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1 Introduction
We study asymptotic decay estimate of solution to the Cauchy problem for the generalized
damped Bq equation:

utt –�u – b�ut + α�u = �f (u) (.)

with the initial value

t = : u = u(x), ut = u(x). (.)

Here u = u(x, t) is the unknown function of x = (x, . . . ,xn) ∈ R
n and t > , b >  and α > 

are constants. The nonlinear term f (u) is a given smooth function of u ∈ R satisfying
f (u) =O(u) for u→ .
It is well known that the equation (called the classical Bq equation)

utt + α�u –�u = β�
(
u

)
(.)

was derived by Boussinesq [] in  to describe shallow water waves, where u(x, t) is
an elevation of the free surface of fluid and the constant coefficients α and β depend on
the depth of fluid and the characteristic speed of long waves. It is interesting to note that
this equation governs nonlinear string oscillations as well. For (.) and the generalized
Bq equation, there are lots of important results (see [–]).
Equation (.) takes into account dispersion and nonlinearity, but in real processes vis-

cosity also plays an important role. Varlamov considered the following damped Boussi-
nesq equation (see [–]):

utt –�u – b�ut + α�u = β�
(
u

)
, (.)
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where b >  and α >  are constants. A classical solution to the Cauchy problem for (.)
with small initial data was constructed by means of the application of both spectral and
perturbation theories. Large time asymptotics of this solution was also obtained (see []).
Varlamov [] investigated the Cauchy problem for (.). For the cases of one, two and
three space dimensions local in time existence and uniqueness of a solution is proved.
The authors also showed that for discontinuous initial perturbations this solution is in-
finitely differentiable with respect to time t and space co-ordinates for t >  on a bounded
time interval. Varlamov [] considered the Cauchy problem for (.) with small initial data
in two space dimensions. Existence and uniqueness of the classical solution was proved
and the solution was constructed in the form of a series. The major term of its long-time
asymptotics is calculated explicitly and a uniform in space estimate of the residual term
was given.
The main purpose of this paper is to establish the following asymptotic decay estimate

of solutions to (.), (.) for n≥ :

∥∥∂k
x u(t)

∥∥
Hs+–k ≤ CE( + t)–

n
 –

k
 –




for  ≤ k ≤ s +  and s ≥ max{, [ n ] – }. Here E := ‖u‖Ẇ–, + ‖u‖Ẇ–, + ‖u‖Hs+ +
‖u‖Hs .
Decay estimate of solutions to hyperbolic-type equations has been investigated bymany

authors.We refer to [, ] for hyperbolic equations, to [–] for damped wave equation
and to [–] for various aspects of dissipation of the plate equation.
The paper is organized as follows. In Section  we derive the solution formula of our

semi-linear problem. We study the decay property of the solution operators appearing in
the solution formula in Section . In Section , asymptotic decay estimate of solutions to
the cauchy problem (.), (.) is established by applying fixed point theorem.

Notations We give some notations which are used in this paper. Let F [u] denote the
Fourier transform of u defined by

û(ξ ) = F [u] =
∫
Rn

e–iξ ·xu(x)dx,

and we denote its inverse transform by F –.
For  ≤ p ≤ ∞, Lp = Lp(Rn) denotes the usual Lebesgue space with the norm ‖ · ‖Lp .

The usual Sobolev space of s is defined by Ws,p = (I – �)– s
 Lp with the norm ‖f ‖Ws,p =

‖(I – �) s f ‖Lp ; the homogeneous Sobolev space of s is defined by Ẇ s,p = (–�)– s
 Lp with

the norm ‖f ‖Ẇ s,p = ‖(–�) s f ‖Lp ; especially Hs =Ws,, Ḣs = Ẇ s,. Moreover, we know that
Ws,p = Lp ∩ Ẇ s,p for s≥ .
Finally, in this paper, we denote every positive constant by the same symbol C or c with-

out confusion. [·] is the Gauss symbol.

2 Solution formula
The aim of this section is to derive the solution formula for the problem (.), (.). We
first investigate the linearized equation of (.).

utt –�u – b�ut + α�u = 
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with the initial data in (.). Taking the Fourier transform, we have

ûtt + b|ξ |ût +
(|ξ | + α|ξ |)û = . (.)

The corresponding initial values are given as

t = : û = û(ξ ), ût = û(ξ ). (.)

The characteristic equation of (.) is

λ + b|ξ |λ + |ξ | + α|ξ | = . (.)

Let λ = λ±(ξ ) be the corresponding eigenvalues of (.), we obtain

λ±(ξ ) = –b|ξ | ± |ξ |
√(

b – α
)|ξ | – . (.)

The solution to the problem (.)-(.) is given in the form

û(ξ , t) = Ĝ(ξ , t)û(ξ ) + Ĥ(ξ , t)û(ξ ), (.)

where

Ĝ(ξ , t) =


λ+(ξ ) – λ–(ξ )
(
eλ+(ξ )t – eλ–(ξ )t

)
(.)

and

Ĥ(ξ , t) =


λ+(ξ ) – λ–(ξ )
(
λ+(ξ )eλ–(ξ )t – λ–(ξ )eλ+(ξ )t

)
. (.)

We define G(x, t) and H(x, t) by

G(x, t) = F –[Ĝ(ξ , t)](x) (.)

and

H(x, t) = F –[Ĥ(ξ , t)
]
(x), (.)

respectively, where F – denotes the inverse Fourier transform. Then, applying F – to
(.), we obtain

u(t) =G(t) ∗ u +H(t) ∗ u. (.)

By the Duhamel principle, we obtain the solution formula to (.), (.)

u(t) =G(t) ∗ u +H(t) ∗ u +
∫ t


G(t – τ ) ∗ �f (u)(τ )dτ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/323
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3 Decay property
The aim of this section is to establish decay estimates of the solution operators G(t) and
H(t) appearing in the solution formula (.).

Lemma . The solution of the problem (.), (.) satisfies

(|ξ | + |ξ |)∣∣û(ξ , t)∣∣ + ∣∣ût(ξ , t)∣∣ ≤ Ce–c|ξ |t((|ξ | + |ξ |)∣∣û(ξ )∣∣ + ∣∣û(ξ )∣∣) (.)

for ξ ∈R
n and t ≥ .

Proof Multiplying (.) by ¯̂ut and taking the real part yields



d
dt

{|ût| + |ξ ||û| + α|ξ ||û|} + b|ξ ||ût| = . (.)

Multiplying (.) by ¯̂u and taking the real part, we obtain



d
dt

{
b|ξ ||û| + Re(ût ¯̂u)

}
+ |ξ ||û| + α|ξ ||û| – |ût| = . (.)

Multiplying both sides of (.) by b|ξ | and summing up the resulting equation and (.)
yield

d
dt

E + F = , (.)

where

E =


|ût| + 


|ξ ||û| + α


|ξ ||û| + b|ξ ||û| + b|ξ |Re(ût ¯̂u)

and

F = b|ξ ||ût| + b|ξ ||û| + bα|ξ ||û|.

A simple computation implies that

CE ≤ E ≤ CE, (.)

where

E =
(|ξ | + |ξ |)|û| + |ût|.

Note that

F ≥ c|ξ |E.

It follows from (.) that

F ≥ c|ξ |E. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/323
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Using (.) and (.), we get

d
dt

E + c|ξ |E ≤ .

Thus

E(ξ , t)≤ e–c|ξ |tE(ξ , ),

which together with (.) proves the desired estimates (.). Then we have completed the
proof of the lemma. �

Lemma . Let Ĝ(ξ , t) and Ĥ(ξ , t) be the fundamental solutions of the linear equation of
(.) in the Fourier space, which are given in (.) and (.), respectively. Then we have the
estimates

(|ξ | + |ξ |)∣∣Ĝ(ξ , t)∣∣ + ∣∣Ĝt(ξ , t)
∣∣ ≤ Ce–c|ξ |t (.)

and

(|ξ | + |ξ |)∣∣Ĥ(ξ , t)
∣∣ + ∣∣Ĥt(ξ , t)

∣∣ ≤ C
(|ξ | + |ξ |)e–c|ξ |t (.)

for ξ ∈R
n and t ≥ .

Proof If û(ξ ) = , from (.), we obtain

û(ξ , t) = Ĝ(ξ , t)û(ξ ), ût(ξ , t) = Ĝt(ξ , t)û(ξ ).

Substituting the equalities into (.) with û(ξ ) = , we get (.).
In what follows, we consider û(ξ ) = , it follows from (.) that

û(ξ , t) = Ĥ(ξ , t)û(ξ ), ût(ξ , t) = Ĥt(ξ , t)û(ξ ).

Substituting the equalities into (.) with û(ξ ) = , we get the desired estimate (.). The
lemma is proved. �

Lemma . Let G(x, t) and H(x, t) be the fundamental solutions of the linear equation of
(.), which are given in (.) and (.), respectively. Then, for k ≥  and j ≥ , we have

∥∥∂k
xG(t) ∗ φ

∥∥
L ≤ C( + t)–(

n
 +

k
 +

j
 –


 )‖φ‖Ẇ–j, +Ce–ct

∥∥∂ (k–)+
x φ

∥∥
L , (.)

∥∥∂k
xH(t) ∗ φ

∥∥
L ≤ C( + t)–(

n
 +

k
 +

j
 )‖φ‖Ẇ–j, +Ce–ct

∥∥∂k
xφ

∥∥
L , (.)

∥∥∂k
xGt(t) ∗ φ

∥∥
L ≤ C( + t)–(

n
 +

k
 +

j
 )‖φ‖Ẇ–j, +Ce–ct

∥∥∂k
xφ

∥∥
L , (.)

∥∥∂k
xHt(t) ∗ φ

∥∥
L ≤ C( + t)–(

n
 +

k
 +

j
 +


 )‖φ‖Ẇ–j, +Ce–ct

∥∥∂ (k+)
x φ

∥∥
L (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/323
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and

∥∥∂k
xG(t) ∗ �g

∥∥
L ≤ C( + t)–(

n
 +

k
 +


 )‖g‖L +Ce–ct

∥∥∂k
x g

∥∥
L , (.)

∥∥∂k
xGt(t) ∗ �g

∥∥
L ≤ C( + t)–(

n
 +

k
 +)‖g‖L +Ce–ct

∥∥∂ (k+)
x g

∥∥
L , (.)

where (k – )+ =max{,k – } in (.).

Proof By the Plancherel theorem and (.), the Hausdorff-Young inequality, we obtain

∥∥∂k
xG(t) ∗ φ

∥∥
L =

∫
|ξ |≤R

|ξ |k∣∣Ĝ(ξ , t)∣∣∣∣φ̂(ξ )∣∣ dξ

+
∫

|ξ |≥R
|ξ |k∣∣Ĝ(ξ , t)∣∣∣∣φ̂(ξ )∣∣ dξ

≤
∫

|ξ |≤R
|ξ |k–e–c|ξ |t∣∣φ̂(ξ )∣∣ dξ

+Ce–ct
∫

|ξ |≥R
|ξ |k(|ξ | + |ξ |)–∣∣φ̂(ξ )∣∣ dξ

≤
∫

|ξ |≤R
|ξ |k–+je–c|ξ |t|ξ |–j∣∣φ̂(ξ )∣∣ dξ +Ce–ct

∥∥∂ (k–)+
x φ

∥∥
L

≤ C
∥∥|ξ |–jφ̂(ξ )∥∥

L∞

∫
|ξ |≤R

|ξ |k–+je–c|ξ |t dξ +Ce–ct
∥∥∂ (k–)+

x φ
∥∥
L

≤ C( + t)–(
n
 +k+j–)

∥∥(–�)–
j
 φ

∥∥
L +Ce–ct

∥∥∂ (k–)+
x φ

∥∥
L ,

where (k – )+ =max{,k – } and R is a small positive constant. Thus (.) follows.
Similarly, using (.) and (.), respectively, we can prove (.)-(.).
In what follows, we prove (.). By the Plancherel theorem, (.) and the Hausdorff-

Young inequality, we have

∥∥∂k
xG(t) ∗ �g

∥∥
L =

∫
|ξ |≤R

|ξ ||k|∣∣Ĝ(ξ , t)∣∣|ξ |∣∣ĝ(ξ )∣∣ dξ

+
∫

|ξ |≥R
|ξ |k∣∣Ĝ(ξ , t)∣∣|ξ |∣∣ĝ(ξ )∣∣ dξ

≤
∫

|ξ |≤R
|ξ |k+e–c|ξ |t∣∣ĝ(ξ )∣∣ dξ +Ce–ct

∫
|ξ |≥R

|ξ |k∣∣ĝ(ξ )∣∣ dξ

≤ C
∥∥ĝ(ξ )∥∥

L∞

∫
|ξ |≤R

|ξ |k+e–c|ξ |t dξ +Ce–ct
∥∥∂k

x g
∥∥
L

≤ C( + t)–(
n
 +k+)‖g‖L +Ce–ct

∥∥∂k
x g

∥∥
L ,

where R is a small positive constant. Thus (.) follows. Similarly, we can prove (.).
Thus we have completed the proof of the lemma. �

4 Asymptotic decay of solutions to (1.1), (1.2)
The purpose of this section is to prove asymptotic decay of solutions to the Cauchy prob-
lem (.), (.). We need the following lemma, which comes from [] (see also []).

http://www.journalofinequalitiesandapplications.com/content/2013/1/323
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Lemma . Assume that f = f (v) is a smooth function. Suppose that f (v) =O(|v|+θ ) (θ ≥ 
is an integer) when |v| ≤ ν. Then, for integer m≥ , if v,w ∈ Wm,q(Rn)∩ Lp(Rn)∩ L∞(Rn)
and ‖v‖L∞ ≤ ν,‖w‖L∞ ≤ ν, then f (v) – f (w) ∈ Wm,r(Rn). Furthermore, the following in-
equalities hold:

∥∥∂m
x f (v)

∥∥
Lr ≤ C‖v‖Lp

∥∥∂m
x v

∥∥
Lq‖v‖θ–

L∞

and

∥∥∂m
x

(
f (v) – f (w)

)∥∥
Lr ≤ C

{(∥∥∂m
x v

∥∥
Lq +

∥∥∂m
x w

∥∥
Lq

)‖v –w‖Lp
+

(‖v‖Lp + ‖w‖Lp
)∥∥∂m

x (v –w)
∥∥
Lq

}(‖v‖L∞ + ‖w‖L∞
)θ–,

where 
r =


p +


q ,  ≤ p,q, r ≤ +∞.

In the previous section, we showed the decay estimates for the solution operators. With
this preparation, we can prove the global existence and asymptotic decay of solutions to
the integral equation (.) and hence to the problem (.), (.). So we define the following
solution space:

X =
{
u ∈ C

(
[,∞);Hs+(

R
n)) ∩C([,∞);Hs(

R
n)) : ‖u‖X <∞}

,

where

‖u‖X = sup
t≥

{ ∑
k≤s+

( + t)
n
 +

k
 +



∥∥∂k

x u(t)
∥∥
L +

∑
l≤s

( + t)
n
 +

l
 +

∥∥∂ l
xut(t)

∥∥
L

}
.

For R > , we define

XR =
{
u ∈ X : ‖u‖X ≤ R

}
.

Using Gagliardo-Nirenberg inequality, we obtain

∥∥u(t)∥∥L∞ ≤ C
∥∥∂ s

x u(t)
∥∥θ

L
∥∥u(t)∥∥–θ

L ≤ CR( + t)–
n
 –


 , (.)

where

s =
[
n


]
+ , θ =

n
s

, s ≤ s + 
(
i.e., s≥

[
n


]
– 

)
.

Theorem . Assume that u ∈ Hs+(Rn) ∩ Ẇ–,(Rn), u ∈ Hs(Rn) ∩ Ẇ–,(Rn) (s ≥
max{, [ n ] – }). Put

E := ‖u‖Ẇ–, + ‖u‖Ẇ–, + ‖u‖Hs+ + ‖u‖Hs .

If E is suitably small, the Cauchy problem (.), (.) has a unique global classical solution
u(x, t) satisfying

u ∈ C([,∞);Hs+(
R

n))C([,∞);Hs(
R

n)).

http://www.journalofinequalitiesandapplications.com/content/2013/1/323


Wang Journal of Inequalities and Applications 2013, 2013:323 Page 8 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/323

Moreover, the solution satisfies the decay estimate

∥∥∂k
x u(t)

∥∥
L ≤ CE( + t)–(

n
 +

k
 +


 ) (.)

and

∥∥∂ l
xut(t)

∥∥
L ≤ CE( + t)–(

n
 +

l
 +) (.)

for k ≤ s +  and l ≤ s.

Proof Define the mapping

T(u) =G(t) ∗ u +H(t) ∗ u +
∫ t


G(t – τ ) ∗ �f

(
u(τ )

)
dτ . (.)

Using (.) and (.) with j = , , respectively, (.), Lemma . and (.), for k ≤ s + ,
we obtain

∥∥∂k
xT(u)

∥∥
L ≤ C

∥∥∂k
xG(t) ∗ u

∥∥
L +C

∥∥∂k
xH(t) ∗ u

∥∥
L

+C
∫ t



∥∥∂k
xG(t – τ ) ∗ �f

(
u(τ )

)∥∥
L dτ

≤ C( + t)–(
n
 +

k
 +


 )

(‖u‖Ẇ–, + ‖u‖Ẇ–,
)
+Ce–ct

(‖u‖Hs+ + ‖u‖Hs
)

+C
∫ t




( + t – τ )–(

n
 +

k
 +


 )

∥∥f (u)∥∥L dτ

+C
∫ t

t


( + t – τ )–(
n
 +


 )

∥∥∂k
x f (u)

∥∥
L dτ

+C
∫ t


e–c(t–τ )∥∥∂k

x f (u)
∥∥
L dτ

≤ C( + t)–(
n
 +

k
 +


 )

(‖u‖Ẇ–, + ‖u‖Ẇ–,
)
+Ce–ct

(‖u‖Hs+ + ‖u‖Hs
)

+C
∫ t




( + t – τ )–(

n
 +

k
 +


 )‖u‖L dτ

+C
∫ t

t


( + t – τ )–(
n
 +


 )‖u‖L

∥∥∂k
x u

∥∥
L dτ

+C
∫ t


e–c(t–τ )∥∥∂k

x u
∥∥
L‖u‖L∞ dτ

≤ C( + t)–(
n
 +

k
 +


 )

(‖u‖Ẇ–, + ‖u‖Ẇ–,
)
+Ce–ct

(‖u‖Hs+ + ‖u‖Hs
)

+CR
∫ t




( + t – τ )–(

n
 +

k
 +


 )( + τ )–(

n
 +) dτ

+CR
∫ t

t


( + t – τ )–(
n
 +


 )( + τ )–(

n
 +

k
 +) dτ

+CR
∫ t


e–c(t–τ )( + τ )–(

n
 +

k
 +


 )( + τ )–(

n
 +


 ) dτ

≤ C( + t)–(
n
 +

k
 +


 )

{(‖u‖Ẇ–, + ‖u‖Ẇ–, + ‖u‖Hs+ + ‖u‖Hs
)
+ R}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/323
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Thus

( + t)
n
 +

k
 +



∥∥∂k

xT(u)
∥∥
L ≤ CE +CR. (.)

It follows from (.) that

T(u)t =Gt(t) ∗ u +Ht(t) ∗ u +
∫ t


Gt(t – τ ) ∗ �f

(
u(τ )

)
dτ . (.)

By using (.) and (.) with j = , , respectively, (.) Lemma . and (.), for l ≤ s,
we have

∥∥∂ l
xT(u)t

∥∥
L ≤ C

∥∥∂ l
xGt(t) ∗ u

∥∥
L +C

∥∥∂ l
xHt(t) ∗ u

∥∥
L

+C
∫ t



∥∥∂ l
xGt(t – τ ) ∗ �f

(
u(τ )

)∥∥
L dτ

≤ C( + t)–(
n
 +

l
 +)

(‖u‖Ẇ–, + ‖u‖Ẇ–,
)
+Ce–ct

(‖u‖Hs+ + ‖u‖Hs
)

+C
∫ t




( + t – τ )–(

n
 +

l
 +)

∥∥f (u)∥∥L dτ

+C
∫ t

t


( + t – τ )–(
n
 +)

∥∥∂ l
xf (u)

∥∥
L dτ +C

∫ t


e–c(t–τ )∥∥∂ l+

x f (u)
∥∥
L dτ

≤ C( + t)–(
n
 +

l
 +)

(‖u‖Ẇ–, + ‖u‖Ẇ–,
)
+Ce–ct

(‖u‖Hs+ + ‖u‖Hs
)

+C
∫ t




( + t – τ )–(

n
 +

l
 +)‖u‖L dτ

+C
∫ t

t


( + t – τ )–(
n
 +)‖u‖L

∥∥∂ l
xu

∥∥
L dτ

+C
∫ t


e–c(t–τ )∥∥∂ l+

x u
∥∥
L‖u‖L∞ dτ

≤ C( + t)–(
n
 +

l
 +)

(‖u‖Ẇ–, + ‖u‖Ẇ–,
)
+Ce–ct

(‖u‖Hs+ + ‖u‖Hs
)

+CR
∫ t




( + t – τ )–(

n
 +

l
 +)( + τ )–(

n
 +) dτ

+CR
∫ t

t


( + t – τ )–(
n
 +)( + τ )–(

n
 +

l
 +) dτ

+CR
∫ t


e–c(t–τ )( + τ )–(

n
 +

l+
 + 

 )( + τ )–(
n
 +


 ) dτ

≤ C( + t)–(
n
 +

l
 +)

{(‖u‖Ẇ–, + ‖u‖Ẇ–, + ‖u‖Hs+ + ‖u‖Hs
)
+ R}.

Thus

( + t)
n
 +

l
 +

∥∥∂ l
xT(u)t

∥∥
L ≤ CE +CR. (.)

Combining (.), (.) and taking E and R suitably small yields

∥∥T(u)∥∥X ≤ R. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/323
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For ũ, ū ∈ XR, by using (.), we have

T(ũ) –T(ū) =
∫ t


G(t – τ ) ∗ �

[
f (ũ) – f (ū)

]
dτ . (.)

Thanks to (.), (.) and Lemma ., (.), for k ≤ s + , we obtain

∥∥∂k
x
(
T(ũ) –T(ū)

)∥∥
L ≤

∫ t



∥∥∂k
xG(t – τ ) ∗ �

[
f (ũ) – f (ū)

]∥∥
L dτ

≤ C
∫ t




( + t – τ )–(

n
 +

k
 +


 )

∥∥(
f (ũ) – f (ū)

)∥∥
L dτ

+C
∫ t

t


( + t – τ )–(
n
 +


 )

∥∥∂k
x
(
f (ũ) – f (ū)

)∥∥
L dτ

+C
∫ t


e–c(t–τ )∥∥∂k

x
(
f (ũ) – f (ū)

)∥∥
L dτ

≤ C
∫ t




( + t – τ )–(

n
 +

k
 +


 )

(‖ũ‖L + ‖ū‖L
)‖ũ – ū‖L

+C
∫ t

t


( + t – τ )–(
n
 +


 )

{(∥∥∂k
x ũ

∥∥
L +

∥∥∂k
x ũ

∥∥
L

)‖ũ – ū‖L

+
(‖ũ‖L + ‖ū‖L

)∥∥∂k
x (ũ – ū)

∥∥
L

}
dτ

+C
∫ t


e–c(t–τ ){(∥∥∂k

x ũ
∥∥
L +

∥∥∂k
x ũ

∥∥
L

)‖ũ – ū‖L∞

+
(‖ũ‖L∞ + ‖ū‖L∞

)∥∥∂k
x (ũ – ū)

∥∥
L

}
dτ

≤ CR‖ũ – ū‖X
∫ t




( + t – τ )–(

n
 +

k
 +


 )( + τ )–(

n
 +) dτ

+CR‖ũ – ū‖X
∫ t

t


( + t – τ )–(
n
 +


 )( + τ )–(

n
 +

k
 +) dτ

+CCR‖ũ – ū‖X
∫ t


e–c(t–τ )( + τ )–(

n
 + k

 +) dτ

≤ CR( + t)–(
n
 +

k
 +


 )‖ũ – ū‖X ,

which implies

( + t)
n
 +

k
 +



∥∥∂k

x
(
T(ũ) –T(ū)

)∥∥
L ≤ CR‖ũ – ū‖X . (.)

Similarly, for l ≤ s, from (.), (.) and (.), we have

∥∥∂ l
x
(
T(ũ) –T(ū)

)
t

∥∥
L ≤

∫ t



∥∥∂ l
xGt(t – τ ) ∗ �

[
f (ũ) – f (ū)

]∥∥
L dτ

≤ C
∫ t




( + t – τ )–

n
 –

l
 –

∥∥(
f (ũ) – f (ū)

)∥∥
L dτ

+C
∫ t

t


( + t – τ )–
n
 –

∥∥∂ l
x
(
f (ũ) – f (ū)

)∥∥
L dτ
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+C
∫ t


e–c(t–τ )∥∥∂ l+

x
(
f (ũ) – f (ū)

)∥∥
L dτ

≤ CR( + t)–(
n
 +

l
 +)‖ũ – ū‖X ,

which implies

( + t)
n
 +

l
 +

∥∥∂ l
x
(
T(ũ) –T(ū)

)
t

∥∥
L ≤ CR‖ũ – ū‖X . (.)

Combining (.), (.) and taking R suitably small yields

∥∥T(ũ) –T(ū)
∥∥
X ≤ 


‖ũ – ū‖X . (.)

From (.) and (.), we know that T is a strictly contracting mapping. Consequently,
we conclude that there exists a fixed point u ∈ XR of the mapping T, which is a classical
solution to (.), (.). We have completed the proof of the theorem. �
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