y with f () = . Then f is linear.

It was natural to ask if the result holds without the onto assumption. Having asked this
natural question, Baker [] answered that every isometry of a real normed linear space
into a strictly convex real normed linear space is affine. The Mazur-Ulam theorem has
been widely studied by [–].
Chu et al. [] have defined the notion of a -isometry which is suitable to represent the

concept of an area-preserving mapping in linear -normed spaces. In [], Chu proved
that theMazur-Ulam theorem holds in linear -normed spaces under the condition that a
-isometry preserves collinearity. Chu et al. [] discussed characteristics of -isometries.
In [], Amyari and Sadeghi proved the Mazur-Ulam theorem in non-Archimedean -
normed spaces under the condition of strict convexity. Recently, Choy et al. [] proved the
theorem on non-Archimedean -normed spaces over linear ordered non-Archimedean
fields without the strict convexity assumption.
Misiak [, ] defined the concept of an n-normed space and investigated the space.

Park and Rassias [] investigated the stability of linear n-isometries in a linear n-normed
Banach module. Chu et al. [], in linear n-normed spaces, defined the concept of an n-
isometry that is suitable to represent the notion of a volume-preserving mapping. In [],
Chu et al. generalized the Mazur-Ulam theorem to n-normed spaces.
In this paper, without the condition of strict convexity, we prove the (additive) Mazur-

Ulam theorem on non-Archimedean n-normed spaces. Firstly, we assert that an n-
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isometry f from a non-Archimedean space to a non-Archimedean space preserves the
midpoint of a segment under some condition about the set of all elements of a valued field
whose valuations are . Using the above result, we show theMazur-Ulam theorem on non-
Archimedean n-normed spaces over linear ordered non-Archimedean fields. In addition,
we prove that the barycenter of a triangle in the non-Archimedean n-normed spaces is f -
invariant under different conditions from those referred in previous statements. And then
we also prove the (second type) Mazur-Ulam theorem in non-Archimedean n-normed
spaces under some different conditions.

2 TheMazur-Ulam theorem I in non-Archimedean n-normed spaces
In this section, we introduce a non-Archimedean n-normed spacewhich is a kind of gener-
alization of a non-Archimedean -normed space, andwe show the (additive)Mazur-Ulam
theorem for an n-isometry f defined on a non-Archimedean n-normed space, that is,
f (x) – f () is additive. Firstly, we consider some definitions and lemmas which are needed
to prove the theorem.
Recall that a non-Archimedean (or ultrametric) valuation is given by a map | · | from a

field K into [,∞) such that for all r, s ∈K,
(i) |r| =  if and only if r = ;
(ii) |rs| = |r||s|;
(iii) |r + s| ≤ max{|r|, |s|}.
If every element of K carries a valuation, then a field K is called a valued field; for con-

venience, we simply call it a field. It is obvious that || = | – | =  and |n| ≤  for all n ∈ N.
A trivial example of a non-Archimedean valuation is the map | · | taking everything but 
into  and || =  (see []).
Let X be a vector space over a valued field K. A non-Archimedean norm is a function

‖ · ‖ :X → [,∞) such that for all r ∈K and x, y ∈X ,
(i) ‖x‖ =  if and only if x = ;
(ii) ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality

‖x + y‖ ≤ max
{‖x‖,‖y‖}.

Then we say (X ,‖ · ‖) is a non-Archimedean space.

Definition . LetX be a vector space with the dimension greater than n– over a valued
fieldKwith a non-Archimedean valuation | · |. A function ‖·, . . . , ·‖ :X ×· · ·×X → [,∞)
is said to be a non-Archimedean n-norm if

(i) ‖x, . . . ,xn‖ =  ⇔ x, . . . ,xn are linearly dependent;
(ii) ‖x, . . . ,xn‖ = ‖xj , . . . ,xjn‖ for every permutation (j, . . . , jn) of (, . . . ,n);
(iii) ‖αx, . . . ,xn‖ = |α|‖x, . . . ,xn‖;
(iv) ‖x + y,x, . . . ,xn‖ ≤ max{‖x,x, . . . ,xn‖,‖y,x, . . . ,xn‖}

for all α ∈ K and all x, y,x, . . . ,xn ∈ X . Then (X ,‖·, . . . , ·‖) is called a non-Archimedean
n-normed space.

From now on, letX and Y be non-Archimedean n-normed spaces over a linear ordered
non-Archimedean field K.
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Definition . Let X and Y be non-Archimedean n-normed spaces and f :X → Y be a
mapping. We call f an n-isometry if

‖x – x, . . . ,xn – x‖ =
∥∥f (x) – f (x), . . . , f (xn) – f (x)

∥∥

for all x,x, . . . ,xn ∈X .

Definition . The points x,x, . . . ,xn of a non-Archimedean n-normed spaceX are said
to be n-collinear if for every i, {xj – xi |  ≤ j �= i≤ n} is linearly dependent.

The points x, x and x of a non-Archimedean n-normed space X are said to be -
collinear if and only if x – x = t(x – x) for some element t of the non-Archimedean
field K. We denote the set of all elements of K whose valuations are  by C , that is, C =
{γ ∈K : |γ | = }.

Lemma . Let xi be an element of a non-Archimedean n-normed space X for every i ∈
{, . . . ,n} and γ ∈K. Then

‖x, . . . ,xi, . . . ,xj, . . . ,xn‖ = ‖x, . . . ,xi, . . . ,xj + γ xi, . . . ,xn‖

for all  ≤ i �= j ≤ n.

Proof By Definition ., we have

‖x, . . . ,xi, . . . ,xj + γ xi, . . . ,xn‖
≤ max

{‖x, . . . ,xi, . . . ,xj, . . . ,xn‖, |γ |‖x, . . . ,xi, . . . ,xi, . . . ,xn‖
}

=max
{‖x, . . . ,xi, . . . ,xj, . . . ,xn‖, }

= ‖x, . . . ,xi, . . . ,xj, . . . ,xn‖.

One can easily prove the converse using similar methods. This completes the proof. �

Remark . Let X , Y be non-Archimedean n-normed spaces over a linear ordered non-
Archimedean field K and let f : X → Y be an n-isometry. One can show that the n-
isometry f from X to Y preserves the -collinearity using a similar method to that in
[, Lemma .].

Themidpoint of a segment with endpoints x and y in the non-Archimedean n-normed
space X is defined by the point x+y

 .
Now, we prove the Mazur-Ulam theorem on non-Archimedean n-normed spaces. In

the first step, we prove the following lemma. And then, using the lemma, we show that
an n-isometry f from a non-Archimedean n-normed space X to a non-Archimedean n-
normed space Y preserves the midpoint of a segment, i.e., the f -image of the midpoint of
a segment in X is also the midpoint of a corresponding segment in Y .

Lemma . Let X be a non-Archimedean n-normed space over a linear ordered non-
Archimedean field K with C = {n|n ∈ Z} and let x,x ∈X with x �= x. Then u := x+x

 is

http://www.journalofinequalitiesandapplications.com/content/2013/1/34
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the unique member of X satisfying

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – u,x – x,x – x, . . . ,x – xn‖
= ‖x – u,x – x,x – x, . . . ,x – xn‖

for some x, . . . ,xn ∈X with ‖x – x,x – x, . . . ,x – xn‖ �=  and u, x, x are -collinear.

Proof Let u := x+x
 . From the assumption for the dimension of X , there exist n –  ele-

ments x, . . . ,xn in X such that ‖x – x,x – x, . . . ,x – xn‖ �= . One can easily prove that
u satisfies the above equations and conditions. It suffices to show the uniqueness for u.
Assume that there is another v satisfying

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – v,x – x,x – x, . . . ,x – xn‖
= ‖x – v,x – x,x – x, . . . ,x – xn‖

for some elements x, . . . ,xn of X with ‖x – x,x – x, . . . ,x – xn‖ �=  and v, x, x are
-collinear. Since v, x, x are -collinear, v = tx + ( – t)x for some t ∈K. Then we have

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – v,x – x,x – x, . . . ,x – xn‖
=

∥∥x – tx – ( – t)x,x – x,x – x, . . . ,x – xn
∥∥

= | – t|‖x – x,x – x,x – x, . . . ,x – xn‖,
‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – v,x – x,x – x, . . . ,x – xn‖
=

∥∥x – tx – ( – t)x,x – x,x – x, . . . ,x – xn
∥∥

= |t|‖x – x,x – x,x – x, . . . ,x – xn‖
= |t|‖x – x,x – x,x – x, . . . ,x – xn‖.

Since ‖x – x,x – x, . . . ,x – xn‖ �= , we have two equations | – t| =  and |t| = . So,
there are two integers k, k such that  – t = k , t = k . Since k + k = , ki <  for all
i = , . Thus, we may assume that  – t = –n , t = –n and n ≥ n ∈ N without loss of
generality. If n � n, then  = –n + –n = –n ( + n–n ), that is, n =  + n–n . This
is a contradiction because the left-hand side of the equation is a multiple of  but the
right-hand side of the equation is not. Thus, n = n =  and hence v = 

x +

x = u. �

Theorem . Let X , Y be non-Archimedean n-normed spaces over a linear ordered non-
Archimedean field K with C = {n|n ∈ Z} and f :X → Y be an n-isometry. Then the mid-
point of a segment is f -invariant, i.e., for every x,x ∈ X with x �= x, f ( x+x ) is also the
midpoint of a segment with endpoints f (x) and f (x) in Y .

http://www.journalofinequalitiesandapplications.com/content/2013/1/34
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Proof Let x,x ∈ X with x �= x. Since the dimension of X is greater than n – , there
exist n –  elements x, . . . ,xn of X satisfying ‖x – x,x – x, . . . ,x – xn‖ �= . Since x, x
and their midpoint x+x

 are -collinear in X , f (x), f (x), f ( x+x ) are also -collinear in
Y by Remark .. Since f is an n-isometry, we have the following:

∥∥∥∥f (x) – f
(
x + x



)
, f (x) – f (x), . . . , f (x) – f (xn)

∥∥∥∥
=

∥∥∥∥x – x + x


,x – x, . . . ,x – xn
∥∥∥∥

=
∣∣∣∣ 

∣∣∣∣‖x – x,x – x, . . . ,x – xn‖

=
∥∥f (x) – f (x), f (x) – f (x), . . . , f (x) – f (xn)

∥∥,∥∥∥∥f (x) – f
(
x + x



)
, f (x) – f (x), . . . , f (x) – f (xn)

∥∥∥∥
=

∥∥∥∥x – x + x


,x – x, . . . ,x – xn
∥∥∥∥

=
∣∣∣∣ 

∣∣∣∣‖x – x,x – x, . . . ,x – xn‖

=
∥∥f (x) – f (x), f (x) – f (x), . . . , f (x) – f (xn)

∥∥.

By Lemma ., we obtain that f ( x+x ) = f (x)+f (x)
 for all x,x ∈X with x �= x. This com-

pletes the proof. �

Lemma . Let X and Y be non-Archimedean n-normed spaces over a linear ordered
non-Archimedean field K and f : X → Y be an n-isometry. Then the following conditions
are equivalent.
(i) The n-isometry f preserves the midpoint of a segment inX , i.e., f ( x+x ) = f (x)+f (x)

 for
all x,x ∈X with x �= x;
(ii) The n-isometry f preserves the barycenter of a triangle in X , i.e., f ( x+x+x ) =

f (x)+f (x)+f (x)
 for all x,x,x ∈X satisfying that x, x, x are not -collinear.

Proof Assume that the n-isometry f preserves the barycenter of a triangle in X . Let x,
x be in X with x �= x. Since the n-isometry f preserves the -collinearity, f (x), f ( x+x ),
f (x) are -collinear. So,

f
(
x + x



)
– f (x) = s

(
f (x) – f (x)

)
(.)

for some element s of K. By the hypothesis for the dimension of X , we can choose the
element x of X satisfying that x, x and x are not -collinear. Since x, x+x+x

 , x+x


are -collinear, we have that f (x), f ( x+x+x ), f ( x+x ) are also -collinear by Remark ..
So, we obtain that

f
(
x + x + x



)
– f (x) = t

(
f
(
x + x



)
– f (x)

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/34
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for some element t of the non-Archimedean field K. By the equations (.), (.) and the
barycenter-preserving property for the n-isometry f , we have

f (x) + f (x) + f (x)


– f (x) = t
(
f (x) + sf (x) – sf (x) – f (x)

)
.

Thus, we get

f (x) + f (x) – f (x)


= t( – s)f (x) + tsf (x) – tf (x).

So, we have the following equation:



(
f (x) – f (x)

)
–


(
f (x) – f (x)

)
= t

(
f (x) – f (x)

)
– ts

(
f (x) – f (x)

)
.

By a calculation, we obtain

(


– t

)(
f (x) – f (x)

)
+

(
–


+ ts

)(
f (x) – f (x)

)
= . (.)

Since x, x, x are not -collinear, x – x, x – x are linearly independent. Since dimX ≥
n, there are x, . . . ,xn ∈ X such that ‖x – x,x – x,x – x, . . . ,x – xn‖ �= . Since f is an
n-isometry,

∥∥f (x) – f (x), f (x) – f (x), f (x) – f (x), . . . , f (x) – f (xn)
∥∥

= ‖x – x,x – x,x – x, . . . ,x – xn‖ �= .

So, f (x) – f (x) and f (x) – f (x) are linearly independent. Hence, from equation (.), we
have 

 – t =  and – 
 + ts = , i.e., we obtain t = 

 , s =

 , which imply the equation

f
(
x + x



)
=
f (x) + f (x)



for all x,x ∈X with x �= x.
Conversely, (i) trivially implies (ii). This completes the proof of this lemma. �

Remark . One can prove that the above lemma also holds in the case of linear n-
normed spaces.

Theorem . Let X and Y be non-Archimedean n-normed spaces over a linear ordered
non-Archimedean field K with C = {n|n ∈ Z}. If f : X → Y is an n-isometry, then f (x) –
f () is additive.

Proof Let g(x) := f (x) – f (). Then it is clear that g() =  and g is also an n-isometry.
From Theorem ., for x,x ∈X (x �= x), we have

g
(
x + x



)
=
g(x) + g(x)


.

Since g() = , we obtain that g is additive which completes the proof. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/34
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3 TheMazur-Ulam theorem II in non-Archimedean n-normed spaces
In this section, under different conditions from those previously referred in Theorem .,
we also prove the (second type) Mazur-Ulam theorem on a non-Archimedean n-normed
space. Firstly, we show that an n-isometry f from a non-Archimedean n-normed space X
to a non-Archimedean n-normed space Y preserves the barycenter of a triangle, i.e., the
f -image of the barycenter of a triangle is also the barycenter of a corresponding triangle.
Then, using Lemma ., we also prove the Mazur-Ulam theorem (a non-Archimedean
n-normed space version) under some different conditions.

Lemma . Let X be a non-Archimedean n-normed space over a linear ordered non-
Archimedean field K with C = {n|n ∈ Z} and let x, x, x be elements of X such that
x, x, x are not -collinear. Then u := x+x+x

 is the unique member of X satisfy-
ing

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – x,x – u,x – x, . . . ,x – xn‖
= ‖x – x,x – u,x – x, . . . ,x – xn‖
= ‖x – x,x – u,x – x, . . . ,x – xn‖

for some x, . . . ,xn ∈ X with ‖x – x,x – x,x – x, . . . ,x – xn‖ �=  and u is an interior
point of 
xxx .

Proof Let u := x+x+x
 . Thus u is an interior point of
xxx . Since dimX > n–, there are

n –  elements x, . . . ,xn of X such that ‖x – x,x – x,x – x, . . . ,x – xn‖ �= . Applying
Lemma ., we have that

‖x – x,x – u,x – x, . . . ,x – xn‖

=
∥∥∥∥x – x,x –

x + x + x


,x – x, . . . ,x – xn
∥∥∥∥

=
∣∣∣∣ 

∣∣∣∣‖x – x,x – x + x – x,x – x, . . . ,x – xn‖

= ‖x – x,x – x,x – x, . . . ,x – xn‖.

And we can also obtain that

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – x,x – u,x – x, . . . ,x – xn‖
= ‖x – x,x – u,x – x, . . . ,x – xn‖.

For the proof of uniqueness, let v be another interior point of 
xxx satisfying

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – x,x – v,x – x, . . . ,x – xn‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/34
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= ‖x – x,x – v,x – x, . . . ,x – xn‖
= ‖x – x,x – v,x – x, . . . ,x – xn‖

with ‖x – x,x – x,x – x, . . . ,x – xn‖ �= . Since v is an element of the set {tx + tx +
tx|t + t + t = , ti ∈K, ti >  for all i}, there are elements s, s, s ofKwith s +s +s = ,
si >  such that v = sx + sx + sx. Then we have

‖x – x,x – x,x – x, . . . ,x – xn‖
= ‖x – x,x – v,x – x, . . . ,x – xn‖
= ‖x – x,x – sx – sx – sx,x – x, . . . ,x – xn‖
=

∥∥x – x, (s – )x + sx + ( – s – s)x,x – x, . . . ,x – xn
∥∥

=
∥∥x – x, (s + s – )x + ( – s – s)x,x – x, . . . ,x – xn

∥∥
= |s + s – |‖x – x,x – x,x – x, . . . ,x – xn‖
= |s|‖x – x,x – x,x – x, . . . ,x – xn‖

and hence |s| =  since ‖x – x,x – x,x – x, . . . ,x – xn‖ �= . Similarly, we obtain |s| =
|s| = . By the hypothesis of C , there are integers k, k, k such that s = k , s = k ,
s = k . Since s + s + s = , every ki is less than . So, one may let s = –n , s = –n ,
s = –n and n ≥ n ≥ n ∈ N. Assume that one of the above inequalities holds. Then
 = s + s + s = –n (+n–n +n–n ), i.e., n = +n–n +n–n . This is a contradiction,
because the left-hand side is a multiple of  whereas the right-hand side is not. Thus,
n = n = n. Consequently, s = s = s = 

 . This means that u is unique. �

Theorem . Let X , Y be non-Archimedean n-normed spaces over a linear ordered non-
Archimedean field K with C = {n|n ∈ Z} and f : X → Y be an interior-preserving n-
isometry. Then the barycenter of a triangle is f -invariant.

Proof Let x, x and x be elements of X satisfying that x, x and x are not -collinear.
It is obvious that the barycenter x+x+x

 of a triangle 
xxx is an interior point of the
triangle. By the assumption, f ( x+x+x ) is also the interior point of a triangle 
f (x)f (x)f (x).
Since dimX > n–, there exist n– elements x, . . . ,xn inX such that ‖x –x,x –x,x –
x, . . . ,x – xn‖ is not zero. Since f is an n-isometry, we have

∥∥∥∥f (x) – f (x), f (x) – f
(
x + x + x



)
, f (x) – f (x), . . . , f (x) – f (xn)

∥∥∥∥
=

∥∥∥∥x – x,x –
x + x + x


,x – x, . . . ,x – xn

∥∥∥∥
=

∣∣∣∣ 
∣∣∣∣‖x – x,x – x + x – x,x – x, . . . ,x – xn‖

= ‖x – x,x – x,x – x, . . . ,x – xn‖
=

∥∥f (x) – f (x), f (x) – f (x), f (x) – f (x), . . . , f (x) – f (xn)
∥∥.

http://www.journalofinequalitiesandapplications.com/content/2013/1/34
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Similarly, we obtain

∥∥∥∥f (x) – f (x), f (x) – f
(
x + x + x



)
, f (x) – f (x), . . . , f (x) – f (xn)

∥∥∥∥
=

∥∥∥∥f (x) – f (x), f (x) – f
(
x + x + x



)
, f (x) – f (x), . . . , f (x) – f (xn)

∥∥∥∥
=

∥∥f (x) – f (x), f (x) – f (x), f (x) – f (x), . . . , f (x) – f (xn)
∥∥.

From Lemma ., we get

f
(
x + x + x



)
=
f (x) + f (x) + f (x)



for all x,x,x ∈X satisfying that x, x, x are not -collinear. �

The next theorem is theMazur-Ulam theorem II in non-Archimedean n-normed spaces
over a linear ordered non-Archimedean fieldK. The assumptions of this theorem are dif-
ferent from that of Theorem .. In particular, in the proof of the theorem, we use the
f -preserving property for the barycenter of a triangle.

Theorem . Let X and Y be non-Archimedean n-normed spaces over a linear ordered
non-Archimedean field K with C = {n|n ∈ Z}. If f : X → Y is an interior-preserving n-
isometry, then f (x) – f () is additive.

Proof Let g(x) := f (x)– f (). One can easily check that g() =  and g is also an n-isometry.
Using a similar method in [, Theorem .], we can easily prove that g is also an interior-
preserving mapping.
Now, let x, x, x be elements of X satisfying that x, x, x are not -collinear. Since g

is an interior-preserving n-isometry, by Theorem .,

g
(
x + x + x



)
=
g(x) + g(x) + g(x)



for any x,x,x ∈X satisfying that x, x, x are not -collinear. Using Lemma . and the
property g() = , we obtain that the interior-preserving n-isometry g is additive, which
completes the proof. �
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