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1 Introduction
Assuming that f , g ∈ L(R+), ‖f ‖ = {∫ ∞

 f (x)dx} 
 > , ‖g‖ > , we have the following

Hilbert integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy < π‖f ‖‖g‖, ()

where the constant factor π is the best possible. If a = {an}∞n=, b = {bn}∞n= ∈ l, ‖a‖ =
{∑∞

n= an}

 > , ‖b‖ > , then we still have the following discrete Hilbert inequality:

∞∑
m=

∞∑
n=

ambn
m + n

< π‖a‖‖b‖, ()

with the same best constant factor π . Inequalities () and () are important in analysis
and its applications (cf. [–]). Also we have the followingMulholland inequality with the
same best constant factor (cf. [, ]):

∞∑
m=

∞∑
n=

ambn
lnmn

< π

{ ∞∑
m=

mam
∞∑
n=

nbn

} 


. ()

In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an exten-
sion of (). By generalizing the results from [], Yang [] gave some best extensions of
() and () as follows: If p > , 

p + 
q = , λ + λ = λ, kλ(x, y) is a non-negative homoge-

neous function of degree –λ with k(λ) =
∫ ∞
 kλ(t, )tλ– dt ∈ R+, φ(x) = xp(–λ)–, ψ(x) =

xq(–λ)–, f (≥ ) ∈ Lp,φ(R+) = {f |‖f ‖p,φ := {∫ ∞
 φ(x)|f (x)|p dx} 

p < ∞}, g (≥ ) ∈ Lq,ψ (R+),
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‖f ‖p,φ ,‖g‖q,ψ > , then

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y)dxdy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()

where the constant factor k(λ) is the best possible. Moreover, if kλ(x, y) is finite and
kλ(x, y)xλ– (kλ(x, y)yλ–) is decreasing for x >  (y > ), then for am,bn ≥ , a = {am}∞m= ∈
lp,φ = {a|‖a‖p,φ := {∑∞

n= φ(n)|an|p}

p < ∞}, b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , we have

∞∑
m=

∞∑
n=

kλ(m,n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , ()

with the same best constant factor k(λ). Clearly, for p = q = , λ = , k(x, y) = 
x+y , λ =

λ = 
 , () reduces to (), while () reduces to (). Some other results about Hilbert-type

inequalities are provided by [, –].
On the topic of half-discrete Hilbert-type inequalities with the general non-

homogeneous kernels, Hardy et al. provided a few results in Theorem  of []. But they
did not prove that the constant factors in the inequalities are the best possible. Moreover,
Yang [] gave an inequality with the particular kernel 

(+nx)λ and an interval variable,
and proved that the constant factor is the best possible. Recently, [] and [] gave the
following half-discrete Hilbert inequality with the best constant factor π :

∫ ∞


f (x)

∞∑
n=

an
(x + n)λ

dx < π‖f ‖‖a‖. ()

In this paper, by using the way of weight functions and Hadamard’s inequality, a half-
discrete Hilbert-type inequality similar to () and () with the best constant factor is given
as follows:

∫ ∞


f (x)

∞∑
n=

an
ln e(n + 

 )x
dx < π‖f ‖

{ ∞∑
n=

(
n +




)
an

} 


. ()

Moreover, the best extension of () with multi-parameters, some equivalent forms as well
as the operator expressions are considered.

2 Some lemmas
Lemma  If  < λ ≤ , α ≥ 

 , setting weight functions ω(n) and � (x) as follows:

ω(n) := ln
λ
 (n + α)

∫ ∞



x λ
 –

lnλ e(n + α)x
dx, n ∈N, ()

� (x) := x
λ


∞∑
n=

ln
λ
 –(n + α)

(n + α) lnλ e(n + α)x
, x ∈ (,∞), ()

we have

� (x) < ω(n) = B
(

λ


,
λ



)
. ()
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Proof Substitution of t = x ln(n + α) in (), by calculation, yields

ω(n) =
∫ ∞




( + t)λ

t
λ
 – dt = B

(
λ


,
λ



)
.

Since, for fixed x >  and in view of the conditions,

h(x, y) :=
ln

λ
 –(y + α)

(y + α) lnλ e(y + α)x

=
ln

λ
 –(y + α)

(y + α)[ + x ln(y + α)]λ

is decreasing and strictly convex for y ∈ (  ,∞), then by Hadamard’s inequality (cf. []),
we find

� (x) < x
λ


∫ ∞




ln
λ
 –(y + α)

(y + α)[ + x ln(y + α)]λ
dy

t=x ln(y+α)=
∫ ∞

x ln(  +α)

t λ
 –

( + t)λ
dt ≤ B

(
λ


,
λ



)
,

namely, () follows. �

Lemma Let the assumptions of Lemma  be fulfilled and, additionally, let p > , 
p +


q = ,

an ≥ , n ∈ N, f (x) be a non-negative measurable function in (,∞). Then we have the
following inequalities:

J :=

{ ∞∑
n=

ln
pλ
 –(n + α)
n + α

[∫ ∞



f (x)
lnλ e(n + α)x

dx
]p

} 
p

≤
[
B
(

λ


,
λ



)] 
q
{∫ ∞


� (x)xp(–

λ
 )–f p(x)dx

} 
p
, ()

L :=

{∫ ∞



x
qλ
 –

[� (x)]q–

[ ∞∑
n=

an
lnλ e(n + α)x

]q

dx

} 
q

≤
{
B
(

λ


,
λ



) ∞∑
n=

(n + α)q– lnq(–
λ
 )–(n + α)aqn

} 
q

. ()

Proof By Hölder’s inequality (cf. []) and (), it follows

[∫ ∞



f (x)dx
lnλ e(n + α)x

]p

=
{∫ ∞




lnλ e(n + α)x

[
x(– λ

 )/q

ln(–
λ
 )/p(n + α)

f (x)

(n + α)

p

][
ln(–

λ
 )/p(n + α)
x(– λ

 )/q
(n + α)


p

]
dx

}p

≤
∫ ∞



ln
λ
 –(n + α)

lnλ e(n + α)x
x(– λ

 )(p–)f p(x)dx
n + α

{∫ ∞



(n + α)q–

lnλ e(n + α)x
ln(–

λ
 )(q–)(n + α)
x– λ


dx

}p–
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=
{

ω(n)(n + α)q–

lnq(
λ
 –)+(n + α)

}p– ∫ ∞



ln
λ
 –(n + α)

lnλ e(n + α)x
x(– λ

 )(p–)f p(x)dx
n + α

=
[
B
(

λ


,
λ



)]p– n + α

ln
pλ
 –(n + α)

∫ ∞



ln
λ
 –(n + α)

lnλ e(n + α)x
x(– λ

 )(p–)f p(x)dx
n + α

.

Then by the Lebesgue term-by-term integration theorem (cf. []), we have

J ≤
[
B
(

λ


,
λ



)] 
q
{ ∞∑

n=

∫ ∞



ln
λ
 –(n + α)

lnλ e(n + α)x
x(– λ

 )(p–)f p(x)dx
n + α

} 
p

=
[
B
(

λ


,
λ



)] 
q
{∫ ∞



∞∑
n=

ln
λ
 –(n + α)

lnλ e((n + α))x
x(– λ

 )(p–)f p(x)dx
n + α

} 
p

=
[
B
(

λ


,
λ



)] 
q
{∫ ∞


� (x)xp(–

λ
 )–f p(x)dx

} 
p
,

and () follows. Still by Hölder’s inequality, we have[ ∞∑
n=

an
lnλ e(n + α)x

]q

=

{ ∞∑
n=


lnλ e(n + α)x

[
x(– λ

 )/q

ln(–
λ
 )/p(n + α)



(n + α)

p

][
ln(–

λ
 )/p(n + α)
x(– λ

 )/q
(n + α)


p an

]}q

≤
{ ∞∑

n=

ln
λ
 –(n + α)

lnλ e(n + α)x
x(– λ

 )(p–)

(n + α)

}q– ∞∑
n=

(n + α)q–

lnλ e(n + α)x
ln(–

λ
 )(q–)(n + α)
x– λ


aqn

=
[� (x)]q–

x
qλ
 –

∞∑
n=

(n + α)q–

lnλ e(n + α)x
x

λ
 – ln(–

λ
 )(q–)(n + α)aqn.

Then by the Lebesgue term-by-term integration theorem, we have

L ≤
{∫ ∞



∞∑
n=

(n + α)q–

lnλ e(n + α)x
x

λ
 – ln(–

λ
 )(q–)(n + α)aqn dx

} 
q

=

{ ∞∑
n=

[
ln

λ
 (n + α)

∫ ∞



x λ
 – dx

lnλ e(n + α)x

]
(n + α)q– lnq(–

λ
 )–(n + α)aqn

} 
q

=

{ ∞∑
n=

ω(n)(n + α)q– lnq(–
λ
 )–(n + α)aqn

} 
q

,

and then in view of (), inequality () follows. �

3 Main results
We introduce two functions

	(x) := xp(–
λ
 )– (x > ) and 
(n) := (n + α)q– lnq(–

λ
 )–(n + α) (n ∈N),

wherefrom, [	(x)]–q = x
qλ
 –, and [
(n)]–p = ln

pλ
 –(n+α)
n+α

.
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Theorem If  < λ ≤ , α ≥ 
 , p > , 

p +

q = , f (x),an ≥ , f ∈ Lp,	(R+), a = {an}∞n= ∈ lq,
 ,

‖f ‖p,	 >  and ‖a‖q,
 > , then we have the following equivalent inequalities:

I :=
∞∑
n=

∫ ∞



anf (x)dx
lnλ e(n + α)x

=
∫ ∞



∞∑
n=

anf (x)dx
lnλ e(n + α)x

< B
(

λ


,
λ



)
‖f ‖p,	‖a‖q,
 , ()

J =

{ ∞∑
n=

[

(n)

]–p[∫ ∞



f (x)
lnλ e(n + α)x

dx
]p

} 
p

< B
(

λ


,
λ



)
‖f ‖p,	, ()

L :=

{∫ ∞



[
	(x)

]–q[ ∞∑
n=

an
lnλ e(n + α)x

]q

dx

} 
q

< B
(

λ


,
λ



)
‖a‖q,
 , ()

where the constant B( λ
 ,

λ
 ) is the best possible in the above inequalities.

Proof By the Lebesgue term-by-term integration theorem, there are two expressions for
I in (). In view of (), for � (x) < B( λ

 ,
λ
 ), we have (). By Hölder’s inequality, we have

I =
∞∑
n=

[



–
q (n)

∫ ∞




lnλ e(n + α)x

f (x)dx
][




q (n)an

] ≤ J‖a‖q,
 . ()

Then by (), we have (). On the other hand, assuming that () is valid, setting

an :=
[

(n)

]–p[∫ ∞




lnλ e(n + α)x

f (x)dx
]p–

, n ∈N,

then Jp– = ‖a‖q,
 . By (), we find J < ∞. If J = , then () is trivially valid; if J > , then
by (), we have

‖a‖qq,
 = Jp = I < B
(

λ


,
λ



)
‖f ‖p,	‖a‖q,
 , i.e.

‖a‖q–q,
 = J < B
(

λ


,
λ



)
‖f ‖p,	,

that is, () is equivalent to (). In view of (), for [� (x)]–q > [B( λ
 ,

λ
 )]

–q, we have ().
By Hölder’s inequality, we find

I =
∫ ∞



[
	


p (x)f (x)

][
	

–
p (x)

∞∑
n=


lnλ e(n + α)x

an

]
dx ≤ ‖f ‖p,	L. ()

Then by (), we have (). On the other hand, assuming that () is valid, setting

f (x) :=
[
	(x)

]–q[ ∞∑
n=


lnλ e(n + α)x

an

]q–

, x ∈ (,∞),
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then Lq– = ‖f ‖p,	. By (), we find L < ∞. If L = , then () is trivially valid; if L > , then
by (), we have

‖f ‖pp,	 = Lq = I < B
(

λ


,
λ



)
‖f ‖p,	‖a‖q,
 , i.e.,

‖f ‖p–p,	 = L < B
(

λ


,
λ



)
‖a‖q,
 ,

that is, () is equivalent to (). Hence, inequalities (), () and () are equivalent.
For  < ε < pλ

 , setting f̃ (x) = x
λ
 +

ε
p–, x ∈ (, ); f̃ (x) = , x ∈ [,∞), and ãn = 

n+α
×

ln
λ
 –

ε
q–(n + α), n ∈N, if there exists a positive number k (≤ B( λ

 ,
λ
 )) such that () is valid

as we replace B( λ
 ,

λ
 ) with k, then, in particular, it follows

Ĩ :=
∞∑
n=

∫ ∞




lnλ e(n + α)x

ãñf (x)dx < k‖̃f ‖p,	‖̃a‖q,


= k
{∫ 



dx
x–ε+

} 
p
{


( + α) lnε+( + α)

+
∞∑
n=


(n + α) lnε+(n + α)

} 
q

< k
(

ε

) 
p
{


( + α) lnε+( + α)

+
∫ ∞




(x + α) lnε+(x + α)

dx
} 

q

=
k
ε

{
ε

( + α) lnε+( + α)
+


lnε( + α)

} 
q
, ()

Ĩ =
∞∑
n=


n + α

ln
λ
 –

ε
q–(n + α)

∫ 




lnλ e(n + α)x

x
λ
 +

ε
p– dx

t=x ln(n+α)=
∞∑
n=


(n + α) lnε+(n + α)

∫ ln(n+α)




(t + )λ

t
λ
 +

ε
p– dt

= B
(

λ


+

ε

p
,
λ


–

ε

p

) ∞∑
n=


(n + α) lnε+(n + α)

–A(ε)

> B
(

λ


+

ε

p
,
λ


–

ε

p

)∫ ∞




(y + α) lnε+(y + α)

dy –A(ε)

=


ε lnε( + α)
B
(

λ


+

ε

p
,
λ


–

ε

p

)
–A(ε),

A(ε) :=
∞∑
n=


(n + α) lnε+(n + α)

∫ ∞

ln(n+α)


(t + )λ

t
λ
 +

ε
p– dt. ()

We find

 < A(ε) ≤
∞∑
n=


(n + α) lnε+(n + α)

∫ ∞

ln(n+α)


tλ
t

λ
 +

ε
p– dt

=


λ
 –

ε
p

∞∑
n=



(n + α) ln
λ
 +

ε
q +(n + α)

<∞,
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and then A(ε) =O() (ε → +). Hence by () and (), it follows


lnε( + α)

B
(

λ


+

ε

p
,
λ


–

ε

p

)
– εO()

< k
{

ε

( + α) lnε+( + α)
+


lnε( + α)

} 
q
, ()

and B( λ
 ,

λ
 ) ≤ k (ε → +). Hence k = B( λ

 ,
λ
 ) is the best value of ().

By equivalence, the constant factor B( λ
 ,

λ
 ) in () and () is the best possible. Other-

wise, we can imply a contradiction by () and () that the constant factor in () is not
the best possible. �

Remark  (i) Define the first type half-discrete Hilbert-type operator T : Lp,	(R+) →
lp,
–p as follows: For f ∈ Lp,	(R+), we define Tf ∈ lp,
–p , satisfying

Tf (n) =
∫ ∞




lnλ e(n + α)x

f (x)dx, n ∈N.

Then by () it follows ‖Tf ‖p.
–p ≤ B( λ
 ,

λ
 )‖f ‖p,	, and thenT is a bounded operator with

‖T‖ ≤ B( λ
 ,

λ
 ). Since by Theorem  the constant factor in () is the best possible, we have

‖T‖ = B( λ
 ,

λ
 ).

(ii) Define the second type half-discrete Hilbert-type operator T : lq,
 → Lq,	–q (R+) as
follows: For a ∈ lq,
 , we define Ta ∈ Lq,	–q (R+), satisfying

Ta(x) =
∞∑
n=


lnλ e(n + α)x

an, x ∈ (,∞).

Then by () it follows ‖Ta‖q,	–q ≤ B( λ
 ,

λ
 )‖a‖q,
 , and then T is a bounded operator

with ‖T‖ ≤ B( λ
 ,

λ
 ). Since by Theorem  the constant factor in () is the best possible,

we have ‖T‖ = B( λ
 ,

λ
 ).

Remark  For p = q = , λ = , λ = λ = 
 , α = 

 in (), () and (), we have () and the
following equivalent inequalities:

{ ∞∑
n=


n + 



[∫ ∞



f (x)
ln e(n + 

 )x
dx

]
} 



< π‖f ‖, ()

{∫ ∞



[ ∞∑
n=

an
ln e(n + 

 )x

]

dx

} 


< π

{ ∞∑
n=

(
n +




)
an

} 


. ()
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