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Abstract
In this paper, applying the power series method, we approximate analytic functions
by simple harmonic functions in a neighborhood of zero.

1 Introduction
Differential equations have been studied for more than  years since the seventeenth
century when the concepts of differentiation and integration were formulated by Newton
and Leibniz. By use of differential equations, we can explain many natural phenomena:
gravity, projectiles, wave, vibration, nuclear physics, and so on.
Let us consider a closed system which can be explained by the first-order linear differ-

ential equation, namely, y′(t) = λy(t). The past, present, and future of this system are com-
pletely determined if we know the general solution and an initial condition of that differ-
ential equation. So, we can say that this system is ‘predictable.’ Sometimes, because of the
disturbances (or noises) of the outside, the system may not be determined by y′(t) = λy(t)
but can only be explained by an inequality like |y′(t) – λy(t)| ≤ ε. Then it is impossible to
predict the exact future of the disturbed system.
Even though the system is not predictable exactly because of outside disturbances, we

say the differential equation y′(t) = λy(t) has the Hyers-Ulam stability if the ‘real’ future of
the system follows the solution of y′(t) = λy(t) with a bounded error. But if the error bound
is ‘too big,’ we say that the differential equation y′(t) = λy(t) does not have the Hyers-Ulam
stability. Resonance is the case.
There is another way to explain the Hyers-Ulam stability. Usually the experiment (or

the observed) data do not exactly coincide with theoretical expectations. We may express
natural phenomena by use of equations, but because of the errors due to measurement
or observance, the actual experiment data can almost always be a little bit off the expec-
tations. If we used inequalities instead of equalities to explain natural phenomena, then
these errors could be absorbed into the solutions of inequalities, i.e., those errors would no
longer be errors. Considering this point of view, the Hyers-Ulam stability (of differential
equations) is fundamental. (Hyers-Ulam stability is not same as the concept of the stability
of differential equations which has been studied bymanymathematicians for a long time.)
We will now introduce the concept of Hyers-Ulam stability of differential equations. Let

X be a normed space over a scalar field K and let I ⊂ R be an open interval, where K

denotes either R or C. Assume that a,a, . . . ,an : I → K and g : I → X are continuous
functions and that y : I → X is an n times continuously differentiable function satisfying
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the inequality

∥∥an(x)y(n)(x) + an–(x)y(n–)(x) + · · · + a(x)y′(x) + a(x)y(x) + g(x)
∥∥ ≤ ε

for all x ∈ I and for a given ε > . If there exists an n times continuously differentiable
function y : I → X satisfying

an(x)y(n) (x) + an–(x)y(n–) (x) + · · · + a(x)y′
(x) + a(x)y(x) + g(x) = 

and ‖y(x)–y(x)‖ ≤ K(ε) for all x ∈ I , whereK(ε) is an expression of εwith limε→K(ε) = ,
then we say that the above differential equation has the Hyers-Ulam stability. For more
detailed definitions of the Hyers-Ulam stability, we refer the reader to [–].
Hyers-Ulam stability of functional equations has been studied for more than  years.

But the history of the Hyers-Ulam stability of differential equations is less than  years.
For example, Obłoza seems to be the first author who investigated the Hyers-Ulam stabil-
ity of linear differential equations in  (see [, ]). Thereafter, Alsina and Ger pub-
lished their paper [], which handles the Hyers-Ulam stability of the linear differen-
tial equation y′(x) = y(x): If a differentiable function y(x) is a solution of the inequality
|y′(x) – y(x)| ≤ ε for any x ∈ (a,∞), then there exists a constant c such that |y(x) – cex| ≤ ε
for all x ∈ (a,∞). We know that the general solution of the linear differential equation
y′(x) = y(x) is y(x) = cex, where c is a constant.
Therefore, we say that the differential equation y′(x) = y(x) has the Hyers-Ulam stability.

If we can get a similar result with a control function ϕ(x) in place of ε, we say that the
differential equation y′(x) = y(x) has the Hyers-Ulam-Rassias stability.
In  and , Miura et al. [] expanded Alsina and Ger’s result by proving that the

differential equation y′(x) = λy(x) has the Hyers-Ulam stability. The author wrote a paper
with Miura and Takahasi which expanded the result of Hyers-Ulam stability of that dif-
ferential equation. To be more precise, we may choose a constant c such that the solution
of the inequality |y′(x) – λy(x)| ≤ ϕ(x) is not too far away from ceλx in the sense of upper
norm (see []).
Recently, the author applied the power series method to studying the Hyers-Ulam sta-

bility of several types of linear differential equations of second order (see [–]).
In Section  of this paper, we apply the power series method to prove the Hyers-Ulam

stability of the simple harmonic oscillator equation

y′′(x) +ωy(x) = . (.)

This paper is an extension and an improvement of the previous paper []. We denote by
N the set of all nonnegative integers.

2 Inhomogeneous simple harmonic oscillator equation
Let ω be a positive constant. A function is called a simple harmonic oscillator function if
it satisfies the simple harmonic oscillator equation (.), which plays an important role in
quantum mechanics.

http://www.journalofinequalitiesandapplications.com/content/2013/1/3


Jung Journal of Inequalities and Applications 2013, 2013:3 Page 3 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/3

Theorem. Let L be a real number with  ≤ L < .Assume that the radius of convergence
of power series

∑∞
m= amxm is ρ > , and a sequence {cm} satisfies the recurrence relation

(m + )(m + )cm+ +ωcm = am (.)

for any m ∈N. If

lim
m→∞

∣∣∣∣ am–

mam

∣∣∣∣ = L
ω
, (.)

then every solution y : (–ρ,ρ) → C of the inhomogeneous simple harmonic oscillator
equation

y′′(x) +ωy(x) =
∞∑
m=

amxm (.)

can be expressed by

y(x) = yh(x) +
∞∑
m=

cmxm

for all x ∈ (–ρ,ρ), where yh(x) is a simple harmonic oscillator function and the value of
cm is given by (.).

Proof We can use induction on m and prove that if a sequence {cm} satisfies the relation
(.), then

⎧⎨
⎩
cm =

∑m–
i= (–)m–i– (i)!

(m)!ω
m–i–ai + (–)m ωm

(m)!c,

cm+ =
∑m–

i= (–)m–i– (i+)!
(m+)!ω

m–i–ai+ + (–)m ωm

(m+)!c
(.)

for allm ∈N. We omit the proof.
Due to (.), there exists anm ∈N such that am 	=  for any integerm ≥ m. Moreover,

for any real number δ with L < δ < , we can choose an integermδ such that mδ >m and

∣∣∣∣ωam–

mam

∣∣∣∣ ≤ δ (.)

for all integers m ≥mδ . We now define a real constantM >  by

M = max
n∈{,,...,mδ–}

an 	=
max

i∈{,,...,n–}

∣∣∣∣ω
n

ωi
i!
n!

ai
an

∣∣∣∣. (.)

Ifm > i ≥ mδ – , it then follows from (.) that

∣∣∣∣ω
m

ωi
i!
m!

ai
am

∣∣∣∣ =
m∏

k=i+

∣∣∣∣ωak–kak

∣∣∣∣ ≤ δm–i. (.)
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Ifm ≥ mδ –  > i, it then follows from (.) and (.) that

∣∣∣∣ω
m

ωi
i!
m!

ai
am

∣∣∣∣ =
∣∣∣∣ω

mδ–

ωi
i!

(mδ – )!
ai

amδ–

∣∣∣∣
m∏

k=mδ

∣∣∣∣ωak–kak

∣∣∣∣ ≤ Mδm–mδ+. (.)

Ifmδ –  >m > i and am 	= , then (.) implies that
∣∣∣∣ω

m

ωi
i!
m!

ai
am

∣∣∣∣ ≤ M. (.)

In view of (.), (.), and (.), for any sufficiently large integer m, there exists a real
constant C >  such that

|cm| = |am|
ω

∣∣∣∣∣
m–∑
i=

(–)m–i– ω
m

ωi
(i)!
(m)!

ai
am

+ (–)m
ωm+

m!
c
am

ωm

ωm

m!
(m)!

am

am

∣∣∣∣∣
≤ |am|

ω

[ ∑
≤i<(mδ–)/

∣∣∣∣ω
m

ωi
(i)!
(m)!

ai
am

∣∣∣∣ +
∑

(mδ–)/≤i<m

∣∣∣∣ω
m

ωi
(i)!
(m)!

ai
am

∣∣∣∣

+
ωm+

m!

∣∣∣∣ c
am

∣∣∣∣
∣∣∣∣ω

m

ωm

m!
(m)!

am

am

∣∣∣∣
]

≤ |am|
ω

[
mδ + 


Mδm–mδ+ +

∑
(mδ–)/≤i<m

δm–i

+
ωm+

m!

∣∣∣∣ c
am

∣∣∣∣max{,M}δm–mδ+
]

≤ C|am|. (.)

Hence, it holds that

lim sup
m→∞

|cm|/(m) ≤ lim sup
m→∞

C/(m)|am|/(m) = lim sup
m→∞

|am|/(m).

Similarly, we have

lim sup
m→∞

|cm+|/(m+) ≤ lim sup
m→∞

|am+|/(m+),

which implies that the radius of convergence of power series
∑∞

m= cmxm is at least ρ.
Moreover, we notice that the radius of convergence of a general solution of the simple
harmonic oscillator equation (.) is ρ = ∞.
Since x =  is an ordinary point, we can substitute

∑∞
m= cmxm for y(x) and use the formal

multiplication of power series and consider (.) to get

y′′(x) +ωy(x) =
∞∑
m=

(m + )(m + )cm+xm +ω
∞∑
m=

cmxm

=
∞∑
m=

[
(m + )(m + )cm+ +ωcm

]
xm

=
∞∑
m=

amxm
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for all x ∈ (–ρ,ρ). That is,
∑∞

m= cmxm is a particular solution of the inhomogeneous
simple harmonic oscillator equation (.) and hence every solution y : (–ρ,ρ) → C of
(.) can be expressed by

y(x) = yh(x) +
∞∑
m=

cmxm,

where yh(x) is a simple harmonic oscillator function. �

3 Approximate simple harmonic oscillator equation
Let ρ be a positive constant. We denote by C the set of all functions y : (–ρ,ρ)→ C with
the following properties:
(a) y(x) is expressible by a power series

∑∞
m= bmxm whose radius of convergence is at

least ρ;
(b) There exists a constant K ≥  such that

∑∞
m= |amxm| ≤ K |∑∞

m= amxm| for any
x ∈ (–ρ,ρ), where am = (m + )(m + )bm+ +ωbm 	=  for all m ∈N.

If we define

(y + y)(t) = y(t) + y(t) and (λy)(t) = λy(t)

for all y, y ∈ C and λ ∈ C, then C is a vector space over complex numbers. We remark
that the set C is large enough to be a vector space.
Now, we prove the main theorem of this paper.

Theorem . Let L be a real number with |L| < . Assume that y : (–ρ,ρ) → C is an
arbitrary function belonging to C whose power series coefficients satisfy either

lim
m→∞

bm–

mbm
=
L
ω

or lim
m→∞

bm–

mbm
= –

L
ω

and

lim
m→∞

bm
(m + )bm+

=
L
ω
,

(.)

where ω is a positive number. If y satisfies the differential inequality

∣∣y′′(x) +ωy(x)
∣∣ ≤ ε (.)

for all x ∈ (–ρ,ρ) and for some ε > , then there exists a solution yh : (–ρ,ρ) → C of the
simple harmonic oscillator equation (.) such that

∣∣y(x) – yh(x)
∣∣ ≤ CKε

for all x ∈ (–ρ,ρ), where C is determined by (.) and K is defined in (b).

Proof Wewill prove this theorem under the first condition of (.). Let ρ be the radius of
convergence of the power series

∑∞
m= cmxm which is a particular solution of the inhomo-

geneous simple harmonic oscillator equation (.), where cm is defined in (.). It follows

http://www.journalofinequalitiesandapplications.com/content/2013/1/3
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from (b) and the first condition of (.) that

lim
m→∞

∣∣∣∣am–

am

∣∣∣∣ = lim
m→∞

∣∣∣∣ (m + )mbm+ +ωbm–

(m + )(m + )bm+ +ωbm

∣∣∣∣

= lim
m→∞

∣∣∣∣ (m + )mbm+

(m + )(m + )bm+

∣∣∣∣
∣∣∣∣

 + ωbm–
mbm

ωbm
(m+)bm+

 + ωbm
(m+)bm+

ωbm+
(m+)bm+

∣∣∣∣

= lim
m→∞

∣∣∣∣ bm+

bm+

∣∣∣∣,

i.e., it holds that limm→∞ |am–/mam| = |L|/ω. In view of the proof of Theorem ., it holds
that ρ ≥ ρ.
Similarly as in the proof of Theorem ., it follows from (.), (.), (.), (.), and (.)

that there exists a real number C >  such that

|cm| ≤ C|am| (.)

for anym ∈N.
By the same argument presented in the proof of Theorem . with substitution of∑∞
m= bmxm (instead of

∑∞
m= cmxm) for y(x), it follows from (b) that

y′′(x) +ωy(x) =
∞∑
m=

amxm (.)

for all x ∈ (–ρ,ρ). In view of (b), there exists a constant K ≥  such that

∞∑
m=

∣∣amxm∣∣ ≤ K

∣∣∣∣∣
∞∑
m=

amxm
∣∣∣∣∣ (.)

for all x ∈ (–ρ,ρ).
Moreover, by using (.), (.), and (.), we get

∞∑
m=

∣∣amxm∣∣ ≤ K

∣∣∣∣∣
∞∑
m=

amxm
∣∣∣∣∣ ≤ Kε (.)

for any x ∈ (–ρ,ρ). (That is, the radius of convergence of power series
∑∞

m= amxm is at
least ρ.)
Since {cm} satisfies the recurrence relation (.), according to Theorem . and (.), y(x)

can be written as

y(x) = yh(x) +
∞∑
m=

cmxm (.)

for all x ∈ (–ρ,ρ), where yh(x) is a solution of the simple harmonic oscillator equa-
tion (.).
By the same argument as in the proof of Theorem . with substitution of

∑∞
m= cmxm

for y(x), since {cm} satisfies the relation (.), it is easy to see that∑∞
m= cmxm is a particular

http://www.journalofinequalitiesandapplications.com/content/2013/1/3
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solution of (.). Hence, it follows from (.), (.), and (.) that

∣∣y(x) – yh(x)
∣∣ ≤

∞∑
m=

∣∣cmxm∣∣ ≤ C
∞∑
m=

∣∣amxm∣∣ ≤ CKε

for all x ∈ (–ρ,ρ). �

We remark that Theorem . is true whether the ‘radius’ of the domain interval of y is
larger than one or not, while [, Theorem .] holds only when the function y has the
domain whose ‘radius’ is not larger than one.

4 An example
Let ε, ω, and ω be positive real numbers satisfying

 < ω
 –ω ≤ ε√


csc

(
π


+



)
. (.)

Moreover, we set ρ = /(ω).
We will show that if y(x) = cosωx+ sinωx for all x ∈ (–ρ,ρ), then y ∈ C with the con-

stant K = /. We know that the sine function y(x) = cosωx + sinωx can be expressed
by the power series

y(x) =
∞∑
m=

(–)mωm
 xm

(m)!
+

∞∑
m=

(–)mωm+
 xm+

(m + )!
=

∞∑
m=

bmxm,

where we set

bm =
(–)mωm


(m)!

and bm+ =
(–)mωm+


(m + )!

for every m ∈ N. Hence, y satisfies the condition (a).
If we define

am = (m + )(m + )bm+ +ωbm =
(–)m(ω –ω

)ωm


(m)!

and

am+ = (m + )(m + )bm+ +ωbm+ =
(–)m(ω –ω

)ωm+


(m + )!

for anym ∈N, then we have

∞∑
m=

∣∣amxm∣∣ =
∞∑
m=

(∣∣amxm∣∣ + ∣∣am+xm+∣∣ + ∣∣am+xm+∣∣ + ∣∣am+xm+∣∣)

=
∣∣ω –ω


∣∣ ∞∑
m=

( |ωx|m
(m)!

+
|ωx|m+

(m + )!
+

|ωx|m+

(m + )!
+

|ωx|m+

(m + )!

)
.
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Furthermore, by considering |ωx| < / and by a long and tedious calculation, we get

∣∣∣∣∣
∞∑
m=

amxm
∣∣∣∣∣ =

∣∣∣∣∣
∞∑
m=

(
amxm + am+xm+ + am+xm+ + am+xm+)

∣∣∣∣∣

=
∣∣ω –ω


∣∣
∣∣∣∣∣

∞∑
m=

(
(ωx)m

(m)!
+
(ωx)m+

(m + )!
–
(ωx)m+

(m + )!
–
(ωx)m+

(m + )!

)∣∣∣∣∣

≥ 


∣∣ω –ω

∣∣ ∞∑
m=

( |ωx|m
(m)!

+
|ωx|m+

(m + )!
+

|ωx|m+

(m + )!
+

|ωx|m+

(m + )!

)

=



∞∑
m=

∣∣amxm∣∣

for all x ∈ (–ρ,ρ). Therefore, we conclude that

∞∑
m=

∣∣amxm∣∣ ≤ 


∣∣∣∣∣
∞∑
m=

amxm
∣∣∣∣∣

for all x ∈ (–ρ,ρ), i.e., (b) is satisfied with K = / and ρ = /(ω), and hence y ∈ C .
Now, we see that

lim
m→∞

bm–

mbm
= –

L
ω

and lim
m→∞

bm
(m + )bm+

=
L
ω
,

where L = ω/ω < . Furthermore, it follows from (.) that

∣∣y′′(x) +ωy(x)
∣∣ = √


∣∣ω –ω


∣∣
∣∣∣∣sin

(
ωx +

π



)∣∣∣∣
≤ √


∣∣ω –ω


∣∣ sin

(
π


+



)

≤ ε

for all x ∈ (–ρ,ρ).
We remark that we can take zeros as the values of c and c in (.) without changing

the validity of Theorem .. If we set c = c = , m = , and mδ = , then it follows from
(.) that

|cm| ≤ |am|
ω

m–∑
i=

∣∣∣∣ω
m

ωi
(i)!
(m)!

ai
am

∣∣∣∣ ≤ |am|
ω

m–∑
i=

δm–i ≤ δ

ω( – δ)
|am|

for any δ with |L| < δ <  and for allm ∈N. Similarly, we have

|cm+| ≤ δ

ω( – δ)
|am+|

for all δ satisfying |L| < δ <  and for allm ∈N. Hence, we get

|cm| ≤ δ

ω( – δ)
|am|

http://www.journalofinequalitiesandapplications.com/content/2013/1/3
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for all δ satisfying |L| < δ <  and for allm ∈N, i.e., it holds that

|cm| ≤ lim
δ→|L|

δ

ω( – δ)
|am| = 

ω
 –ω |am|

for allm ∈N.
According to Theorem ., there exists a solution yh : (–ρ,ρ)→ C of the homogeneous

differential equation (.) such that

∣∣cosωx + sinωx – yh(x)
∣∣ ≤ 


ε

ω
 –ω

for all x ∈ (–/(ω), /(ω)).
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