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1 Introduction

Let (H, (-,-)) be a Hilbert space, f, g : H — 2/ be two set-valued mappings and K be a cone
with its dual cone K*. The set-valued implicit complementarity problem defined by the
(ordered) pair of mappings (f,g) and K is

find x* € H such that there exist
SICP(f,g,K) : § u* € f(x*) N K* and v* € g(x*) N K satisfying

(u*,v*) = 0.

If f, g are single-valued mappings, SICP(f, g, K) reduces to the implicit complementarity

problem

find x* € H such that

ICP(f’gJ() ; lf(x*) c K*,g(x*) € K and (f(x*)rg(x*)) =0.

If g = I (the identity mapping), SICP(f, g, K) reduces to the complementarity problem

find x* € K such that there exists

CP(f,K): o
u* € f(x*) N K* satisfying (u*,x*) = 0.

SICP(f, g, K) is said to be feasible if

{xeH:fx) NK* #0,g(x) NK # 0} #0;
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SICP(f,g, K) is said to be strictly feasible if
{x e H:f(x)NintK* #3,g(x) NK # 0} # 0.

Complementarity theory has been intensively considered due to its various applications
in operations research, economic equilibrium and engineering design. The reader is re-
ferred to [1, 2] and the reference therein. The implicit complementarity problem was in-
troduced into the complementarity theory in [3] as a mathematical tool in the study of
some stochastic optimal control problems.

Strict feasibility plays an important role in the development of the theory and algorithms
of complementarity problems. It is closely related to the solvability of the complementar-
ity problems. For example, when f is a quasi(pseudo)monotone map, or more generally, a
quasi-P,-map, then the strict feasibility is sufficient for the solvability of the CP; for more
details, see [4—7]. An important method in studying the feasibility of the complementarity
problems is based on the concept of an exceptional family of elements for a continuous
function. In recent years, several authors have been dedicated to the feasibility of the (im-
plicit) complementarity problems by using the exceptional family of elements method; for
example, see [8-11].

At the end of the paper [9], Isac proposed three open problems and two of them can be
extracted as follows.

(Q1) Are Theorem 5.2 and Theorem 6.1 true without the assumption K* C K?
(Q2) Can the method presented in this paper be adapted to the study of strict feasibility?

Huang et al. [8] and Yoel et al. [11] considered the solvability of problems (Q;) and (Q,),
respectively. In [8], they introduced new concepts of a-exceptional family of elements
and («, B)-exceptional family of elements for continuous functions and studied the feasi-
bility for nonlinear complementarity problems in R” and an infinite-dimensional Hilbert
space H without the assumption K* C K. In [11], based on their new concepts of (o, y)-
exceptional family of elements and (¢, 8, ¥ )-exceptional family of elements and the topo-
logical degree theory, they studied the feasibility and strict feasibility of ICP(f, g, K) in
R" and an infinite-dimensional Hilbert space H, which partly answered the open prob-
lem (Q,).

Isac et al. [10] introduced a new notion of exceptional family of elements for the pair
of (f,g) involved in the implicit complementarity problems. By employing the Leray-
Schauder alternative, they gave more general existence theorems for ICP(f,g,K) and
SICP(f, g, K) when f, g are set-valued lower semicontinuous mappings with closed convex
values. When f is a set-valued upper semicontinuous mapping with closed convex values,
g is a one-to-one mapping, [10] established some new existence theorems.

Many of the well-known existence theorems for the problem ICP(f,g, K) demand that
the mappings f and g be subject to some strong restrictions. For example, Isac [12, 13]
required that f be strongly monotone and Lipschitz continuous with respect to g.

Motivated by the works mentioned above, we introduce new concepts of («, 8,y )-
exceptional family of elements and («, y)-exceptional family of elements for SICP(f, g, K)
under weaker restrictions on the mappings f and g. By utilizing these notions and the
Leray-Schauder type fixed point theorem proposed in [14], we investigate the (strict) fea-
sibility of SICP(f,g,K) in R" and infinite-dimensional Hilbert spaces, respectively. The
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results presented in this paper not only answer the above open problems (Q;) and (Q)
proposed in [9], but also generalize some corresponding previously known results in [8,
9,11,15].

The paper is arranged in the following way. In Section 2, we recall some required
concepts and basic results for the later use. In Section 3, we introduce new concepts
of (a, B, y)-exceptional family of elements and (o, y)-exceptional family of elements for
SICP(f, g, K) and discuss the (strict) feasibility in R”. In Section 4, by using the new no-
tion of (@, B,y)-exceptional family of elements, we consider the (strict) feasibility for
SICP(f, g, K) in infinite-dimensional Hilbert spaces.

2 Notations and fundamental results

Let X and Y be topological spaces, the collection of all nonempty compact subsets of X is
denoted by ¢(X). For any subset A of X, the interior, closure and boundary of A are denoted
by intA, A and dA, respectively. The relative boundary of I/ in K is denoted by dx 1.

Definition 2.1 The set-valued mapping F : X — 2Y is said to be upper semicontinuous
on X if {x € X : f(x) C V'} is open in X whenever V is an open subset of Y.

Definition 2.2 The set-valued mapping F: X — 2 is said to be compact if F(X) is rela-
tively compactin Y.

Definition 2.3 An upper semicontinuous set-valued mapping F : X — ¢(Y) is said to be
admissible if there exist a topological space Z and continuous functions p : Z — X and
q:Z — Y satisfying

(1) @ #q(p~'x) C F(x) for each x € X;

(2) pis proper; that is, the inverse image p'(4) of any compact set A C X is compact;

(3) for each x € X, p~(x) is an acyclic subset of Z.

A nonempty topological space X is said to be acyclic provided that all of its reduced
Cech homology groups over rational vanish. For a nonempty subset in a topological vector
space, we have the following implications:

convex —> star-shaped = contractible = acyclic = connected,

but not conversely.

It is well known that any upper semicontinuous set-valued mapping with compact
acyclic values is admissible, and the composition of two admissible mappings is also ad-
missible; see [14]. The admissible mapping is a large class of set-valued mappings, such
a class contains composites of a lot of well-known set-valued mappings, which appear in
nonlinear analysis and algebraic topology; for more details, see [16].

The following property of admissible maps can be found in [17].

Lemma 2.1 Let X, Y be two topological spaces, E be a topological vector space, F,G : X —
¢(E) be admissible, and let f : Y — R be continuous. Then the mappings

S: X — ¢(E), S(x):=F(x) + G(x) forxeX,
T:X xY — c(E), T(x,y):=f(y)F(x) for(x,y)eXxY

are admissible.
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Let E be a Banach space and A C E. The Kuratowski measure of noncompactness of A
is defined by

n
a(A)=infle>0:AC UAi and diam(4;) <efori=1,2,...,n¢,
i=1

where diam(A) = sup{||x—y| : x,y € A}.Itisknown that «(A) = 0 if and onlyif A is relatively
compact.

An upper semi-continuous map F : E — 2F is said to be condensing if for any subset
B C E with a(B) # 0, we have «(F(B)) < «(B).

Let H be a Hilbert space, K C H is a closed pointed convex cone if and only if K is a
closed subset of H satisfying

() K+KcK; (i) AKCK,\VA>0; (i) KnN(=K)={0}.
The dual cone of K is defined by
K*={yeH:(yx)>0,Vx €K}

The following Leray-Schauder type fixed point theorem is a particular form of Corol-

lary 4.2 in [17], which is the basis of our arguments in this paper.

Theorem 2.1 Let H be a Hilbert space, C C H be closed and convex and U be a relatively
open subset of C with 0 € U. Suppose that F : U — c¢(H) is a condensing admissible mapping
such that

Fx)N{ix:A>1} =0, Vxeogl.
Then F has a fixed point in U.

The projection operator onto K is denoted by Py, for every x € H, Px(x) is the unique

element in K satisfying
-P =mi A
|~ Px@]| = min lx -y

It is well known that, for each x € H, the projection Px(x) of x is characterized by the

following properties:

(P1) (Px(x)—x,y) >0 forallyeK;
(Py) (Px(x) —x,Pr(x)) = 0.

3 Feasibility and strict feasibility in R"

In this section, we study the feasibility and strict feasibility of SICP(f, g, K) in R". We first
introduce a new concept of («, 8, y)-exceptional family of elements (for short, (o, 8,y)-
EFE) for the pair (f,g) with respect to K.
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Definition 3.1 Let K be a closed pointed convex cone in R” with K* C K and int K* # .
Let ¢ : R” — c(intK*), f,g : R" — c¢(R") be admissible mappings. Given «, 8,y > 0 with
0 < «a < B, we say that the family of elements {x,},.0 C R” is an («, 8, y)-EFE for the pair
(f,g) with respect to K if the following conditions are satisfied:
1) llxell = +o0asr— +00;
(2) forany r > 0, there exist i, > 0 and elements " € f(x,), g" € g(x,), " € e(x,) such
thats" = u, + (B —a)f —ye" e K*, w' = u,x, + g" —af " € K and (s, w,) = 0.

Remark 3.1 If g =, f is single-valued, y =0 and p, = % — 1, then Definition 3.1 reduces
to Definition 5.2 in [9].

Theorem 3.1 Let K be a closed pointed convex cone in R" with K* C K and intK* # .
Let ¢ : R" — c(intK*), f,g : R" — c(R") be admissible mappings. Then either SICP(f, g, K)
is feasible, or for any «, B,y > 0 with 0 < « < 8, there exists an (o, B, y)-EFE (in the sense
of Definition 3.1) for the pair (f,g) with respect to K.

Moreover, if y > 0, then either SICP(f,g,K) is strictly feasible, or for any o > 0, there
exists an (a, B, y)-EFE (in the sense of Definition 3.1) for the pair (f,g) with respect to K.

Proof Define ¢ : R" — c(R") by
P(x) = g(x) — af (x) — P (g(x) — Bf (%) + ye(x)), VxeH.
Consider the equation
0 € ¢(x). 3.1
We have the following two cases to discuss.
Case 1. If equation (3.1) has a solution in R”, denoted by x*, then there exist u* € f(x*),
v* € g(x*) and €* € e(x*) such that
0=v* —au* - Px(v* - Bu* + ye*),
that is,
vVi—au® = PK(V* - Bu* + ye*). (3.2)
By the property (P;) of Pk, we have
(v* —ou* - (v - Bu* + ye*),y) >0, Vyek,
that is,
((/3 —a)u* - ye*,y) >0, VyeKk. (3.3)
Then it follows from (3.3) that (8 — «)u* — ye* € K*. Since y > 0, it is clear that u* € K*

and so u* € f(x*) N K*. From (3.2) we obtain that v* € K + au* C K + K*, since K* C K,
thus v* € g(x*) N K. Then SICP(f, g, K) is feasible.
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Case 2. If equation (3.1) does not have a solution, set ¥ = I — ¢, then the mapping
has no fixed point in R”. Thus, for any r > 0, let U, = {x € R” : ||x|| < r}, the mapping ¥ is
fixed-point free with respect to the set U/,.

By the continuity of Pk, the upper semicontinuity of f, g and ¢, it is clear to see that ¥
is upper semicontinuous. Since any upper semicontinuous mapping with compact values
is compact in R”, thus v is compact.

Since I, P, f, g and ¢ all are admissible, it follows from Lemma 2.1 that v is admissible.

Applying Theorem 2.1 with the mapping v and the set U = U,, there exist x, € U, =
{x € H:|x|| =r} and A, > 1 such that

)\rxr € Xy — ¢(xr)
Setting i, = A, — 1, we have
MrXy € _¢(xr)' (34)

From (3.4), it can be deduced that there exist /" € f(x,), g" € g(x,) and &" € e(x,) such
that

e+ 8" —af = Pr(g" = Bf" +ye"). (3.5)
Then the properties (P;) and (P3) of Px and (3.5) jointly yield that

(wra, + g —af = (& —Bf +v€)y)20, Vyek
and

(rr + 8" —af (¢ = Bf" +ve"), iy + g ~af') = 0.

Or equivalently,

(u,xr +(B-a)f - ys’,y) >0, Vyek (3.6)
and

(wre + (B=a)f" —ye", upxr + g —af’) = 0. (3.7)

Letting s" = p,x, + (B — a)f" — ye", w" = u,x, + g — af”, then from (3.5) and (3.6), we
obtain that w" € K and s € K*. Thus, (3.7) implies that (s",w") = 0.

Since x, € 0U, = {x € H : ||x|| = r}, we have ||x,|| > +00 as r — +00.

Then {x,},-0 isan («, 8, y)-EFE for the pair (f, g) with respect to K, thus the first assertion
of the theorem is proved.

If y > 0, then it follows from (3.3) that (8 — y)u* — y€* € K*, thus (8 — y)u* € K* + ye* C
int K*. This finishes the proof of the second assertion of the theorem, which completes the
proof as a whole. O
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Remark 3.2 Since Definition 3.1 is a generalization of Definition 5.2 in [9], then Theo-

rem 5.2 in [9] is a special case of Theorem 3.1.

We now introduce a new notion of («, y)-exceptional family of elements (for short,
(o, ¥)-EFE) for the pair (f, g) with respect to K.

Definition 3.2 Let K be a closed pointed convex cone in R” with int K* # ). Let ¢ : R" —
c(intK*), f,g: R* — c¢(R") be admissible mappings. Given «, y > 0, we say that the family
of elements {x,},,o C R" isan («, y)-EFE for the pair (f, g) with respect to K if the following
conditions are satisfied:
1) lxell = +o0 as r — +00;
(2) for any r > 0, there exist i1, > 0 and elements f" € f(x,), g" € g(x,), " € e(x,) such
thats" = u, +f —ye" e K*, w' = u,x, + g¢" — aPx(f") € K and (s,, w,) = 0.

Remark 3.3
(1) If g =1Iandf is single-valued, Definition 3.2 reduces to Definition 3.1 in [11];
(2) Ifg =1 f is single-valued and y = 0, Definition 3.2 reduces to Definition 3.1 in [8];
(3) Ifg =1, f is single-valued and « = y = 0, Definition 3.2 reduces to Definition 5.1
in [9] or Definition 3 in [15].

The following theorem shows us that the conclusion is true without the assumption
K* C K, which answers the open problem in [9]. And the assumption on f and g is weaker
than that in [11].

Theorem 3.2 Let K be a closed pointed convex cone in R" with intK* # (. Let ¢ : R" —
c(intK*), f,g: R" — c(R") be admissible mappings. Then either SICP(f, g, K) is feasible, or
forany o,y > 0, there exists an («, y)-EFE (in the sense of Definition 3.2) for the pair (f,g)
with respect to K.

Moreover, if y > 0, then either SICP(f,g,K) is strictly feasible, or for any a > 0,
there exists an (o, y)-EFE (in the sense of Definition 3.2) for the pair (f,g) with respect
to K.

Proof Define ¢ : R" — ¢(R") by
P(x) = g(x) — aPx (f(x)) - Pic(g(x) —f(x) + ye(x) — Pk (f(x))), Vx€H.
Consider the equation
0 € o). (3.8)
We have the following two cases.
Case 1. If equation (3.8) has a solution in R”, denoted by x* € R”, then there exist u* €

fx*), v* € g(x*) and €* € e(x*) such that

0=v*—aPx(u*) - Px(v* - u* + ye* —aPx(u")),
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that is,
v — ozPK(u*) = PK(V* —u"+yet - ozPK(u*)). (3.9)

It follows from (3.9) that v* € K and thus v* € g(x*) N K.
By the property (P;) of Pk, we have

(v —aPx(u*) - (v —u* + ye* —aPx(u*)),y) =0, VyeKk,
which is

(u*—ye*,y)=0, VyeKk. (3.10)
It follows from (3.10) that u* — y€* € K*. Since y > 0, it is clear that u* € K*. Then u* €
f(x*) N K*. Hence the problem SICP(f, g, K) is feasible.

Case 2. If equation (3.8) does not have a solution, set ¥ = I — ¢, then the mapping ¥ has
no fixed point in R”. For any r > 0, let U, = {x € R" : ||x|| < r}, the mapping v is fixed-point
free with respect to the set U,.

By the continuity of the projection operator Py, and the upper semicontinuity of f, g
and ¢, it is clear to see that ¥ is upper semicontinuous. Since any upper semicontinuous
mapping is compact in R”, thus ¥ is compact.

Since I, Pk, f, g and ¢ all are admissible, it follows from Lemma 2.1 that  is admissible.

Applying Theorem 2.1 with the mapping v and the set U = U,, we obtain that there exist
x, € 0U, ={x € H: ||x| =r} and A, > 1 such that

)‘-rxr € Xy — ¢(xr)

Setting i, = A, — 1, we have
WXy € —P(x)). (3.11)
From (3.11), we deduce that there exist /" € f(x,), g" € g(x,) and &" € £(x,) such that
Wy + g — aPK(f’) = PK(g’ —ff+ye - aPK(f’)). (3.12)
From the properties (P;) and (P;) of Px and (3.12), we have
(u,x, +g —aPr(f") - (g —f +ye - ozPK(f’)),y> >0, VyeK
and
(wrr + g =P (f7) = (& = f" +ye" —aPr(f")), wrxr + &) = 0.
Or equivalently,

(W +f = ye,y) >0, VyekK (3.13)

Page 8 of 14
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and

(;L,x, +f —ye, uxe + g —aPx (f’)) =0. (3.14)

Setting s” = w,x, + f* —ye" and w" = p,x, + g — aPx(f"), from (3.12) and (3.13) we have
that w" € K and s” € K*. Thus, (3.14) implies that (s",w") = 0.

Since x, € 0U, = {x € H : ||x|| = r}, thus we have ||x,|| > +00 as r — +00.

Then {x,},50 is an («, y)-EFE for the pair (f, g) with respect to K and so the first assertion
of the theorem is proved.

If y > 0, then it follows from (3.10) that #* — y€* € K* and so u* € K* + y¢* C int K*. This
finishes the proof of the second assertion of the theorem, which completes the proof. [

4 Feasibility and strict feasibility in Hilbert spaces
In this section, we study the feasibility and strict feasibility of the problem SICP in Hilbert
spaces. The following («, 8, y)-EFE is new.

Definition 4.1 Let H be a Hilbert space, K C H be a closed convex cone with intK* # ¢J
and K* C K. Let ¢ : H — ¢(int K*) be compact admissible mappings, and let f,g: H —
¢(H) be admissible mappings such that f(x) = %x - S(x), g(x) = x — T(x), where 8 > 0, and
S, T :H — c(H) are compact. Given «,y > 0 with 0 < « < 8, we say that the family of
elements {x,},.0 C H isan (o, B, y)-EFE for the pair (f, g) with respect to K, if the following
conditions are satisfied:
1) flxell = +o0 as r — +00;
(2) forany r > 0, there exist i, > 0 and elements f" € f(x,), g" € g(x,) and &” € e(«;)
such that s" = %’x, +fr = ﬂ%aysr eK*,w =(B—a)u,x, + Bg" —aBf" € K and
(s, wy) = 0.

Remark 4.1 If g =1, f is single-valued, y =0 and u, = % — 1, then Definition 4.1 reduces
to Definition 6.1 in [9].

Theorem 4.1 Let H be a Hilbert space, K C H be a closed convex cone with int K* # () and
K* C K. Let ¢ : H— c(intK*) be a compact admissible mapping, and let f,g : H — c(H)
be admissible mappings such that f(x) = %x - S(x) and g(x) = x — T(x), where 8 >0 and
S, T :H — ¢(H) are compact. Then either SICP(f,g,K) is feasible, or for any y > 0 and
a >0 with 0 < o < B, there exists an («, B,y )-EFE (in the sense of Definition 4.1) for the
pair (f,g) with respect to K.

Moreover, if y > 0, then either SICP(f,g,K) is strictly feasible, or for any o > 0, there
exists an (a, B, y)-EFE (in the sense of Definition 4.1) for the pair (f,g) with respect to K.

Proof Define ¢ : H — c¢(H) by
¢(x) = gx) — af (x) - P (¢(%) — Bf (x) + ye(x)), VxeH.
Consider the equation
0 €px). (4.1)

We consider the following two cases.
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Case 1. If the mapping ¢ has a zero point in H, denoted by x* € H, then there exist
u* € f(x*), v* € gx*) and €* € g(x*) such that

0=v"—au* —PK(V* - Bu* + ye*),
that is,
v —au® = PK(V* - Bu* + ye*). (4.2)

Using (4.2), as in the proof of Theorem 3.1, we obtain that SICP(f, g, K) is feasible if
y > 0. Moreover, if y > 0, then SICP(f, g, K) is strictly feasible.

Case 2. Equation (4.1) does not have a solution, set ¢ = [ — ﬁ%qb, then the mapping ¥ has
no fixed point in H. For any r > 0, let U, = {x € H : ||x|| < r}, the mapping ¥ is fixed-point
free with respect to the set IJ,.

Since f(x) = %x —S(x) and g(x) = x — T'(x), thus, for any x € H, we have

00) = 710 - 2500+ (5 (550 - )+ vet) ).

p-a B-a B -
By the compactness of the mappings S, T and ¢, it is easy to see that v is compact.
Since I, Px, f, g and ¢ all are admissible, it follows from Lemma 2.1 that  is admissible.
Applying Theorem 2.1 with the restriction of the mapping ¢ and the set U = U,, there

existx, € 0U, = {x € H : ||x|| = r} and X\, > 1 such that

Aty € P lx) =2 = =0 g, (43)
B—«a
Setting (4, = A, — 1, it can be deduced from (4.3) that there exist f" € f(x,), g" € g(x,) and
&" € g(x,) such that

B
%y + g

5 r ()[,3 fr: 'faPK(gr—,Bfr‘F)/Er)«

S B-o B

Setting s” = %xr +f - ﬁ%aysr and W' = (B — o), + Bg" — aff”, as in the proof of
Theorem 3.1, we obtain that {x,},.0 is an («, 8, y)-EFE for the pair (f,g) with respect to K.
a

Remark 4.2 Since Definition 4.1 is a generalization of Definition 6.1 in [9], then Theo-
rem 6.1 in [9] is a special case of Theorem 4.1.

Definition 4.2 Let K be a closed pointed convex cone in a Hilbert space H with int K* # .
Let f,g : H — c¢(H) be two admissible mappings such that f(x) = %x — S(x) and g(x) =
%x — T'(x), where 8 >0, S,T: H — c(H) are compact. Let ¢ : H — ¢(int K*) be a compact
admissible mapping. Given «,y > 0, we say that the family of elements {x,},.0 C H is an
(o, B, v)-EFE for the pair (f,g) with respect to K, if the following conditions are satisfied:
1) ||zl = +o0 as r — +0o0;
(2) forany r> 0, there exist u, > 0 and elements f" € f(x,), g" € g(x,), & € e(x,) such
thats” = . + Bf" —ye" € K*, w" = Bu,x, + Bg" — aPx(x, — Bf") € K and
(sp,wy) = 0.
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Remark 4.3
(1) If g =TI andf is single-valued, Definition 4.2 reduces to Definition 3.2 in [11];
(2) Ifg =1, f is single-valued and y = 0, Definition 4.2 reduces to Definition 3.2 in [8];
(3) Ifg =1, f is single-valued and « = y = 0, Definition 4.2 reduces to Definition 6.1
in [9].

Theorem 4.2 Let H be a Hilbert space, and let K C H be a closed convex cone with
intK* # 0. Let ¢ : H — c(int K*) be a compact admissible mapping, and let f,g : H — ¢(H)
be two admissible mappings such that f(x) = %x —S(x) and g(x) = %x — T(x), where 8 > 0,
S, T : H — c(H) are compact. Then either SICP(f,g,K) is feasible, or for any o« > 0 and
y > 0, there exists an (o, 8, y)-EFE (in the sense of Definition 4.2) for the pair (f,g) with
respect to K.

Moreover, if y > 0, then either SICP(f,g,K) is strictly feasible, or for any o > 0, there
exists an (a, B, y)-EFE (in the sense of Definition 4.2) for the pair (f,g) with respect to K.

Proof Define ¢ : H — ¢(H) by
$(x) = Pgx) — P (x — B ())
— Px(Bg(x) — Bf (%) + ye(x) — Pk (x - Bf(x))), VxeH.
Consider the equation
x € x—px). (4.4)

We consider the following two cases.
Case 1. If equation (4.4) has a solution in H, denoted by x* € H, then there exist u* €
Bf (x*), v* € Bg(x*) and €* € e(x*) such that

0=v* —otPK(x* - u*) —PK(V* —u* +ye* —aPK(x* - u*)),
that is,
v — aPK(x* - u*) = PK(V* —u*+ye’ - o:PK(x* - u*)) (4.5)

Using (4.5), as in the proof of Theorem 3.2, we obtain that the problem SICP(f,g,K) is
feasible if y > 0. Moreover, if y > 0, then SICP(f, g, K) is strictly feasible.

Case 2. If equation (4.4) does not have a solution, set ¥ = I — ¢, then the mapping ¥ has
no fixed point in H. From the representations of f and g, we have

¥ (x) = T(x) + aPx(S(x))
- PK(S(x) - T(x) +ye(x) - ozPK(S(x))), Vx € H.

Foranyr>0,letU, = {x € H: ||x|| < r}, then the mapping ¥ is fixed-point free with respect
to the set U,.

By the compactness of the mappings S, T and ¢, it is clear that ¥ is compact.

Since I, Pk, f, g and ¢ all are admissible, it follows from Lemma 2.1 that ¢ is admissible.
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Applying Theorem 2.1 with the restriction of the mapping v and the set U = U,, we
obtain that there exist x, € 0U, = {x € H : ||x|| = r} and XA, > 1 such that

Ary € %, — Bg(xy) + aPK(xr - 5f(xr))
- Pi(g(x) - f(x,) + ye(x,) — aPi (%, - Bf(x,))). (4.6)

Set w, = A’ﬁ‘l. Then it follows from (4.6) that there exist f" € f(x,), g € g(x,) and ¢" €

&(x,) such that

/Sﬂrxr + IBgr - aPK(xr - /Sfr) = PK(ﬁgr - /Sfr + Ver - aPK(xr - ﬁfr)) (4'7)

Using (4.7), as in the proof of Theorem 3.2, we obtain that {x,},-0 is an («, 8, y)-EFE for
the pair (f,g) with respect to K.

The following theorem presents a sufficient condition which ensures that the problem
SICP(f, g, K) does not have an («, 8, y)-EFE for the pair (f,g) with respect to K. O

Theorem 4.3 Let H be a Hilbert space, K C H be a closed convex cone, and f,g : H — 2
be two set-valued mappings satisfying the following condition.

(Condition (6,)) If there exist e € K* and a real number p > 0 satisfying that for any x € K
with ||x|| > p, there exists xo € K such that for all y € f(x) and z € g(x), we have

(z—x0,y—€) >0 and (z-x,x)>0.

Then SICP(f, g, K) does not have an («, B, y)-EFE (in the sense of Definition 4.2) for the pair
(f>g) with respect to K. Thus, SICP(f, g, K) is strictly feasible.

Proof Define ¢ : H — c(int K*) by
e(x)={e}, VxeH.

We show that SICP(f, g, K) does not have an (0, 1,1)-EFE (in the sense of Definition 4.2)
for the pair (f,g).

Suppose on the contrary that there exists an (0,1,1)-EFE {x,},.0 C K for the pair (f,g),
thatis, ||x,|| = +ooasr — +o0o and forany r > 0, there exist u, > 0, y, € f(x,) and z, € g(x;)
such that s, = w,x, +y, —e € K*, w, = u,x, + z, € K and (s,, w,) = 0.

Foranyr > p, |lx,|| = rimplies that |lx,|| > p, thus there exists an element xj, € K satisfying

(zr—a0,3) >0 and (z, — g, %,)>0. (4.8)

Since s, = p,%, + yy, it can be deduced from (4.8) that (z, — x{,s,) > 0.
Since w, = u, % + z,, %, % € K and s, € K*, it is obvious that

0< (Zr - x:)’Sr) = (Wr — MrXy — x{)r Sr) = (Wr: sr) - <I'err + x{)’ Sr) <0,
which is a contradiction.

Therefore, SICP(f, g, K) does not have an («, 8, y)-EFE for the pair (f,g) with respect
to K. Thus, by using Theorem 4.2, SICP(f, g, K) is strictly feasible. O
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Remark 4.4 The condition (6,) is a generalization of the Karamardian’s condition. We

refer the reader to [5, 18, 19] for more details.
As a direct consequence of Theorem 4.3, we have the following corollary.

Corollary 4.1 Let H be a Hilbert space, K C H be a closed convex cone, and f,g : H — oH
be two set-valued mappings satisfying the following condition.

(Condition (0)) If there exists p > O such that for any x € K with ||x| > p, there exists
x0 € K such that for all y € f(x) and z € g(x), we have

(z—x0,y) >0 and (z-x9,x)>0.

Then SICP(f, g, K) is strictly feasible.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors completed the paper together. All authors read and approved the final manuscript.

Acknowledgements

The author thanks the anonymous referees for their valuable remarks and suggestions, which helped to improve the
article considerably. This work was supported by the National Natural Science Foundation of China (11061006), the
National Natural Science Foundation of China (11226224), the Program for Excellent Talents in Guangxi Higher Education
Institutions, the Guangxi Natural Science Foundation (2012GXNSFBA053008) and the Initial Scientific Research
Foundation for PHD of Guangxi Normal University.

Received: 25 March 2013 Accepted: 20 May 2013 Published: 5 June 2013

References
1. Cottle, RW, Pang, JS, Stone, RE: The Linear Complementarity Problem. Academic Press, New York (1992)
2. Ferris, MC, Pang, JS: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669-713
(1997)
3. Bensoussan, A, Lions, J-L: Nouvelle formulation de problemes de controle impulsionnel et applications. C. R. Math.
Acad. Sci. Paris, Sér. A-B 276, 1189-1192 (1973)
4. Harker, PT, Pang, JS: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of
theory, algorithms and applications. Math. Program. 48, 161-220 (1990)
5. Karamardian, S: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim.
Theory Appl. 18, 445-454 (1976)
6. Zhao, YB, Isac, G: Quasi-P,-maps, P(T, &, B)-maps, exceptional family of elements, and complementarity problems.
J.Optim. Theory Appl. 105, 213-231 (2000)
7. Zhao, YB, Li, D: Strict feasibility conditions in nonlinear complementarity problems. J. Optim. Theory Appl. 107,
641-664 (2000)
8. Huang, N, Gao, C, Huang, X: Exceptional family of elements and feasibility for nonlinear complementarity problems.
J. Glob. Optim. 25, 337-344 (2003)
9. lsac, G: Exceptional family of elements, feasibility and complementarity. J. Optim. Theory Appl. 104, 577-588 (2000)
10. Isac, G, Kalashnikov, VV: Exceptional families of elements, Leray-Schauder alternatives, pseudomonotone operators
and complementarity. J. Optim. Theory Appl. 109, 69-83 (2001)
11. Yeol, JC, Li, J, Huang, N: Solvability of implicit complementarity problems. Math. Comput. Model. 45, 1001-1009
(2007)
12. Isac, G: On the implicit complementarity problem in Hilbert spaces. Bull. Aust. Math. Soc. 32, 251-260 (1985)
13. Isac, G: Fixed point theory and complementarity problems in Hilbert spaces. Bull. Aust. Math. Soc. 36, 295-310 (1987)
14. Gorniewicz, L: Topological Fixed Point Theory of Multivalued Mappings. Kluwer Academic, Dordrecht (1999)
15. Isac, G, Bulavski, VA, Kalashnikov, VV: Exceptional families, topological degree and complementarity problems. J. Glob.
Optim. 10, 201-225 (1999)
16. Park, S: Generalized Leray-Schauder principles for condensing admissible multifunctions. Ann. Mat. Pura Appl. 172,
65-85 (1997)
17. In-Sook, K: Fixed point theorems for condensing admissible maps in topological vector spaces. Arch. Math. 80,
319-330 (2003)
18. Kalashnikov, WV, Isac, G: Solvability of implicit complementarity problems. Ann. Oper. Res. 116, 199-221 (2002)
19. Karamardian, S: Generalized complementarity problem. J. Optim. Theory Appl. 8, 161-168 (1971)


http://www.journalofinequalitiesandapplications.com/content/2013/1/284

Zhong et al. Journal of Inequalities and Applications 2013, 2013:284 Page 14 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/284

doi:10.1186/1029-242X-2013-284

Cite this article as: Zhong et al.: Feasibility of set-valued implicit complementarity problems. Journal of Inequalities
and Applications 2013 2013:284.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.journalofinequalitiesandapplications.com/content/2013/1/284

	Feasibility of set-valued implicit complementarity problems
	Abstract
	MSC
	Keywords

	Introduction
	Notations and fundamental results
	Feasibility and strict feasibility in Rn
	Feasibility and strict feasibility in Hilbert spaces
	Competing interests
	Authors' contributions
	Acknowledgements
	References


