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Abstract

The theory of Schur complement is very important in many fields such as control
theory and computational mathematics. In this paper, applying the properties of
Schur complement, utilizing some inequality techniques, some new estimates of
diagonally dominant degree on the Schur complement of matrices are obtained,
which improve some relative results. Further, as an application of these derived
results, we present some distributions for the eigenvalues of the Schur complements.
Finally, the numerical example is given to show the advantages of our derived results.
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1 Introduction

The Schur complement has been proved to be a useful tool in many fields such as numer-
ical algebra and control theory. [1, 2] proposed a kind of iteration called the Schur-based
iteration. Applying this method, we can solve large scale linear systems though reducing
the order by the Schur complement. In addition, when utilizing the conjugate gradient
method to solve large scale linear systems, if the eigenvalues of the system matrix are
more concentrated, the convergent speed of the iterative method is faster (see, e.g, [3,
pp-312-317]). From [1, 2], it can be seen that for large scale linear systems, after applying
the Schur-based iteration to reduce the order, the corresponding system matrix of linear
equations is the Schur complement of the system matrix of original large scale linear sys-
tems and its eigenvalues are more concentrated than those of the original system matrix,
leading to the Schur-based conjugate gradient method computing faster than the ordinary
conjugate gradient method.

Hence, it is always interesting to know whether some important properties of matri-
ces are inherited by their Schur complements. Clearly, the Schur complements of pos-
itive semidefinite matrices are positive semidefinite, the same is true for M-matrices,
H-matrices and inverse M-matrices (see [4, 5]). Carlson and Markham showed that the
Schur complements of strictly diagonally dominant matrices are diagonally dominant
(see [6]). Li, Tsatsomeros and Ikramov independently proved the Schur complement of
a strictly doubly diagonally dominant matrix is strictly doubly diagonally dominant (see
[7, 8]). These properties have been repeatedly used for the convergence of iterations in
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numerical analysis and for deriving matrix inequalities in matrix analysis (see [3, 9, 10]).
More importantly, the distribution for the eigenvalues of the Schur complement is of great
significance, as shown in [1, 2, 8, 11-17]. The aim of this paper is to study the distributions
for the eigenvalues of the Schur complement of some diagonally dominant matrices.

Denote by C"*” the set of all # x #n complex matrices. Let N = {1,2,...,n}. For A = (a;) €
C"™" (n > 2), assume

PA)= D lagl,  SiA)= Y lal, i=12...,n

jeN ji JEN ji

Set

N(A) = {ili € N, las| > P(A)}; Ne(A) = {jlj € N, la| > Si(A)}.
Let us recall that A is a (row) diagonally dominant matrix (D,,) if

|laii| > Pi(A), VieN; (1.1)
A is a doubly diagonally dominant matrix (DD,,) if

|aiillaj| = Pi(A)P(A), VYi#j,i,jeN; (1.2)
A is a y-diagonally dominant matrix (D},) if there exists y € [0,1] such that

lai| = yPi(A) + (1 - y)Qi(A), VieN; 1.3)
A is a product y -diagonally dominant matrix (PD?) if there exists y € [0,1] such that

jail = [PA] [Q], VieN. (1.4)

If all inequalities in (1.1)-(1.4) are strict, then A is said to be a strictly (row) diagonally
dominant matrix (SD,), a strictly doubly diagonally dominant matrix (SDD,,), a strictly
y -diagonally dominant matrix (SD?) and a strictly product y-diagonally dominant ma-
trix (SPD?), respectively.

Liu and Zhang in [14] have pointed out the fact as follows. If A € SDD,, but A ¢ SD,,,
then there exists a unique index iy such that

|ai0l’0 | = Pio (A)' (1.5)

Asin[1,2],forl1 <i<mnandy € [0,1],we call |a;| — Pi(A), |a;| —y Pi(A) — (1-y)S;(A) and
|aii| — [Pi(A)]” [Si(A)]¥” the ith (row) dominant degree, y -dominant degree and product
y-dominant degree of A, respectively.

The comparison matrix of A, denoted by u(A4) = (¢;), is defined to be

|6ll‘1‘|, lfl:],

_laijlr if i 7/]
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A matrix A is an M-matrix if it can be written in the form of A = m[ — P with P being
nonnegative and m > p(P), where p(P) denotes the spectral radius of P. A matrix A is
a H-matrix if u(A) is a M-matrix. We denote by H,, and M, the sets of n x n H- and
M-matrices, respectively.

For & C N, denote by |«| the cardinality of « and ¢’ = N — . If ¢, 8 C N, then A(«, 8)
is the submatrix of A lying in the rows indicated by « and the columns indicated by 8. In
particular, A(x, «) is abbreviated to A(«). Assume that A(«) is nonsingular. Then

Ala =A/A(a) =A(o/) —A(a',a) [A(a)]flA(a,a’),

is called the Schur complement of A with respect to A(«).

The paper is organized as follows. In Section 2, we give several new estimates of diago-
nally dominant degree on the Schur complement of matrices, which improve some relative
results. In Section 3, as an application of these derived results, the distributions for eigen-
values are obtained. In Section 4, we give a numerical example to show the advantages of
our derived results.

2 The diagonally dominant degree for the Schur complement
In this section, we give several new estimates of diagonally dominant degree on the Schur
complement of matrices, which improve some relative results.

Lemma 1 [4] IfA is an H-matrix, then [1(A)]™! > |A7}.
Lemma 2 [4] IfA € SD, or SDD,,, then 1(A) € M, i.e., A € H,,.

Lemma 3 [11] IfA € SD,, or SDD,, and o € N, then the Schur complement of A is in SD\y|
or SDD\y| , where o' = N — « is the Schur complement of a in N and || is the cardinality

of o'.
Lemma4 [1] Leta>b,c>b,b>0and0<r <1. Then
ac™ > (@a-b)(c-b)'" +b.

Theorem 1 Let A € C", o = {i1,i3,...,ix} SNy (A), ' =N —a = {j1,j2,...,Ji}, || < n and
denote Ala = (a,). Then forall1 <t <|,

|a,| - P(Al) = |ay;,| = Py (A) + wy, = lay;,| - Py (A) 21
and
\a),| + Pu(Ala) < lay,,] + Py (A) — wy, < lay,,| + P, (A), (2.2)
where
ii] = Pi(A) o
wj, = min 'l L Z 4,1 (2.3)

= k
1<w<k |ai,i, | — Zu:l | i | u=1

u#w
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Proof According to Lemmas 1 and 2, we have {1[A(x)]}! > [A(@)]™. Thus, Ve > 0 and
t=1,2,...,1

|| - Pi(Ala)

| l /
= |“tt| - Z’“ts|
s=1

s#t
Aij,
-1
-~ @ 4]
Lirje
! ailjs
-1
=2 i~ @i i ) [Al)]
s=1
s#t aik/s
! ! ailfs
-1
> |ajyel = Z |y, | — Z (“iti1""’“j¢ik)[A(Ol)]
s=1 s=1
o aikjs
! ! |y
-1
> laj,j, | - Z lajiji ] — Z (i), - > i ) {[A@)])
s=1 s=1
i |aikjs|
k
= 1ajgil = PiA) + ) i, + (@), = ©) = (@ )
u=1
! Iailjs'
-1
- Z (|a/til |’ cr |ajtik |) {,LL[A(C{)]}
s=1
|aikjs|
k
= |aj,| = P;,(A) + j, — e + Z |aj,i, | — @), + €
u=1
! |ai1/s|
-1
- Z (1aj,i ), - @i, |) {M[A(a)]}
s=1
|aikjs|
= |ﬂ/:/t| - sz(A) +wj, —¢&
1
b
det{A(@)]]
k
Zu:1 |aj,i, | —wj, + & =4 | =l |
!
- ZS:l |ai1/s |
x det (2.4)
n[A@)]

)
=D st lay |
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Denote
x —lajul - =il
!
=2 et i, |
B, = (2.5)
nl[A(@)]
!
=2 et i
If

Yt i d
P

k
Lok ;i | = > o |,

ufw
then
x Yot 11|
—r > max < .
Zuzl |aitiu| o=k |diwiw| - Zuzl |ﬂiwiu|
ufw
Choose ¢; € R* such that
l
x 2t i
——— > &> max T ,
Zuzl |ajtiu| l=wsk |ai<uia)| - ZM:I |aiwiu|
u#w
where we denote ﬁ = o0 if Zl;zl |@j,i,| = 0. Set D = diag(y1,¥2, ..., k1), where
u=1 iy
1, i=1,
Ji=
&, i=2,3,...,k+1.
Denote C; = B;D = (cy,). If s = 1, then
k+1 k k
lessl = Y lewl =lenl = ) lewl =2 =Y edaj,|=x—e Y |aj,| > 0;
v s=2 v=1 v=1
otherwise,
k+l k l
sl = Y leol = &l | = Y edlatii,| = Y lai, |
SFV v#w u=1
k !
= &| |@iyi, | — Z |aii,| | = Z | i |
vZw u=1

Zl |a‘ ) | k l
=1 |%iyj
B —— il = Y Ntii| ) =D iy, = 0.
|aiwiw| - Zu:l |aiwiu| u=1 u=1

uFw uw
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Therefore, we have C; € SDy,1, and so B; € Hy,;. Note that B; = 4(B;). So,
detB; > 0. (2.6)

Take x = erj:l |;,i,| — W), + € in (2.5), then

k Zl ;i | k
=1 1%y
D1, =Wy + 6 — max ——=ETE Y gy, |
u=1 =0= |ﬂiwiw| - Zu:l |aiwiu| u=1

uw

k

k
. ai, i, | —Pi, (A
Z Z |ﬂjtiu| — min | zwtwl - lw( ) Z |ﬂj[iu| e
u=1 l=osk |diwiw| - Zu:l |aiwiu| u=1

7240}

k
lsosk |ﬂi(uiw| - Zu:l |ai(uiu| =

Pt 1] £
— max Z |laj,i,| > 0.
u=1

uFw
Noting that det{t[A(«)]} > 0, by (2.4) and (2.6), we have

’a;t| - P(Ala) > |aj,;,| — P,(A) + wj, —&.
Let ¢ — 0, thus we easily get (2.1). Similarly, we obtain (2.2). O
Remark 1 Observe that

Py, (A) _ > 14

T k :
iin| ™ iyl =Dy i

7220}

This means that Theorem 1 improves Theorem 1 of [14].

Theorem 2 Let A € SDD,,, o = {ig, i1,12,...,ix} with the index iy satisfying (1.5), @’ = N —
a ={j1,j2,..., i} la| < n and denote Ala = (a},). Then forall1 <t <],

I k
et i, |
’a;t‘ _Pt(A/a) = |“/tiz| _Pit(A) + (1_ ;i | - 12:/:; ;| Zlajti"|
ioio | T Zujip 1%ioj
!

_1 | @Qiyj,

=l - — el _p () 27)
=
|ai0i0| - Zj;{io |aioj|

v=1

and

i k
D et @iy, |
|a;t| +P(Ala) < la,,| + P, (A) - <1— u=l ]:Z Z @i, |
|aigio| = Luji |ai()j| =1

i
2 =1 ||
jea
|ai0io| - j#io |aioj|

= |dj£jt| +

P, (4). (2.8)
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Proof Foralll <t </, wehave

l

EARDITA

|ay,| - Pi(Alat)

s=1
s#t
Aijy
1
= | Aije — (ajtil’ s “/zik)[A(a)]
Airje
1 dilfs
1
= i, — @iy ) [Al)]
s=1
s#t Aijs

Yt || a
z |a1'tiz| - Pjt(A) +{1- Z |ajtiv|

JeEa

| @igig | — j#io aiojl /5
l k
> et i
= > 1|
| @igio| — j#io ioj| o1
I ||
-1
=D | (aii s @i ) { [ Al ]}
s=1
|aikis|
Thus,
|a;t| —P(Ala)
Zizl |aiO/u| a
> |a/t1'z| - Pit(A) +{1- jea Z |ajtl'v|
|ai0i0| - j#io |ﬂl’0/| y=1
b i | k
_&u=l 0ju 7|a..| —la;.: —la;.:
\“i0i0|—2;§% |ﬂioj\ Zv_l Jtly | ltll| | }tlkl
!
1 =2 st lai|
* detutateon
et{u[A(a
1[A@)]
l
- Zs:l |aikjs|

Lo

Take x = IZ\HZ% Zle |a;,;,] in (2.5). By (2.6), thus it is not difficult to get that (2.7)
igio 1~ 24 1Fioj

follows. Similarly, we obtain (2.8). O

It is known that the Schur complements of diagonally dominant matrices are diagonally
dominant (see [12, 13]). However, this property is not always true for y -diagonally domi-
nant matrices and for product y -diagonally dominant matrices, as shown in [1].

In the sequel, we obtain some disc separations for the y-diagonally and product y-
diagonally dominant degree of the Schur complement, from which we provide that the
Schur complement of the y-diagonally and product y-diagonally dominant matrices is
also y-diagonally dominant and product y -diagonally under some restrictive conditions.
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Theorem 3 Let A € C", o = {iy,in,...,ix} SN (A)NN(A) #0,0' =N —a = {j1,)2,.--,ji1},
loe| < n and denote Alo = (a,). Then forall1 <t <I,

|al,| - PL(A1)S(Ala) > laz,| - (P (A) = w)” (S;,(A) - w])'

> a5, = P (A)S, 7 (A) (2.9)
and
|| + P (AJa)SY 7 (Ala) < laj,| + (P, (A) = wr) (S;,(4) - w!) ™7
< laj;,| + PLA)S (A), (2.10)
where
. i, | =
R |, i, | —Z 1 |alvlu u212| il

u#v

k
T . |d' (A)
w, = min MV Zl lu]t|

1=v=k |aiviv| - Zu 1 |alulv u=1

u#v

Proof Foralll <t </, wehave

|| - P} (A/)st ™ (Ala)

el - (ZH)(Z!I)

s#t s#t
Aiyjy
-1
= %je — (ﬂitil’ ceer aftik)[A(a)]
Ligje
Y
) ailfs
1
Z @iy = @iy i )[A(@)]
=
S ﬂikfs
1-y)
/ Aije
-1
< | D | = @i - a5 [A)]
s=1
s#t Aiyje
Aij,
-1
> |ag,;,| - (aftil’ ceer ﬂitik) [A(Ol)]
Lirje
14
1 ailis
1
—[ 22 | 14l + @i @i )[A@)]

s=1
s#t aikjs
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-y
l Airjy
-1
X Z |a/sjt| + (ajsil""’aisik)[A(a)]
s=1
s#t aikjt
|ailjt |

> 1@ = (i |- r |z ) | [A@)]}

|2, |
y
! |ty
- Z lajiji | + (|aiti1 oo | |) {M[A(a)] }_1
o i
1-y
! |, |
X Z |ajsjt| + (|djsi1|""’ |ajsik|){M[A(a)]}_1 ' . (2.11)

ot i |
Similar as in the proof of Theorem 1, we easily obtain
l |ai1/s|

> Hagl + (@il i ) {n[A@])
ot i
|al'1jz|
<Pi(A) = wi = (laji |- lai ) [A@]) | 0 | (2.12)
|z, |
Similarly,
! ||
Yo | il + (1l -l ) {r[A@])
o i |
@]
< S (A) = w! = (1] 1 ) [ [A@)]} : . (2.13)
|ﬂik/t|
Set
|y, |

h= (1l ai ) {[A@])
|aikjt|

From (2.11), (2.12), (2.13), using Lemma 4, we have

|| - P (Al)S ™ (Alar)

> laj | = = (P, (A) = we — )" (S;,(A) = wl — k)™
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> || = = [(B,(4) = w.) (Sj,(4) —w]) " — h]
gl - (B )= ) (5,0~ w) .

Thus we get (2.9). Similarly, we have (2.10). a

Remark 2 Observe that

. |ai i min |ﬂL i z (A)
Wj, = min . V Z | 1;1,4 S V . Z | Ajiy |’

l=vsk |aiviv| Zu 1 |alvlu - 1<V<k |alvlv
u#v
T . |ﬂivlv Z . | lylv -
wl = min |ai,,| = m Z| .
Jt ujt lult
1<v<k |"Ziviv| — Zu 1 |alulv — 1<v<k |611le
u#v

This means that Theorem 3 improves Theorem 2 of [1].
In a similar way to the proof of Theorem 3, we get the following theorem immediately.

Theorem 4 Let A € C™", «a = {i1,is,...,ix} SN(A)NN(A) #0, ' =N - = {j1,j2,.- -, i},
lt| < n and denote Alo = (a,). Then foralll <t <|,

|a, |-y Py(Ala) - (1-y)Sy(Ala)
> laj,j, | =y P (A) = (1 = y)S;,(A) + ywe + (1 - V)WtT
> |ajj,| = v P (A) - (1= y)S;,(A) (2.14)

and

|a,| + yPi(Ala) + (1 - y)Sy(Ale)
<lay,,| + VP}'t(A) +(1- V)Sit(A) —ywe—(1- V)WtT

<lajj | + vy P;,(A) + (L - y)S;, (A). (2.15)

Corollary 1 Let A € DV and N,(A) N N.(A) # 9. Then for any a C N,(A) N N (A) with

|| < m,
Ala € SD)_,.
Proof By (2.14), we have
|ay| = yPi(Al@) = (1= y)S(Ala) > |ay,;,| - y P, (A) - (1 - ¥)S;,(A) = 0. O

Corollary 2 Let A € PD}, and N,(A) N N(A) # 9. Then for any o < N,(A) N N (A) with

|| < m,

Ala € SPD!,

n—|al*


http://www.journalofinequalitiesandapplications.com/content/2013/1/2

Zhang et al. Journal of Inequalities and Applications 2013, 2013:2 Page 11 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/2

3 Distribution for eigenvalues
In this section, as an application of our results in Section 2, we present some locations for
the eigenvalues of the Schur complements.

Theorem 5 Let A € C™", a = {iy,i3,...,ix} CN, #0, &' =N — & = {j1, )2, ...,j1}. Then for
each eigenvalue ) of Alw, there exists 1 < t <[ such that

A = aj, | < Pj,(A) = wj,. (3.1)

Proof Set Ala = (al,). Using the Gerschgorin circle theorem, we know there exists 1 <t </
such that

|A - a;t| < Pi(Ala).

Thus
0> |A-ay,|-P/(Ala)
Aijy
-1
= A= ajy + @iy > @i ) [Al)]
Ligje
/ Airjs
-1
- Z Ajyjs — (ﬂizil' ceer a/ﬂ'k)[A(Ol)]
=1
i?/z Aizjs
1 ! Aijs
-1
= |)\' - ajt]'zl - Z |a]'z/s | - Z (aj[il) ] ajtik)[A(a)]
s=1 s=1
s#t Lirjs
I ! s |
-1
> |A —aj,;, | - Z || — Z('ajtil ls oo |y |) {M[A(Ot)]}
-1 =1
ot ’ |2y |
(by Lemmas 1 and 2)

k
= | —aj,| - P, (A) + Z |ajii, | + W, = wj,

u=1

/ |ai1js|

= (il g ) {[A@)]}

s=1
|aik/s |

= [A —aj,| - P;,(A) + w;,
k Zi:l |2y
+ 3 1 = Wi = (1) ) {[A@]) :
! > I,
= [A —aj;,| - P;,(A) + w,
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k
Yol =wi —lal o —lay]

l
1 det - Zszl |ai1/s |

" det{ulA@)) : nA@]
= Yoy lail

Hence, it is not difficult to get by (2.6) that

0> [A—ay| - P(Ala) > |A - aj;,| - P (A) + w,

1A = ajp,| <1)it(A)_Wiz' O
Remark 3 By Remark 2, it is obvious that Theorem 5 improves Theorem 3 of [1].

Corollary 3 Let A € C™", « = {iy,ip,...,ix} CN, #0, &' =N —« = {j1,j2,...,ji}. Then for
each eigenvalue ) of Alw, there exists 1 < t <[ such that

A — Ajijie | < Piz (A).

In a similar way to the proof of Theorem 5, we obtain the following theorem according
to Theorem 2.

Theorem 6 Let A € SDD,,, a = {ip, i1,12, ..., ix} with the index iy satisfying (1.5), &' = N —
a ={j1,j2,-..,j1}. Then for each eigenvalue ) of Alw, there exists 1 < t <[ such that

>t i | .
| —aj,| < Py, (A) - | 1- jea Z |, |- (3.2)
@igio| = 2jzig 1 @iojl / V21

Next, we obtain some distributions for the eigenvalues of the Schur complements of

matrices under the conditions such as PD}, degree.

Lemma 5 [1] Let A € C"*" and 0 < y < 1. Then for every eigenvalue A of A, there exists
1 <i < wnsuch that

% —aql < P/ (A)S; 7 (A). (3.3)

Theorem7 Let A € C", « = {iy, i3,...,ix} S N,(A)NN(A) #0, &' =N —a = {j1, 2, ..., 1},
|| < m . Then for each eigenvalue ) of Alw, there exists 1 <t <[ such that

A=) < (P (A) = wy) (S;,(4) —w!) . (3.4)

Proof Set A/a = (a;,). From Lemma 5, we know that for each eigenvalue A of A/, there
exists 1 < ¢ <[ such that

% —a,| < P/ (Al2)S,” (Al). (3.5)


http://www.journalofinequalitiesandapplications.com/content/2013/1/2

Zhang et al. Journal of Inequalities and Applications 2013, 2013:2
http://www.journalofinequalitiesandapplications.com/content/2013/1/2

Hence,

0> [A—a|-Pl(Ala)S! " (Ala)

! Y /1 1-y
-y (Z|a;s|) (Zw)
s=1 s=1

s#t s#t
Aiyji
-1
= A= a/t/t + (ajtil’ ) ﬂjtik)[A(a)]
igje
Y
l ailjs
-1
B Z i, = @iys > @i ) [A ()]
s=1
st Aigjs
(1-y)
! Airje
-1
| Y | = @i i )[Al@)]
s=1
t Ligji
Airjiy
-1
> & =i | = @iy, 23 ) [A(@)]
Airje
Y
! ailjs
-1
— [ X2 [ 1] + | @i s 20 [A@)]
s=1
s#t ﬂikjs
1-y
/ Airjy
-1
X Z |6l]'51‘[| + (ﬂjxip“-’ﬂjsik)[A(“)]
s=1
s#t Aije
From the proof of Theorem 3, we know
Aiyj
-1
(@i -+ @i ) [A) ]
Ligje
Y
l ailjs
-1
+ Z |a/tjs| + (ajtil""’a/tik)[A(a)]
s=1
t Aigjs
1-y
/ Aiyjy
-1
X Z |ﬂjsjt| + (“jsip-'-’“jsik)[A(a)]
s=1
s#t Lirje

< (P (A) = w)" (S, (A4) - w])' .

(3.6)
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Therefore, from (3.6) we obtain
0> [A—al,| - Pl (Ala)S; " (Aler)
> k= ag ] — (P (A) - w) (S;,(4) - w])' .
Thus (3.4) holds. O
Remark 4 By Remark 2, it is obvious that Theorem 7 improves Theorem 4 of [1].

Corollary4 LetA e C™", « = {i1,ia,..., ik} S NAA)NN(A) #0,0' =N —a = {j1,/a,...,j1},
|| < n. Then for each eigenvalue A of Alw, there exists 1 <t <l such that

[k =y < PLASLT < P, (4) + (1= )8, (A).

4 A numerical example
In this section, we show how to estimate the bounds for eigenvalues of the Schur comple-
ment with the elements of the original matrix to show the advantages of our results.

Example Let

330 323 2 3 1
321 328 3 1 2

A=l 3 2 6 7 2|, a={12).
2 1 1 2 6
2 1 2 3 4

If we estimate the bounds for eigenvalues of A/« by the elements of A/«, there would be
great computations to do. However, as

Pi(A) =329; P,(A) =327; P5(A) =14 P,(A) =10; Ps(A) = 8;

S1(A) = 328; S2(A) = 327; S3(A) = 8; Si(A) =14; S5(A) =11;
2

> lasil = ;;

i=1

|| —P1(A) laza| —Par(A)

W3 = min ,
lan| = law]  laxn| - lax|

|aii] — Pi(A) |ag| — P2(A)

2
. 3
Wg = min ) Z laail = 5
lan| —law| * lax| - lax| } ‘5 7

|| — Pi(A) |aa| — Pa(A)

> lal=
4 5i _7¢
i=1

Ws5 = min ,
lan| —laa| * |a2| - laxul
2
r . |laul =S81(4) |axn|-S:(4)
w, =min , Z lais] =1;
lan| —lax| " laxn|-lan| | =
2
r . [laul—S1(4) |axn]—S:(A) 4
W, =min ) Zlml =<
lan| = laa| * |axn|-lan| | 3 5
2
r . |laul = Si1(A) |axn| - S:(A) 3
wZ =min , > las|= <.
lan| —lax| " |axn|-lan| | 5
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Since o € N,(A), according to Theorem 5, the eigenvalue z of A/« satisfies
zelz|lz-6] <1329} U{z||z-2| <958} U {z]| |z 4| <7.58} =G.
According to Theorem 3 in [1], the eigenvalue z of A/« satisfies
zelz|lz-6] <1398} U{z||z-2[<9.99} U{z||z-4| <7.99} =G].

Further, we use Figure 1 to illustrate (4.1) and (4.2).
It is clear that G; C G| from both (4.1), (4.2) and Figure 1.

(4.1)

(4.2)

In addition, since o € N;(A) N N(A), by taking y = % in Theorem 7, the eigenvalue z of

Ala satisfies

zelz|lz-6]<9.64} U{z|lz-2| <1124} U {z| |z - 4| < 8.87} = G..

(4.3)

15}

101

-5}

-10}

-15¢ ‘ ‘ ‘ ‘ ‘ ‘
-10 -5 0 5 10 15 20

Figure 1 The red dotted line and blue dashed line denote the corresponding discs of G; and G,
respectively.

15}

10}

5t

-10¢

-5}

-10 -5 0 5 10 15

Figure 2 The red dotted line and blue dashed line denote the corresponding discs of G, and G},
respectively.
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According to Theorem 4 in [1], the eigenvalue z of A/« satisfies
ze{z]|z-6/<1057} U{z||z-2| <11.82} U{z| |z - 4| <9.37} = G,. (4.4)

Further, we use Figure 2 to illustrate (4.3) and (4.4).
It is clear that G, C G} from both (4.3), (4.4) and Figure 2.
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