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1 Introduction
We study asymptotic decay estimate of solution to the Cauchy problem for the generalized
damped Bq equation:

Uy — Au—2bAu; + a A’u = Af (u) (1.1)
with the initial value
t=0: u=uylx), Uy = up(x). (1.2)

Here u = u(x, t) is the unknown function of x = (x1,...,x,) € R” and t>0,b>0and o« >0
are constants. The nonlinear term f(u) is a given smooth function of u € R satisfying
f(u) = O(u?) for u— 0.

It is well known that the equation (called the classical Bq equation)

uy + o Au— Au = BA(u?) (1.3)

was derived by Boussinesq [1] in 1872 to describe shallow water waves, where u(x, f) is
an elevation of the free surface of fluid and the constant coefficients « and 8 depend on
the depth of fluid and the characteristic speed of long waves. It is interesting to note that
this equation governs nonlinear string oscillations as well. For (1.3) and the generalized
Bq equation, there are lots of important results (see [2-5]).

Equation (1.3) takes into account dispersion and nonlinearity, but in real processes vis-
cosity also plays an important role. Varlamov considered the following damped Boussi-
nesq equation (see [6-8]):

Uy — A —2bAu; + a Au = ﬁA(uz), (1.4)

© 2013 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

L]
@ Sprlnger tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2013/1/323
mailto:yinxia117@126.com
http://creativecommons.org/licenses/by/2.0

Wang Journal of Inequalities and Applications 2013, 2013:323 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/323

where b > 0 and o > 0 are constants. A classical solution to the Cauchy problem for (1.4)
with small initial data was constructed by means of the application of both spectral and
perturbation theories. Large time asymptotics of this solution was also obtained (see [6]).
Varlamov [7] investigated the Cauchy problem for (1.4). For the cases of one, two and
three space dimensions local in time existence and uniqueness of a solution is proved.
The authors also showed that for discontinuous initial perturbations this solution is in-
finitely differentiable with respect to time ¢ and space co-ordinates for £ > 0 on a bounded
time interval. Varlamov [8] considered the Cauchy problem for (1.4) with small initial data
in two space dimensions. Existence and uniqueness of the classical solution was proved
and the solution was constructed in the form of a series. The major term of its long-time
asymptotics is calculated explicitly and a uniform in space estimate of the residual term
was given.

The main purpose of this paper is to establish the following asymptotic decay estimate
of solutions to (1.1), (1.2) for n > 1:

u E n_k

“8’]; (t)| Hs+2-k = C 0(1 + t)717§’%

for 0 < k <s+2 and s > max{0,[5] — 1}. Here Eo := [[uol\y-11 + lltallyp-21 + [[tto]l s+2
”MIHHS- W + [lu

Decay estimate of solutions to hyperbolic-type equations has been investigated by many
authors. We refer to [9, 10] for hyperbolic equations, to [11-15] for damped wave equation
and to [16—-19] for various aspects of dissipation of the plate equation.

The paper is organized as follows. In Section 2 we derive the solution formula of our
semi-linear problem. We study the decay property of the solution operators appearing in
the solution formula in Section 3. In Section 4, asymptotic decay estimate of solutions to
the cauchy problem (1.1), (1.2) is established by applying fixed point theorem.

Notations We give some notations which are used in this paper. Let ¥ [u] denote the
Fourier transform of u defined by

i)~ Flul = [ et
R
and we denote its inverse transform by F 1.

For 1 < p < oo, L” = L’(R") denotes the usual Lebesgue space with the norm || - ||z».
The usual Sobolev space of s is defined by W*” = (I — A)~3 P with the norm IWf lwse =
- A)%flle; the homogeneous Sobolev space of s is defined by WP = (~A)~2L? with
the norm ||f ||ypsp = [|(=A)2f || 1»; especially H® = W2, H* = W2, Moreover, we know that
WP = [P N WS for s > 0.

Finally, in this paper, we denote every positive constant by the same symbol C or ¢ with-
out confusion. [-] is the Gauss symbol.

2 Solution formula
The aim of this section is to derive the solution formula for the problem (1.1), (1.2). We
first investigate the linearized equation of (1.1).

Uy — Au—2bAu; + aA*u=0
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with the initial data in (1.2). Taking the Fourier transform, we have
iy + 2bIE 171 + (€1 + a|€|*) 2k = 0.
The corresponding initial values are given as
t=0: a=1uy), iy = i1 (8).
The characteristic equation of (2.1) is
22 4+2bEPA + €2 +alE|* = 0.
Let A = 24(&) be the corresponding eigenvalues of (2.3), we obtain
Ai(§) = -bIE* £ 151,/ (b - )52 - 1.
The solution to the problem (2.1)-(2.2) is given in the form

g, t) = G(E, Din(E) + HE, Dig (&),

where
e - 1 re(€) _ (et
O THame T )
and
. 1
H(E,t) = m(h(%‘)e**(&” —A_(E)eME),

We define G(x,t) and H(x,t) by
G(x,t) = F[G(E,0)] (%)
and

H(x,t) = F[H(E,1)] (),

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.7)

(2.8)

(2.9)

respectively, where ¥ ! denotes the inverse Fourier transform. Then, applying 7! to

(2.5), we obtain

u(t) = G(¢) * uy + H(t) * uq.

By the Duhamel principle, we obtain the solution formula to (1.1), (1.2)

u(t) = G(t) % ug + H(t) x ug + /t G(t— 1) * Af (u)(r)dr.
0

(2.10)

(2.11)
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3 Decay property
The aim of this section is to establish decay estimates of the solution operators G(t) and
H(t) appearing in the solution formula (2.10).

Lemma 3.1 The solution of the problem (2.1), (2.2) satisfies
(€12 + 161 |ae, ) + &, 0 < Ce =P (162 + 161%) [iwo () + |m(©)])  (3.1)
foré eR" and t > 0.

Proof Multiplying (2.1) by i, and taking the real part yields

| &

{ie? + &P 10l + al& ]|} +2b1E 1|2 = 0. (3.2)

T
&

t
Multiplying (2.1) by f and taking the real part, we obtain

1d N AR N N N

5%{219|§|2|M|2 +2Re(i i)} + 162 |i) + € [* | - | |* = 0. (3.3)

Multiplying both sides of (3.3) by b|£|?> and summing up the resulting equation and (3.2)
yield

%E +F=0, (3.4)
where

E= Jlal? + SR + Il + g1 AP + blEI” Reld)
and

F = bl it |* + bIE* |t + bar[£]° ).
A simple computation implies that

CEy <E <CE,, (3.5)
where

Eo = (&> + &%) 1) + iz, .
Note that

F > c|§Eo.
It follows from (3.5) that

F > clg|’E. (3.6)
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Using (3.4) and (3.6), we get
d E+clE]?E<0
—E+c¢c .
dt -

Thus
E(,1) < e “"E(£,0),

which together with (3.5) proves the desired estimates (3.1). Then we have completed the
proof of the lemma. d

Lemma 3.2 Let G(é ,t) and H (&,t) be the fundamental solutions of the linear equation of
(1.1) in the Fourier space, which are given in (2.6) and (2.7), respectively. Then we have the

estimates

(€12 + 161%)| G (&, 0)[* + |Gile, )| < Ce et (3.7)
and

(€12 + 161 | A, O + e, 0 < C(161 + 151*)e et (3.8)

foré§ eR" and t > 0.

Proof If iip(&) = 0, from (2.5), we obtain

wE, ) = GEDImE),  wE D) =GE D).

Substituting the equalities into (3.1) with Zy(¢) = 0, we get (3.7).

In what follows, we consider ;(£) = 0, it follows from (2.5) that

e, t) = HE D E), e, ) = HiE Dig(&).

Substituting the equalities into (3.1) with #;(§) = 0, we get the desired estimate (3.8). The
lemma is proved. 0

Lemma 3.3 Let G(x,t) and H(x,t) be the fundamental solutions of the linear equation of
(1.1), which are given in (2.8) and (2.9), respectively. Then, for k > 0 and j > 0, we have

|05G (@) % 6] o < CA+ B E 55D @l + Ce |04 o, (3.9)
|okH @) * ¢, < CA+ B gl + Ce | o] 2, (3.10)
105G, % 6] o < CA+ D5 D1 o + Ce 059 o, (3.11)

|05 HL () % 6] o < CA+ G55 Dl yoia + Ce 94D, (3.12)
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and

|05G() * Agll . < €+ ) 5D gl + Ce || akg| (3.13)

2N

|05Gu() * Ag| ., < CA+ ) 5D gl 1 + Ce | 9% Vg |, (3.14)
where (k — 2), = max{0,k — 2} in (3.9).
Proof By the Plancherel theorem and (3.7), the Hausdorft-Young inequality, we obtain
k 2 2% | F A 2
lefc0 oL} = [ ierEeof e s
[§1=Ro
e[ el ol de
[€1=Ro
2,0 A
< [ jerecge) ds
[§1=Ro
e c EENNT)
e [ et o ie1t) oo de
|§1=Ro
< f 642l g2 | ()| de + Ce a2 g,
[&1<Ro
iR a2 042 —clE? e _ 2
<ClierB@]e [ e et dg 1 cee ol
[§1=Ro
= CO ) BRI oy v Co ol o
where (k — 2), = max{0,k — 2} and R is a small positive constant. Thus (3.9) follows.
Similarly, using (3.7) and (3.8), respectively, we can prove (3.10)-(3.12).

In what follows, we prove (3.13). By the Plancherel theorem, (3.7) and the Hausdorff-

Young inequality, we have
|okG() + Agl;, = /E B €129 Ge, 0)| 161" |g(6) | de
o[ rerlGte olier e de
[&1=Ro
< /E e g s 1 e [ rerlerae
=Ko

[€1=Ro

<C

g(s)“imﬁ ] |§|2k+26—6|§|2td€+Ce—ct||afg||iz
=Ro

n

< C+ ) ERDg )2, + Ce kg2,

where Ry is a small positive constant. Thus (3.13) follows. Similarly, we can prove (3.14).
Thus we have completed the proof of the lemma. d

4 Asymptotic decay of solutions to (1.1), (1.2)
The purpose of this section is to prove asymptotic decay of solutions to the Cauchy prob-
lem (1.1), (1.2). We need the following lemma, which comes from [20] (see also [21]).
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Lemma 4.1 Assume thatf = f(v) is a smooth function. Suppose that f(v) = O([v|"*) (6 > 1
is an integer) when |v| < vo. Then, for integer m > 0, if v,w € W™4(R") N L?(R"”) N L>*°(R")
and ||v|e < vo, [|[w]lzee < vo, then f(v) — f(w) € W™ (R"). Furthermore, the following in-

equalities hold:
|97f W), < Clvllee | 97| o IVI7
and
[o @) —f )], = {90 ] o + |0 w] ) 1Y = wiler
+ (Il + Iwlie) 820 = w) | o IVl + Iwllze )™,
where . = 5 + 2,1 <p,q,r < +00.

In the previous section, we showed the decay estimates for the solution operators. With
this preparation, we can prove the global existence and asymptotic decay of solutions to
the integral equation (2.11) and hence to the problem (1.1), (1.2). So we define the following
solution space:

X = {u e C([0,00); H***(R")) N C*([0, 00); H*(R")) : [l x < 00},

where

Nl = sup{ et i otu),, + Y@+ piese Ha,iut(ﬂHLz}.

iz k<s+2 I<s

For R > 0, we define
Xp={ueX:|ulx <R}.
Using Gagliardo-Nirenberg inequality, we obtain
()]0 < Cll2u@) |} | ()] 2" < CRA+ ) %2, (4.1)

where

n n . n
so=|=|+1, 0=—, sp<s+2|ie,s>|=|-1).
2 250 2

Theorem 4.1 Assume that uy, € H*2(R") N W(R"), u; € HS(R") N W2L(R") (s >
max{0, [5] —1}). Put

Eo := lluollvip-11 + llurllvi-21 + lltdo || prsv2 + [l2a [l 15

IfEy is suitably small, the Cauchy problem (1.1), (1.2) has a unique global classical solution
u(x, t) satisfying

u € C°([0, 00); H***(R")) C' ([0, 00); H* (R")).
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Moreover, the solution satisfies the decay estimate

|oku(®)] ,» < CEo(1+ ) #+5+D (4.2)
and
|0lun(2)] ;2 < CEo(1 + 1) H¥3+D (4.3)
fork<s+2andl<s.
Proof Define the mapping
t
T(x) = G(t) * ug + H(¢) * ug + / G(t-1)* Af(u(t)) drt. (4.4)
0

Using (3.9) and (3.10) with j = 2,1, respectively, (3.13), Lemma 4.1 and (4.1), for k < s+ 2,
we obtain

|57 > = €Ot G(0) ] + ClOkH(E) x o
t
i / |95t - 1) AF (u()) |, dv
0
< C+ 7 E 2D (gl aa + sl i-22) + Ce™ (It vz + 1 1)

k
2

t
+C/‘2(1+t—r)’(%’r J'%)Hf(u)”L1 dt
0

t
+c/ U+t —7) D) k(W) , de
t
2
t
v [ e 0ol ar
0
n, k,1
< CA+ 7522 (ugllyyaa + el yr-21) + Ce™ (1ol vz + N llpss)
2 n
+C/ (1+t—r)’(1+§+%)||u||%2dr
0

t
+ C/ (1+t- r)_(%%)HM”L2 |0gu] 2 dr
L

2
t

+C / e o u| o lullp~ dr
0

k,1
< CA+ ) F 22 (Juollyyra + e llyp-21) + Ce (lluoll ez + lloaa |11z

t
7 n n
+ CRZ/ Q+z- r)’(1+§*%)(1 +1)" @ gr
0

t
+ Csz eI (1 4 7)
0

_(n k1 2
< CA+ 752 2! (luollyya + |l yp-21 + llttoll ez + e llps) + R?}.
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Thus
(1+0478*3 |95 T(w)| ,, < CEo + CR2,

It follows from (4.4) that

T(u); = Gi(8) *x ug + Hy(£) x ug + /t Gi(t—1) % Af(u(r)) dr.
0

(4.5)

(4.6)

By using (3.11) and (3.12) with j = 2,1, respectively, (3.14) Lemma 4.1 and (4.1), for [ <,

we have
|0:T ()| ;> < C||0LGu(E) % w1 o + C||0LHL(8) * uo]|

+ C/o [0:Gi(t = 1) % Af (u(2)) || - dT

(n, 1 _
< CA+7 2 (lugllyya + el yp-21) + Ce™ (lluto vz + o |15

t
+ C/2(1 +t— t)_(%”%”) Hf(u) ||L1 dr
0

t t
v [ - algl e ¢ [ e i ar
L 0

2

(nybar _
< CA+7 9 2 (Jluglyyra + el y-21) + Ce™ (lluto | vz + o ll1rs)

2 n
+C/ (1+t—f)_(1*%“)l|u||izdf
0
t n
+C/ (1+t—T)7(z+1)||”||L2 ”‘%i””ﬁ dt
t
3

t
+ C/ e 0L 7w o lull oo d
0

(.l _
< CA+7 9 2 (Jlugllypra + |l y-21) + Ce™ (lluto | vz + o [l 125

t
2 n, 1l n
+CR2/ (L+t-7) 41+ 7) G dr
0

t
n n, 1l
+CR2/ (1+e-7) @+ 7) 50 dr
L
2

t
n,l n
+CR2/ I+ )y EF Do) D) ar

0

(n, L
< CA+ )T 2D (g llyan + Nl -2 + ltollgssz + llearlls) + R*}.

Thus
1+ )27 /T (), |, < CEo + CR2.
Combining (4.5), (4.7) and taking E, and R suitably small yields

[Tl <R

(4.7)

(4.8)
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For u, u € Xy, by using (4.4), we have

T(&) — T(@) = /0 G-+ Alf @) -f@)]dr.
Thanks to (4.9), (3.13) and Lemma 4.1, (4.1), for k < s + 2, we obtain
0K (T(@) - T@) | ,» < /0 t loXG(t - 1) = A[f (@) - f(@)]] - dT
<C /0 %<1+t—r>-<%+%+%>|| (f) - f@) |, dr

+ C/; 1+t- r)*%*%)Haf(f(ﬁ) —f(ﬁ)) ||L1 dr

2

t
v [t @-s@)] e
0
%
< C/ U+ £ =) G 5D (il + el 2 ) i — il 2
0

t
' Cﬂ 1+t =) EDf(Jofit] 1 + 04 o) i - 2
2

+ (Nl g2 + il 2) ||0f G - )| o } dT

t
i C f eI (o] o + | 0] o) it - @l o
0

+ (ll oo + 13zl ) || 05 @ — )| > } de

t
L3

~ - 2 n k
< CR||u—u||x/ A+t—7) @ DA 416 gr
0

t
+ CR||i1 - iz||X/ (L +t—7) D14 7)B+3D gg
t
2
¢ 3n, k
+ CCR||it — £¢||X/ eI+ ) T gy
0
< CR(L+ &y A5 Dy,
which implies
1+ 0453 |0k (T(@) - T@) |, < CRIIG - ilx.
Similarly, for [ <s, from (4.6), (3.14) and (4.1), we have
t
Jo} (0@ -T@), 1,5 = [ Jo4Gue— )+ A[f@ ~f@] |
0
%
n_1 ~ _
< c/ A+ =0 3 (F@) - @) de
0

i C f W+ -0 ol (F(@) - f(@) | 1 d

(4.9)

(4.10)
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+cﬁeﬂmwxﬂmm—ﬂmwyﬁ

n, 1 - _
< CRA+t)" 4 2|7 — | x,

which implies

1+ 05724 0(T(@) - T(@), | ,» < CRIlG — il (4.11)

Combining (4.10), (4.11) and taking R suitably small yields

7@ ~T@|] < 3 il 412)

From (4.8) and (4.12), we know that T is a strictly contracting mapping. Consequently,

we conclude that there exists a fixed point u € Xy of the mapping T, which is a classical
solution to (1.1), (1.2). We have completed the proof of the theorem. O
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