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Abstract

We prove some Hardy-type inequalities on half-spaces for Kohn's sub-Laplacian in the
Heisenberg group. Furthermore, the constants we obtained are sharp.
MSC: Primary 26D10; 35H20

Keywords: Hardy inequality; Heisenberg group; sharp constant

1 Introduction
The Hardy inequality in RN reads that for all # € C°(RN) and N > 3,

N=2 2 2
/ |Vu|* dx > !/‘ u—dx (1.1)
RN 4 RN |¥[?

(N-2)2
4

and the constant L in (1.1) is sharp. Recently, it has been proved by Nazarov ([1],

Proposition 4.1, see also [2]) that the following Hardy inequality is valid for f € C3°(RY):

N2 2
/ |Vu(x)|2dxz —/ ux) dx, (1.2)
RY 4 Jry o |xf?

where RY = {(x1,...,%,)|x1 > 0}, and the constant NTZ is sharp. This shows that the Hardy
constant jumps from % to NTZ when the singularity of the potential reaches the bound-
ary. For more information about this inequality and its applications, we refer to [3-10] and
the references therein.

The aim of this note is to prove an analogous Hardy-type inequality on a half-space for
Kohn’s sub-Laplacian in Heisenberg groups H". It has been proved by D’Ambrosio ([11],

Theorem 3.3) that for u € C§°(H"), the following holds:

2
/ |Vu|? dedt > (n—1)% / |M? dx dt, (1.3)
n HE X

where Vy is the horizontal gradient associated with Kohn’s sub-Laplacian on H” (for de-
tails, see Section 2). Furthermore, the constant (z — 1)? in (1.3) is sharp (see [12], Theo-
rem 3.13). In this note we shall show that when the singularity is on the boundary, the
Hardy constant also jumps. In fact, we have the following.
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Theorem 1.1 For all u € C*(HY}), the following holds:

2
/ \Vyul dxdt > n / 2 dxdt, (1.4)
H

mr x)?
where H" = {(x,t) € H" : x; > 0}, and the constant n? in (1.4) is sharp.

In order to prove Theorem 1.1, we use a new technique which is different from that in
[1, 2]. In fact, it seems that the method used in [1, 2] cannot be applied to Kohn’s sub-
Laplacian.

With the same technique, we obtain the following sharp Hardy inequality on HJ =
{(x,8) e H" : %1 > 0,...,x% > 0}

Theorem 1.2 Let1 < k < 2n. For all u € C5°(Hy, ), the following holds:

J

Furthermore, the constant (n + k —1)? in (1.5) is sharp.

2
|VHu|2dxdtz(n+k—1)2/ r‘?dxdt. (1.5)
Hy X

n
ks

2 Proofs
Let " = (R*" x R, o) be the (27 + 1)-dimensional Heisenberg group whose group structure

is given by

n
(x,t) 0 (x’, t/) = (x +x,t+t +2 Z(X/ZIJCQ/_1 - x’zj_lxgj))

j=1
The vector fields

X 9 2 9 X 9 2 9

= 4 2Kyi—, e 9 —

1 8x2,»_1 % ot & axZ]‘ 51 ot

(f =1,...,n) are left invariant and generate the Lie algebra of H”. Kohn’s sub-Laplace on
H" is

2n 2n 82 82 n 3 9 3
A=) X?=Y — +4lx>*— +4 P P
H ; i ;axf T ;(xz’axz,»_ % laxz,-)at

and the horizontal gradient is the (2#)-dimensional vector given by

d
V]’1 = (XI)“')XZ;«[) = Vx + 2AXE,

) d

where V, = (%,..., T

), A is a skew symmetric and orthogonal matrix given by

A =diaglh,....Jn), h=-=J= (_1 0)'
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By the definition of Vy, we have, for @ € R and |x| # 0,

2n 32 2n 32 32
Ap(mlal®) = 30— (k) = 3 o (aldl”) + —— (all)
1 %% = 0% !
2n 32 2 a|x|cx
= “rx *
xlzax2|x| 158 2
j=2 ]
o, Ol
-xlz = 2| A" 42
= a(2m + o)y |x]*72 (2.1)

Similarly,

(i TT) - S (T

2n 82 k k 82 k
-3 (1 [T+ T
) 0x; . 0x; .
j=k+1 ] i=1 I=1 i=1
k 2n 82 k
= l_[xl Z p || + 2klx|*2 l—[xl
=1 j=1 % i=1
k
=a2n+ 2k + o — 2)|x|¥2 Hxl-. (2.2)
i=1

Proof of Theorem 1.1 Using the substitution u = x;|x|™'f, we get

f o= [ [VVH(xuxr")\ﬂﬂ Hf|2| ot VH(’“f'x"z”%wz)}

2
—2n 2
2 [ (1ot ST

+

2

- [ (15t = St

Using the following identity, for g € C*(H"),
1 1 2n 2n
SAug’ =2 Xigh=g) Xig+ Z \Xigl* = gAng +Vugl, (2.3)

j=1 j=1 j=1

we have, by (2.1),

1
’V11(961|x|_")|2 - EAH(fo_zn) = —x1 x| Apy (1% ")

=~ x| - (=n) - moy |2

= mPud x| 722,
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Therefore,

/ |vHu|2dxdtz/f2(|vH(x1|x|-”)|2—%AH(xﬂxr”))dxdt
H H

= nZ/ Frad x| 2 dxdt
H

2 u?
=n — dxdt. (2.4)
H

1l
Now we show the constant 72 in (1.4) is sharp. Choosing
g, t) = p(x)eo(2),

where ¢ € C°(R?") and € C°(R), we have

Vug(x,t) = Veg(x, £) + 2Ax%g(x, t) = w(t) Vi (x) + 2¢ (%)’ (£) Axx.
Therefore,

Vg, O = ((6)Ved () + 20 ()0 (1) Ax, () Vi (x) + 2(x) (£) Ax)
= ()| Vep)* + 47 1x? |0 (O] + do()e () (A%, Vegh). (2.5)

To get the last equation, we use the fact |Ax|? = |x|2.

Since

+00 , 1 +00 da)2(t)
/_Oo w(t)w(t)dt_i_/_oo 7 dt=0,

we have, by (2.5),
| Vag(x, )2 dxdt 2 02| Vep |2 dxdt + 4 [, §*|x) |’ (£)|? dx dt
! ! !
Ju Epdxde Jyon & dx- [ w2 dt

e VetPdx [0 OPde e ¢l dx
2 2 *
f]R%” \fc)ﬁ dx f]R w*dt ngrn \(ﬁﬁ dx

Notice that

o' (t)|* dt
WA 26
weCPRN0) [ w?dt
we have
. Jign |Vru|* dxdt . Jpan |Va0p?dx
inf +u2— < lng *T =n".
o0 n 0 n
ueCy°(H)\{0} sz W2 dxdt PeC (RIN0) ngr" T«2 dx

Here we use the sharp Hardy inequality (1.2). This completes the proof of Theorem 1.1.
O
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Proof of Theorem 1.2 The proof is similar to that of Theorem 1.1. Using the substitution
u = f x| T, %, we get

k 2
[ = [ {vﬂ(wr"-“]"[xi)’ +|va|2Hl v
% ks i-1
+_<VH( | —2n— 2k+21_[ ) VHf2>j|
—n—k+1 £ 2 1 —2n—-2k+2 . 2 2
Z/Ha Vi 1 l_l[x f + (Vi 1_1[x Vuf
k
:/ f2< VH<|x|—n—k+1 l_lxl) ——A <|x| -2n- 2k+2l_[x ))
Hy, i-1

Using the identities (2.3) and (2.2), we have

2 k
1 —2n-2k+2 2
- iAH <|x| | | X

i=1

k
VH <|x|nk+l l_lxl)

i=1

k k
— _|x|—n—k+1 l_[xi . AH<|x|nk+1 H»’Q)
i=1 i=1

k
= (n+k = 1) 22 Hxlz

i=1

Therefore,

me Viul® z/ f2< <|x| - k”Hx) ——AH<|x| on- 2k+21l_1[x ))

k.
k
=m+k- 1)2/ S| 2 Hxlz
HZ, i=1

To see the constant (1 + k — 1) in (1.5) is sharp, we consider the function

h(x’ t) = W (x)w(t)’

where € Cg"(]R,Z(:’) and w € C§°(R). Here we denote by R,Z(:‘ ={xeR>:% >0,...,x>0}.
Then

|Viih(x, t)|2 = () Var (%) + 29 (%) (£) A%, 0(£) Vit () + 29 (%) () Ax)

= POV * + 492120 ()] + do(t) (8 (Ax, Viih)
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and
/ |VHh(x,t)|2dxdt=/ (D OIVep|? + 492 x| () [*) dx dt
e, HE,

+4 w(Ax,wa)dx~fa)(t)a)/(t)dt

2n
R Ty R

:/ (wz(t)|Vx1//|2+4w2|x|2|w’(t)|2)dxdt
Hn

ks

+4 w(Ax,wadx.l/ dw?(t)
2 Jr

2n
R oy

:/ (P OIVey|* + 492 1xl? | ()] dx dt.
HVI

ks
Therefore,

fH],(,+ |Vih(x,t)|* dxdt an @*(t)|V, w|2dxdt+4an Y2 |x|?| 0’ (£)|? dx dt
h2
fHZ+ dedt -/.]R%f de . fR (,()2 dt

fR%" |wa|2 dx fR |Ll)/(t)|2 dt fRif w2|x|2 dx
= 2 + 5 : 2
fR% \ﬁ? dx Jpe?dt fR% \Z[:? dx

Thus, by (2.6),

2

' fHZ+ |Vu|? dxdt fﬂw A ¢|2 dx
inf — < inf -

ueC° (HY )\{0} sz ;jdxdt YeCPR2M)\(0) fRZn . ‘2

=(n+k-1)>%

Here we use the sharp Hardy inequality ([9], Theorem 1.1)

2
2 o
‘/R%KIVfI dx>mn+k-1) |x|2dx
The proof of Theorem 1.2 is therefore completed. O
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