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Abstract
We study the convergence of a more general Picard iterative sequence for
nonexpansive and Lipschitz strongly accretive mappings in an arbitrary real Banach
space. Our results improve the results of Ćirić et al. (Nonlinear Anal. 70(12):4332-4337,
2009).
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1 Introduction and preliminaries
Let E be a real Banach space with dual E∗, and J will denote the normalized duality map
from E to E∗ defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing.
Let T :D(T) → E be a mapping, where D(T) stands for the domain of T .
The mapping T is said to be Lipschitz if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖ (.)

for all x, y ∈D(T).
If L =  in inequality (.), then T is called nonexpansive.
The mapping T is called strongly pseudocontractive if there exists t >  such that

‖x – y‖ ≤ ∥∥( + r)(x – y) – rt(Tx – Ty)
∥∥ (.)

for all x, y ∈D(T) and r > .
If t =  in inequality (.), then T is called pseudocontractive.
As a consequence of the result of Kato [], it follows from inequality (.) that T is

strongly pseudocontractive if and only if there exists j(x – y) ∈ J(x – y) such that
〈
(I – T)x – (I – T)y, j(x – y)

〉 ≥ k‖x – y‖ (.)

for all x, y ∈D(T), where k = t–
t ∈ (, ).
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Consequently, it follows easily (again fromKato [] and inequality (.)) thatT is strongly
pseudocontractive if and only if

‖x – y‖ ≤ ∥∥x – y + s
[
(I – T – kI)x – (I – T – kI)y

]∥∥ (.)

for all x, y ∈ D(T) and s > .
Closely related to the class of pseudocontractive mappings is the class of accretive oper-

ators.
Let A :D(A) → E be a mapping.
The mapping A is called accretive if

‖x – y‖ ≤ ∥∥x – y + s(Ax –Ay)
∥∥

for all x, y ∈ D(A) and s > .
Also, as a consequence of Kato [], this accretive condition can be expressed in terms of

the duality mapping as follows:
For each x, y ∈D(A), there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ . (.)

Consequently, inequality (.) with t =  yields thatA is accretive if and only ifT := (I–A)
is pseudocontractive. Furthermore, settingA := (I–T), it follows from inequality (.) that
T is strongly pseudocontractive if and only if (A–kI) is accretive, and using (.) this implies
that T(= I –A) is strongly pseudocontractive if there exists k ∈ (, ) such that

〈
Ax –Ay, j(x – y)

〉 ≥ k‖x – y‖ (.)

for all x, y ∈ D(A).
The mapping A satisfying inequality (.) is called strongly accretive. It is then clear that

A is strongly accretive if and only if T := (I –A) is strongly pseudocontractive.
It is worth to mention that considerable research efforts have been devoted, especially

within the past long years or so, to developing constructive techniques for the determi-
nation of the kernels of accretive operators in Banach spaces (see, e.g., [–]). Two well-
known iterative schemes, theMann iterative scheme (see, e.g., []) and the Ishikawa iter-
ative scheme (see, e.g., []), have successfully been employed.
In [], Liu obtained a fixed point of the strictly pseudocontractive mapping as the limit

of an iteratively constructed sequence in general Banach spaces.

Theorem. Let X be aBanach space and let K be a nonempty closed convex and bounded
subset of X. Let T : K → K be Lipschitz (with constant L≥ ) and strictly pseudocontractive
(i.e.,T satisfies inequality (.) for all x, y ∈ K ).Let F(T) = {x ∈ X : Tx = x} 
= ∅. For arbitrary
x ∈ K , define the sequence {xn} in K by

xn+ = ( – αn)xn + αnTxn,
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where {αn} is a sequence in (, ] satisfying

∞∑
n=

αn = ∞, αn → .

Then {xn} converges strongly to q ∈ F(T) and F(T) is a singleton.

By generalizing the results of Liu [], Sastry and Babu [] proved the following results.

Theorem. Let X be aBanach space and let K be a nonempty closed convex and bounded
subset of X. Let T : K → K be Lipschitz (with constant L ≥ ) and strictly pseudocontractive
(i.e., T satisfies inequality (.) for all x, y ∈ K ). Suppose that {αn}n∈N is a sequence in (, ]
such that for some η ∈ (,k) and for all n ∈N,

αn ≤ k – η

(L + )(L +  – k)
,

∞∑
n=

αn = ∞.

Fix x ∈ K . Define the sequence {xn}n∈N in K by

xn+ := ( – αn)xn + αnTxn, n ∈N.

Then there exists {βn}n∈N, a sequence in (, ) with each βn ≥ η

+kαn, such that

‖xn+ – q‖ ≤
n∏
j=

( – βj)‖x – q‖, n ∈N.

In particular, {xn}n∈N converges strongly to q ∈ K and q is the unique fixed point of T .

In [, ], Chidumementioned that theMann and Ishikawa iteration schemes are global
and their rate of convergence is generally of the order O(n– 

 ). Also, it is well-known that
for an operator U , the classical iterative sequence xn+ =Uxn, x ∈D(U) (called the Picard
iterative sequence) converges and is preferred in comparison to the Mann or the Ishikawa
sequences since it requires less computations; and moreover, its rate of convergence is
always at least as fast as that of a geometric progression.
In [, ], Chidume proved the following results.

Theorem . Let E be an arbitrary real Banach space, let A : E → E be a Lipschitz (with
constant L > ) and strongly accretive mapping with strong accretivity constant k ∈ (, ).
Let x∗ denote a solution of the equation Ax = . Set ε := 

 (
k

+L(+L–k) ) and define Aε : E → E
by Aεx := x – εAx for each x ∈ E. For arbitrary x ∈ E, define the sequence {xn}∞n= in E by

xn+ = Aεxn, n≥ .

Then {xn}∞n= converges strongly to x∗ with

∥∥xn+ – x∗∥∥ ≤ δn
∥∥x – x∗∥∥,

where δ = ( – 
kε) ∈ (, ).Moreover, x∗ is unique.
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Corollary . Let E be an arbitrary real Banach space and let K be a nonempty convex
subset of E. Let T : K → K be Lipschitz (with constant L > ) and strongly pseudocontractive
(i.e., T satisfies inequality (.) for all x, y ∈ K ). Assume that T has a fixed point x∗ ∈ K .
Set ε := 

 (
k

+L(+L–k) ) and define Tε : K → K by Tεx = ( – ε)x + εTx for each x ∈ K . For
arbitrary x ∈ K , define the sequence {xn}∞n= in K by

xn+ = Tεxn, n≥ .

Then {xn}∞n= converges strongly to x∗ with

∥∥xn+ – x∗∥∥ ≤ δn
∥∥x – x∗∥∥,

where δ := ( – 
kε) ∈ (, ).Moreover, x∗ is unique.

Recently, Ćirić et al. [] improved the results of Chidume [, ], Liu [] and Sastry
and Babu [].
We study the convergence of a more general Picard iterative sequence for nonexpansive

and Lipschitz strongly accretive mappings in an arbitrary real Banach space. Our results
improve the results of Ćirić et al. [].

2 Main results
In the following theorems, L >  will denote the Lipschitz constant of the operator A and
k >  will denote the strong accretivity constant of A (as in inequality (.)). Furthermore,
in [], ε >  is defined by

ε :=
k – η

L( + L)
, η ∈ (,k).

With these notations, we prove the following theorem.

Theorem . Let E be an arbitrary real Banach space, let A′ : E → E be nonexpansive
and let A : E → E be a Lipschitz strongly accretive mapping with strong accretivity constant
k ∈ (, ). Let x∗ denote a solution of the system A′x =  = Ax. Define Aε : E → E by Aεx :=
x – εAx –A′(x – εAx) for each x ∈ E. For arbitrary x ∈ E, define the sequence {xn}∞n= in E
by

xn+ = Aεxn, n≥ .

Then {xn}∞n= converges strongly to x∗ with

∥∥xn+ – x∗∥∥ ≤ ρn∥∥x – x∗∥∥,
where ρ = ( – k–η

k(k–η)+L(+L)η) ∈ (, ). Thus, the choice η = k
 yields ρ = – k

[k+L(+L)] .More-
over, x∗ is unique.

Proof Let S = I – A′ and T = I – A, where I denotes the identity mapping on E. Observe
that A′x∗ =  = Ax∗ if and only if x∗ is a common fixed point of S and T . Moreover, T is
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strongly pseudocontractive since A is strongly accretive. Therefore, T satisfies inequality
(.) for all x, y ∈ E and s > . Furthermore, the recursion formula xn+ = Aεxn becomes

⎧⎨
⎩
xn+ = Syn,

yn = ( – ε)xn + εTxn, n≥ .
(.)

Observe that

x∗ = ( + ε)x∗ + ε(I – T – kI)x∗ – ( – k)εx∗, (.)

and from recursion formula (.) we get

xn = ( + ε)yn + ε(I – T – kI)yn – ( – k)εyn

+ ε(xn – yn) + ε(Tyn – Txn)

= ( + ε)yn + ε(I – T – kI)yn – ( – k)εyn

+ ε(xn – Txn) + ε(Tyn – Txn), (.)

so that

xn – x∗ = ( + ε)
(
yn – x∗) + ε

[
(I – T – kI)yn – (I – T – kI)x∗]

– ( – k)ε
(
yn – x∗) + ε(xn – Txn) + ε(Tyn – Txn).

This implies, using inequality (.) with s = ε
+ε

and y = x∗, that

∥∥xn – x∗∥∥ ≥ ( + ε)
[∥∥∥∥(

yn – x∗) + ε

 + ε

[
(I – T – kI)yn – (I – T – kI)x∗]∥∥∥∥

]

– ( – k)ε
∥∥yn – x∗∥∥ – ε‖xn – Txn‖ – ε‖Tyn – Txn‖

≥ ( + ε)
∥∥yn – x∗∥∥ – ( – k)ε

∥∥yn – x∗∥∥ – ε‖xn – Txn‖ – ε‖Tyn – Txn‖
= ( + kε)

∥∥yn – x∗∥∥ – ε‖xn – Txn‖ – ε‖Tyn – Txn‖. (.)

Observe that

‖xn – Txn‖ ≤ L
∥∥xn – x∗∥∥, ‖Tyn – Txn‖ ≤ εL( + L)

∥∥xn – x∗∥∥,

so that

∥∥xn – x∗∥∥ ≥ ( + kε)
∥∥yn – x∗∥∥ – ε

[
 – k + εL( + L)

]∥∥xn – x∗∥∥,

which implies that

∥∥yn – x∗∥∥ ≤  + ε
[
 – k + εL( + L)

]
 + kε

∥∥xn – x∗∥∥, (.)
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and we have

ρ =
 + ε[ – k + εL( + L)]

 + kε

=  –
ε

 + kε
[
k – εL( + L)

]

=  –
ε

 + kε
η

=  –
k – η

k(k – η) + L( + L)
η. (.)

From (.) and (.), we get

∥∥yn – x∗∥∥ ≤ ρ
∥∥xn – x∗∥∥ ≤ · · · ≤ ρn∥∥x – x∗∥∥. (.)

Hence, yn → x∗ as n→ ∞. Finally, by (.) and (.), we obtain

∥∥xn+ – x∗∥∥ =
∥∥Syn – x∗∥∥

≤ ∥∥yn – x∗∥∥ ≤ ρn∥∥x – x∗∥∥
→  as n→ ∞.

Uniqueness follows from the strong accretivity property of A. This completes the
proof. �

The following is an immediate corollary of the above theorem.

Corollary . Let E be an arbitrary real Banach space and let K be a nonempty closed
convex subset of E. Let S : K → K be nonexpansive and T : K → K be Lipschitz (with con-
stant L > ) and strongly pseudocontractive (i.e., T satisfies inequality (.) for all x, y ∈ K ).
Assume that S and T have a common fixed point x* in K . Set ε := k–η

L(+L) , η ∈ (,k) and de-
fine Hε : K → K by Hεx = S(( – ε)x + εTx) for each x ∈ K . For arbitrary x ∈ E, define
the sequence {xn}∞n= in E by

xn+ =Hεxn, n≥ .

Then {xn}∞n= converges strongly to x∗ with

∥∥xn+ – x∗∥∥ ≤ ρn∥∥x – x∗∥∥,
where ρ = ( – k–η

k(k–η)+L(+L)η) ∈ (, ).Moreover, x∗ is unique.

Proof Observe that x∗ is a common fixed point of S and T , then it is a fixed point of Hε .
Furthermore, recursion formula (.) simplifies to the formula

⎧⎨
⎩
xn+ = Syn,

yn = ( – ε)xn + εTxn, n≥ ,
(.)
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which is similar to (.). Following the method of computations as in the proof of Theo-
rem ., we obtain

∥∥xn+ – x∗∥∥ =
∥∥Syn – x∗∥∥

≤ ∥∥yn – x∗∥∥
≤  + ε[ – k + εL( + L)]

 + kε

∥∥xn – x∗∥∥

≤
(
 –

k – η

k(k – η) + L( + L)
η

)∥∥xn – x∗∥∥. (.)

Set ρ =  – k–η

k(k–η)+L(+L)η, then from (.) we obtain

∥∥xn+ – x∗∥∥ ≤ ρ
∥∥xn – x∗∥∥ ≤ · · · ≤ ρn


∥∥x – x∗∥∥ →  as n→ ∞.

This completes the proof. �

From Theorem . and Corollary ., we reduce recent results in [] to the following.

Theorem . Let E be an arbitrary real Banach space, let A : E → E be a Lipschitz (with
constant L > ) and strongly accretive mapping with strong accretivity constant k ∈ (, ).
Let x∗ denote a solution of the equation Ax = . Set ε := k–η

L(+L) , η ∈ (,k) and define Aε :
E → E by Aεx := x– εAx for each x ∈ E. For arbitrary x ∈ E, define the sequence {xn}∞n= in
E by

xn+ = Aεxn, n ≥ .

Then {xn}∞n= converges strongly to x∗ with

∥∥xn+ – x∗∥∥ ≤ θn∥∥x – x∗∥∥,
where θ = ( – k–η

k(k–η)+L(+L)η) ∈ (, ). Thus the choice η = k
 yields θ = – k

[k+L(+L)] .More-
over, x∗ is unique.

Corollary . Let E be an arbitrary real Banach space and let K be a nonempty convex
subset of E. Let T : K → K be Lipschitz (with constant L > ) and strongly pseudocontractive
(i.e., T satisfies inequality (.) for all x, y ∈ K ). Assume that T has a fixed point x∗ ∈ K .
Set ε := k–η

L(+L) , η ∈ (,k) and define Tε : K → K by Tεx = ( – ε)x + εTx for each x ∈ K .
For arbitrary x ∈ K , define the sequence {xn}∞n= in K by

xn+ = Tεxn, n≥ .

Then {xn}∞n= converges strongly to x∗ with

∥∥xn+ – x∗∥∥ ≤ θn∥∥x – x∗∥∥,
where θ := ( – k–η

k(k–η)+L(+L)η) ∈ (, ).Moreover, x∗ is unique.
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