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Abstract
In this paper, we introduce and investigate two new subclasses Hμ

σ (λ,ϕ) and
Mγ

σ (λ,μ,ϕ) of Ma-Minda bi-univalent functions defined by using subordination in the
open unit disk D = {z ∈ C : |z| < 1}. For functions belonging to these new subclasses,
we obtain estimates for the initial coefficients |a2| and |a3|. The results presented in
this paper would generalize those in related works of several earlier authors.
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1 Introduction
Let C be a set of complex numbers and let N = {, , , . . .} = N \ {} be a set of positive
integers. Let A be a class of functions of the form

f (z) = z +
∞∑
n=

anzn, (.)

which are analytic in the open unit disk D = {z ∈ C : |z| < }. Also, let S denote a subclass
of all functions in A which are univalent in D (for details, see [, ]).
Since univalent functions are one-to-one, they are invertible and the inverse functions

need not be defined on the entire unit disk D. However, the famous Koebe one-quarter
theorem [] ensures that the image of the unit disk D under every function f ∈ S contains
a disk of radius /. Thus, every univalent function f ∈ S has an inverse f – satisfying

f –
(
f (z)

)
= z (z ∈D)

and

f
(
f –(w)

)
= w

(
|w| < r(f ); r(f ) ≥ 



)
,

where

f –(w) = w – aw +
(
a – a

)
w –

(
a – aa + a

)
w + · · · . (.)
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A function f ∈ A is said to be bi-univalent in D if both f and f – are univalent in D. Let
σ denote the class of bi-univalent functions defined in the unit disk D. In , Lewin []
first introduced the class σ of bi-univalent functions and showed that |a| ≤ . for every
f ∈ σ . Subsequently, Branan and Clunie [] conjectured that |a| ≤ √

 for f ∈ σ . Later,
Netanyahu [] proved thatmaxf∈σ |a| = /. The coefficient estimate problem for each of
|an| (n ∈ N \ {, }) is still an open problem.
Brannan and Taha [] (see also []) introduced certain subclasses of a bi-univalent func-

tion class σ similar to the familiar subclasses S∗(α) and K(α) of starlike and convex func-
tions of order α ( < α ≤ ), respectively (see []). Thus, following Brannan and Taha []
(see also []), a function f ∈ A is in the class S∗

σ [α] of strongly bi-starlike functions of or-
der α ( < α ≤ ) if both functions f and f – are strongly starlike functions of order α.
The classes S∗

σ (α) and Kσ (α) of bi-starlike functions of order α and bi-convex functions
of order α, corresponding (respectively) to the function classes S∗(α) and K(α), were also
introduced analogously. For each of the function classes S∗

σ (α) and Kσ (α), they found non-
sharp estimates on the first two Taylor-Maclaurin coefficients |a| and |a| (for details, see
[, ]).
An analytic function f is subordinate to an analytic function g , written f ≺ g , if there is

an analytic function w with |w(z)| ≤ |z| such that f = (g(w)). If g is univalent, then f ≺ g
if and only if f () = g() and f (D) ⊆ g(D). Ma and Minda [] unified various subclasses of
starlike and convex functions for which either of the quantities zf ′(z)/f (z) or +zf ′′(z)/f ′(z)
is subordinate to amore general superordinate function. For this purpose, they considered
an analytic function ϕ with positive real part in the unit disk D, ϕ() = , ϕ′() > , and ϕ

maps D onto a region starlike with respect to  and symmetric with respect to the real
axis. The classes S∗(ϕ) and K(ϕ) of Ma-Minda starlike and Ma-Minda convex functions
are respectively characterized by zf ′(z)/f (z) ≺ ϕ(z) or  + zf ′′(z)/f ′(z) ≺ ϕ(z). A function f
is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f – are re-
spectively Ma-Minda starlike or convex. These classes are denoted respectively by S∗

σ (ϕ)
and Kσ (ϕ). Recently, Srivastava et al. [], Frasin and Aouf [] and Caglar et al. [] intro-
duced and investigated various subclasses of bi-univalent functions and found estimates
on the coefficients |a| and |a| for functions in these classes. Very recently, Ali et al. [],
Kumar et al. [], Srivastava et al. [] and Xu et al.[] unified and extended some related
results in [, –, ] by generalizing their classes using subordination.
Motivated by Ali et al. [] and Kumar et al. [], we investigate the estimates for the

initial coefficients |a| and |a| of bi-univalent functions of Ma-Minda type belonging to
the classes Hμ

σ (λ,ϕ) and Mγ
σ (λ,μ,ϕ) defined in Section . Our results generalize several

well-known results in [–] and these are also pointed out.

2 Coefficient estimates
Throughout this paper, we assume that ϕ is an analytic univalent function with positive
real part in D, ϕ(D) is symmetric with respect to the real axis and starlike with respect to
ϕ() = , and ϕ′() > . Such a function has series expansion of the form

ϕ(z) =  + Bz + Bz + Bz + · · · (B > ). (.)

With this assumption on ϕ, we now introduce the following subclasses of Ma-Minda bi-
univalent functions.
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Definition . A function f ∈ σ given by (.) is said to be in the classHμ
σ (λ,ϕ) if it satisfies

( – λ)
(
f (z)
z

)μ

+ λf ′(z)
(
f (z)
z

)μ–

≺ ϕ(z) (λ ≥ ,μ ≥ , z ∈D) (.)

and

( – λ)
(
g(w)
w

)μ

+ λg ′(w)
(
g(w)
z

)μ–

≺ ϕ(w) (λ ≥ ,μ ≥ ,w ∈D), (.)

where the function g is given by

g(w) = f –(w) = w – aw +
(
a – a

)
w –

(
a – aa + a

)
w + · · · . (.)

We note that, for suitable choices λ, μ and ϕ, the classHμ
σ (λ,ϕ) reduces to the following

known classes.
() Hμ

σ (λ, (
+z
–z )

α) =Hμ
σ (λ,α) (λ ≥ ,  < α ≤ , μ ≥ ) (see Caglar et al. [,

Definition .]);
() Hμ

σ (λ,
+(–β)z

–z ) =Hμ
σ (λ,β) (λ ≥ ,  ≤ β < , μ ≥ ) (see Caglar et al. [,

Definition .]);
() H

σ (λ,ϕ) =Hσ (λ,ϕ) (λ ≥ ) (see Kumar et al. [, Definition .]);
() Hμ

σ (,ϕ) =Hμ
σ (ϕ) (μ ≥ ) (see Kumar et al. [, Definition .]);

() H
σ (,ϕ) =Hσ (ϕ) (see Ali et al. [, p.]);

() H
σ (λ, (

+z
–z )

α) =Hσ (λ,α) (λ ≥ ,  < α ≤ ) (see Frasin and Aouf [, Definition .]);
() H

σ (λ,
+(–β)z

–z ) =Hσ (λ,β) (λ ≥ ,  ≤ β < ) (see Frasin and Aouf [,
Definition .]);

() H
σ (, (

+z
–z )

α) =Hσ (α) ( < α ≤ ) (see Srivastava et al. [, Definition ]);
() H

σ (,
+(–β)z

–z ) =Hσ (β) ( ≤ β < ) (see Srivastava et al. [, Definition ]).
For functions in the class Hμ

σ (λ,ϕ), the following estimates are obtained.

Theorem . Let the function f given by (.) be in the class Hμ
σ (λ,ϕ), λ ≥  and μ ≥ .

Then

|a| ≤ min

{
B

λ +μ
,

√
(B + |B – B|)
( +μ)(λ +μ)

}
(.)

and

|a| ≤
⎧⎨
⎩min{ B

λ+μ
+ B

(λ+μ) ,
(B+|B–B|)
(+μ)(λ+μ) },  ≤ μ < ,

B
λ+μ

+ |B–B|
(+μ)(λ+μ) , μ ≥ .

(.)

Proof Since f ∈Hμ
σ (λ,ϕ), there exist two analytic functionsu, v :D→ D, with u() = v() =

, such that

( – λ)
(
f (z)
z

)μ

+ λf ′(z)
(
f (z)
z

)μ–

= ϕ
(
u(z)

)
(.)
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and

( – λ)
(
g(w)
w

)μ

+ λg ′(w)
(
g(w)
z

)μ–

= ϕ
(
v(w)

)
. (.)

Define the functions p and q by

p(z) =
 + u(z)
 – u(z)

=  + pz + pz + · · · and

q(z) =
 + v(z)
 – v(z)

=  + qz + qz + · · · ,
(.)

or, equivalently,

u(z) =
p(z) – 
p(z) + 

=



(
pz +

(
p –

p


)
z + · · ·

)
(.)

and

v(z) =
q(z) – 
q(z) + 

=



(
qz +

(
q –

q


)
z + · · ·

)
. (.)

It is clear that p and q are analytic inD and p() = q() = . Since u, v :D →D, the functions
p and q have positive real part in D, and hence |pi| ≤  and |qi| ≤  (i = , , . . .). By virtue
of (.), (.), (.) and (.), we have

( – λ)
(
f (z)
z

)μ

+ λf ′(z)
(
f (z)
z

)μ–

= ϕ

(
p(z) – 
p(z) + 

)
(.)

and

( – λ)
(
g(w)
w

)μ

+ λg ′(w)
(
g(w)
z

)μ–

= ϕ

(
q(w) – 
q(w) + 

)
. (.)

Using (.), (.), together with (.), we easily obtain

ϕ

(
p(z) – 
p(z) + 

)
=  +



Bpz +

(


B

(
p –



p

)
+


Bp

)
z + · · · (.)

and

ϕ

(
q(w) – 
q(w) + 

)
=  +



Bqw +

(


B

(
q –



q

)
+


Bq

)
w + · · · . (.)

Since f ∈ σ has the Maclaurin series given by (.), a computation shows that its inverse
g = f – has the expansion given by (.). Also, since

f ′(z) =  + az + az + · · · and

g ′(w) =  – aw + (a – a)w – · · · ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/317
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it follows from (.)-(.) that

(λ +μ)a =


Bp, (.)

(λ +μ)a +
(μ – )(λ +μ)


a =



B

(
p –



p

)
+


Bp , (.)

–(λ +μ)a =


Bq (.)

and

–(λ +μ)a +
( +μ)(λ +μ)


a =



B

(
q –



q

)
+


Bq . (.)

From (.) and (.), we get

p = –q (.)

and

(λ +μ)a = B

(
p + q

)
. (.)

Also, from (.) and (.), we obtain

( +μ)(λ +μ)a =


B(p + q) +



(B – B)

(
p + q

)
,

or

a =
B(p + q) + (B – B)(p + q )

( +μ)(λ +μ)
. (.)

Since |pi| ≤  and |qi| ≤  (i = , ), it follows from (.) and (.) that

|a| ≤ B

λ +μ
(.)

and

|a| ≤
√
(B + |B – B|)
( +μ)(λ +μ)

, (.)

which yields the desired estimate on |a| as asserted in (.).
Next, in order to find the bound on |a|, by subtracting (.) from (.), we get

(λ +μ)
(
a – a

)
=


B(p – q) +



(B – B)

(
p – q

)
. (.)

Using (.) and (.) in (.), we have

a =


(λ +μ)
B(p – q) +


(λ +μ)

B
p


 ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/317
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which evidently yields

|a| ≤ B

λ +μ
+

B


(λ +μ)
. (.)

On the other hand, by using (.) and (.) in (.), we obtain

a =
B[(μ + )p + ( –μ)q] + (B – B)(p + q )

( +μ)(λ +μ)
, (.)

and applying |pi| ≤  and |qi| ≤  (i = , ) for (.), we get

|a| ≤ B

(λ +μ)

[
μ + 
 +μ

+
| –μ|
 +μ

]
+

|B – B|
( +μ)(λ +μ)

. (.)

Now, we consider the bounds on |a| according to μ.
Case . If  ≤ μ < , then from (.)

|a| ≤ (B + |B – B|)
( +μ)(λ +μ)

. (.)

Case . If μ ≥ , then from (.)

|a| ≤ B

λ +μ
+

|B – B|
( +μ)(λ +μ)

. (.)

Thus, from (.), (.) and (.), we obtain the desired estimate on |a| given in (.).
This completes the proof of Theorem .. �

Putting μ =  and λ = μ =  in Theorem ., we respectively get the following Corollar-
ies . and ..

Corollary . If f ∈Hσ (λ,ϕ) (λ ≥ ), then

|a| ≤ min

{
B

λ + 
,
√
B + |B – B|

λ + 

}

and

|a| ≤
⎧⎨
⎩min{ B

λ+ +
B

(λ+) ,
B+|B–B|

λ+ },  ≤ μ < ,
B+|B–B|

λ+ , μ ≥ .

Corollary . If f ∈Hσ (ϕ), then

|a| ≤ min

{
B


,
√
B + |B – B|



}

and

|a| ≤
⎧⎨
⎩min{B + B

 ,
B+|B–B|

 },  ≤ μ < ,
B+|B–B|

 , μ ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/317
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Remark . The estimates of the coefficients |a| and |a| of Corollaries . and . are
the improvement of the estimates obtained in [, Theorem .] and [, Theorem .],
respectively.

Remark . If we set

ϕ(z) =
 + ( – β)z

 – z
=  + ( – β)z + ( – β)z + · · · ( ≤ β < )

in Corollaries . and ., the results obtained improve the results in [, Theorem .,
inequalities (.) and (.)] and [, Theorem , inequality (.)], respectively.

Definition . Let γ ∈ C∗ = C \ {}, λ ≥  and μ ≥ . A function f ∈ σ given by (.) is
said to be in the classMγ

σ (λ,μ,ϕ), if the following subordinations hold:

 +

γ

(
zf ′(z) + (λμ + λ –μ)zf ′′(z) + λμzf ′′′(z)
( – λ +μ)f (z) + (λ –μ)zf ′(z) + λμzf ′′(z)

– 
)

≺ ϕ(z)

and

 +

γ

(
wg ′(w) + (λμ + λ –μ)wg ′′(w) + λμwg ′′′(w)
( – λ +μ)g(w) + (λ –μ)wg ′(w) + λμwg ′′(w)

– 
)

≺ ϕ(w),

where the function g is defined by (.).

We note that, by choosing appropriate values for λ, μ, γ and ϕ, the class Mγ
σ (λ,μ,ϕ)

reduces to several earlier known classes.
() Mγ

σ (λ, ,ϕ) =Nλ
σ ,γ (ϕ) (λ ≥ , γ ∈ C∗) (see Kumar et al. [, Definition .]);

() M
σ (, ,

+(–β)z
–z ) = S∗

σ (β) ( ≤ β < ) (see Brannan and Taha [, Definition .]);
() M

σ (, ,
+(–β)z

–z ) = Kσ (β) ( ≤ β < ) (see Brannan and Taha [, Definition .]);
() M

σ (, , (
+z
–z )

α) = S∗
σ (α) ( < α ≤ ) (see Taha []).

For functions in the classMγ
σ (λ,μ,ϕ), the following estimates are derived.

Theorem . Let γ ∈ C∗, λ ≥  and μ ≥ . If f ∈Mγ
σ (λ,μ,ϕ), then

|a| ≤ |γ |B√B√
|[(λμ + λ – μ + ) – (λμ + λ –μ + )]Bγ + (λμ + λ –μ + )(B – B)|

(.)

and

|a| ≤ |γ |(B + |B – B|)
|(λμ + λ – μ + ) – (λμ + λ –μ + )| . (.)

Proof If f ∈ Mγ
σ (λ,μ,ϕ), then there are analytic functions u, v :D → D, with u() = v() =

, satisfying

 +

γ

(
zf ′(z) + (λμ + λ –μ)zf ′′(z) + λμzf ′′′(z)
( – λ +μ)f (z) + (λ –μ)zf ′(z) + λμzf ′′(z)

– 
)
= ϕ

(
u(z)

)
(.)
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and

 +

γ

(
wg ′(w) + (λμ + λ –μ)wg ′′(w) + λμwg ′′′(w)
( – λ +μ)g(w) + (λ –μ)wg ′(w) + λμwg ′′(w)

– 
)
= ϕ

(
v(w)

)
. (.)

Let p and q be defined as in (.), then it is clear from (.), (.), (.) and (.) that

 +

γ

(
zf ′(z) + (λμ + λ –μ)zf ′′(z) + λμzf ′′′(z)
( – λ +μ)f (z) + (λ –μ)zf ′(z) + λμzf ′′(z)

– 
)

= ϕ

(
p(z) – 
p(z) + 

)
(.)

and

 +

γ

(
wg ′(w) + (λμ + λ –μ)wg ′′(w) + λμwg ′′′(w)
( – λ +μ)g(w) + (λ –μ)wg ′(w) + λμwg ′′(w)

– 
)

= ϕ

(
q(w) – 
q(w) + 

)
. (.)

It follows from (.), (.), (.) and (.) that

(λμ + λ –μ + )a =


Bpγ , (.)

–(λμ + λ –μ + )a + (λμ + λ – μ + )a

= γ

[


B

(
p –



p

)
+


Bp

]
, (.)

–(λμ + λ –μ + )a =


Bqγ (.)

and

[
(λμ + λ – μ + ) – (λμ + λ –μ + )

]
a – (λμ + λ – μ + )a

= γ

[


B

(
q –



q

)
+


Bq

]
. (.)

Equations (.) and (.) yield

p = –q (.)

and

(λμ + λ –μ + )a = B
γ

(p + q
)
. (.)

From (.), (.), (.) and (.), it follows that

a =
γ B

 (p + q)
[((λμ + λ – μ + ) – (λμ + λ –μ + ))B

γ + (λμ + λ –μ + )(B – B)]

which yields the desired estimate on |a| as described in (.).
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Similarly, it can be obtained from (.), (.) and (.) that

a =
γB[p((λμ + λ – μ + ) – (λμ + λ –μ + )) + q(λμ + λ –μ + )]

[(λμ + λ – μ + ) – (λμ + λ –μ + )](λμ + λ – μ + )

+
γ (B – B)(λμ + λ – μ + )p

[(λμ + λ – μ + ) – (λμ + λ –μ + )](λμ + λ – μ + )

which easily leads to the desired estimate (.) on |a|. �

Taking μ =  in Theorem ., we obtain the following corollary.

Corollary . [, Theorem .] If f ∈Nλ
σ ,γ (ϕ), then

|a| ≤ |γ |B
√
B√|( + λ – λ)B

γ + ( + λ)(B – B)|
and |a| ≤ |γ |(B + |B – B|)

| + λ – λ| .

Further, for γ = , putting λ =  and λ =  in Corollary ., respectively, we have the
following Corollaries . and ..

Corollary . [, Corollary .] If f ∈M
σ (, ,ϕ) = STσ (ϕ), then

|a| ≤ B
√
B√|B

 + B – B|
and |a| ≤ B + |B – B|.

Corollary . [, Corollary .] If f ∈M
σ (, ,ϕ) = CVσ (ϕ), then

|a| ≤ B
√
B√

|B
 + B – B|

and |a| ≤ 

(
B + |B – B|

)
.

Remark . If we set

ϕ(z) =
(
 + z
 – z

)α

=  + αz + αz + · · · ( < α ≤ )

and

ϕ(z) =
 + ( – β)z

 – z
=  + ( – β)z + ( – β)z + · · · ( ≤ β < )

in Corollaries . and ., we obtain the results of Brannan and Taha [, Theorems ., .
and ., respectively].
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