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Abstract

In this study, we consider the space V[A, p] with an invariant metric. Then, we examine
some geometric properties of the linear metric space V[A, p] such as property (8),
property (H) and k-NUC property.
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1 Introduction
Let X be a vector space over the scalar field of real numbers and d be an invariant metric
on X. We denote B,;(X) and S;(X) as follows:

By(X) = {x €X:d(x,0) < r} and

Si(X) = {x €X:dx,0)= r}.

Let (X, d) be a linear metric space and B;(X) (resp., S;(X)) be a closed unit ball (resp., the
unit sphere) of X. A linear metric space (X, d) has property (8) if and only if for each » > 0
and ¢ > 0, there exists § > 0 such that for each element x € B;(0,r) and each sequence
(xx) in Bg(0,r) with sep(x,) > &, there is an index k for which d(=5%,0) <1 - §, where
sep(x,) = inf{d(x,,x,,) : n # m} > ¢ [1]. If for each x € S;4(0,r) and (x,) C S4(0,7), x, X

implies x, — x, a linear metric space (X, d) is said to have property (H). Let k > 2 be an
integer. A linear metric space (X, d) is said to be k-nearly uniform convex (k-NUC) if for
every ¢ > 0 and r > 0, there exists § > 0 such that for any sequence (x,) C B4(0,r) with
sep(x,) > &, there are sy, s, ..., 5 such that d(w, 0) <r -4 [2]. These properties
have been studied by Mongkolkeha and Pumam [3], Sanhan and Suantai [4], Cui et al. [5]
and Cui and Hudzik [6].

Ahuja et al. [7] introduced the notions of strict convexity and U.C.I (uniform convexity)
in linear metric spaces which are generalizations of the corresponding concepts in linear
normed spaces. Later, Sastry and Naidu [8] introduced the notions of U.C.Il and U.C.III in
linear metric spaces and showed that these three forms are not always equivalent. Further,
Junde et al. [9, 10] showed that if a linear metric space is complete and U.C.], then it is
reflexive.

In summability theory, de la Vallée-Poussin mean was first used to define the (V,A)-
summability by Leindler [11]. (V, A)-summable sequences have been studied by many au-
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thors including Et et al. [12, 13], Savas [14—18], Savas and Malkowsky [19] and Simsek et
al. [20, 21]. Let A = (A«) be a nondecreasing sequence of positive real numbers tending
to infinity and let A1 = 1 and A4, < Ag + 1. The generalized de la Vallée-Poussin mean is
defined by ¢, (x) = ﬁ Zke[n xr, where I, = [n— A, +1,n] forn=1,2,.... A sequence x = (xy)
is said to be (V, A)-summable to a number £ if ¢,(x) — £ as 1 — 00. If A,, = n, then (V, A)-
summability is reduced to Cesaro summability.

Let w be the space of all real sequences. Let p = (px) be a bounded sequence of positive

real numbers. Simsek et al. [20] defined the space V'[A, p] as follows:

V[A,p]z{x:(xk)ew Z( Z|x,) <oo}.

k=1 ]Elk

If A =k, then VX, p] = ces(p) [22]. If A = k and pi = p for all k € N, then V[A,p] =
ces, [23]. Paranorm on V[A, p] is given by

h(x)=<;( Z|x,) )1,

< jel

where M = max{1, H} and H = sup pi. If p; = p for all k € N, the notation V,(}) is used in
place of VA, p] and the norm on V(1) is as follows:

Il = (Z( ch,) )i.

k=1 ]E]k

p:V,[a,p]l — [0,00], = (Do " ZfEIk |%j|)P%) is a modular on V, [, p] and the Lux-
emburg norm on V,[A ,p] is defined by ||x||, = inf{o > 0: p(Z) <1} forallx € V,[A, p]. The
Amemiya norm on the space V[, p] can be similarly introduced as follows:

1
lxll4 = inf =(1+ p(ox)) forallx e V,[A,pl.
o>0 o

2 Main results

In this part of the paper, our main purpose is to define a metric on V[A,p] and show
that VA, p] possesses property (8), property (H) and k-NUC property. Let p = (px) be
a bounded sequence of real numbers with p; > 1 for all kK € N. The mapping d(x,y) =
(Z,‘ﬁl(i > jer, 1%G) = y())? )V is a metric on the space V[A,p], where M = max(1, H =
sup pr) and m = inf p; since the function |¢|? is convex for p > 1. First, we will show that
the space V[A,p] has property (8) under the above metric. To do this, we need the fol-
lowing two lemmas. To prove these lemmas, we use the technique given in Sanhan and
Mongkolkeha [1].

Lemma 2.1 Lety,z € (V[A,pl,d). If B € (0,1), then

M

(@ +2,0)" = (d,0)" + 28(d0, 0)" + 23

(d(z,0)".
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Proof Lety,z € (V[A,pl,d) and 0 < 8 <1. Then

(d+20)" = (1 S+l

k=1 ]GIk

o]

<2 (0o G 2 >
2l Z< ;WD
ey

o0

Z( Zlyo) +2Mﬂi( Zlywl)

/GIk k=1 1eIk
2M e 1 ) Pk
+ pM-1 Z(A_k Z|Z(I)|>
k=1 jely
M
= (d(,0))" +2YB(d(,0))" ;V, - (d(z,0)". O

Lemma2.2 Lety,z € (VA pl,d). Then for any ¢ >0 and L > 0, there exists § > O such that
1y +2,0))" - (d(,0)"| <,
where (d(y, 0) < L and (d(z,0))M

Proof Lete>0and L >0. For 8 = zMT), we take § = % From Lemma 2.1, we have

(dy+2,0)" < (d(r,0))" + 2" B(d(y,0))" ﬂ; +(d(z,0)"
< (dy,0)" +2MBL + ;MN; 5
< (o) 2t s 2
< (d(,0))" + 5t %
< (d,0)" +¢ 1)
and
(d3,0))" < (dy+2,0))" +2YB(d(y +2,0))" + /321241 (d(-z,0))"

<(dy+z 0))M + ZM,B((d(y,O))M +€)+ W(S
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M ” M SIBM—I
< (d(y+z,0))" +2 /3(L+<9)+ﬂM_1 AT
_ M, oM € ¢
= (dy+2,0))" +2 2M+1(L+8)(L+8)+2
M & I
=(d(y+z,0)) +§+§
= (d(y+20))" +e. (2.2)
From (2.1) and (2.2), we obtain that |[(d(y + z, 0)) — (d(y,0)"| < ¢. O

Theorem 2.3 The space (V[A, p),d) has property (B).

Proof Lete > 0and (x,) C B( [A,pl,d) such that sep(x,,) > € andx € B(V[A, p], d). We take
W= .0, Zk 1K), (N +1), (N +2),...). By using the diagonal method, we can find
a subsequence (%4,) of (x,,) for each N € N such that (x,, (k)) converges for each k € N with
1<k <N, since (x,(k))2, is bounded for each k € N. Therefore, there is £y € N for each
N € N such that sep((x}),-s,) > €. So, there is a sequence of positive integers (ty)3.; with
4 <ty < t3--- such that d(xg[, 0) > 5 for all N € N. Then there exists « > 0 such that for

all N e N,
Z( Z IxtN|) > k. (2.3)
k=N ]EIk

By Lemma 2.2, there exists § such that

K

(d(y +2,0)" = (d(y,0))"| < o (2.4)

where (d(y,0))” <™ and (d(z,0))" < 8,. There exists N; € N such that (d(x1,0))” < &y
if x € B(V[A, p]) and (d(x, 0))" < 8. Let us take y = xggl and z = M. Hence, we have

(LB DN S 1 [ F D[\

From (2.3), (2.4), (2.5) and by using the convexity of the function f(¢) = |¢|’* for all k € N,

we obtain that

oo
d(XZ0)) =2 (E Y *) +fo1
2 )\,]( .

k=1 jelx
Ni-1

gty gt
k=1 )\’k jelx k=N )\k jelx
N1 1 x(] +xtN1 (]) 1 xtNl k K

=252 P> +z—m
k=1 k jelx k=Ny k ]EIk

Y (Emol) 32
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1 /1 O\«
+2—mZ A—kZ|"tNI(I)| *om

k=Np jelx
Ni-1 Pr 00 Pk
1 1 . 1 1 ,
k=1 jel k=1 jel
22 (1 A\«
- 2 (7 Z}xm(/”) *om
k=N k jeli
M M m
j j 2m -2 K
< ? + ? - 2m+l om
_m_K
=] 2

Therefore, we have d(%%,0) < (M — £)VM < j — § whenever § € 0,/ — (M — £)V). Conse-

quently, the space (V[, p], d) possesses property (). d
Now, we will show that the space (V[A,p], d) has k-NUC property.
Theorem 2.4 The space V[A,p] is k-NUC for any integer k > 2.

Proof Let e >0 and (x,) C B;(V[A,p]) with sep(x,,) > €. For each m € N, let

x=(0,0,...,%,(m), x,(m +1),...). (2.6)
Since the sequence (x,(i)){5, is bounded for each i € N, by using the diagonal method, we
can find a subsequence (x,,) of (x,) such that (x,,(k)) converges for each k € N. Therefore,
there is an increasing sequence ¢, with sep((x;’;) t,) > €. Hence, there exists a sequence of
positive integers (r,,);,_; with r1 <ry <r3 <--- such that d(x)” ,0) > 7 for all m € N. Then
there is ¢ > 0 such that

o 1 Pk
Z(A—lerﬂ) > . 2.7)
k=m Jelx

Let @ > 0 such that 1 < @ < lim_, o infpy. Let &1 = %% for k > 2. From Lemma 2.2,

there is a § > 0 such that

[(dy+2,0)" - (d(y,0))"| <e1, (2.8)
where (d(y,0))” < ™ and (d(z,0)) < 8. Then there exist positive integers m; (i =
L,2,...,n=1) with m; <my < < m,_; such that d(x;",0) < §. Now, define m,, = m,_1 +1.

Then we have d(x:’;fn,O) >¢foralmeN.Forl1<i<mn-1,lets;=iands, =r,,. By
using (2.6), (2.7), (2.8) and the convexity of the function f; (i) = |u|? (i € N), we obtain

Kgy +Xgy + 00+ X, M
d ,0
n

:kf&z 3, G) - + 5, )
=1

n
Jelk

r
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3 ( [l m O (L sl ()
- Ak n Ak n
k=1 JeIk k=m1+1 jelx
my . . Pk o0 . . Dk
1 X5, () + - + %, () 1 Xy () + -+ + %5, (j)
< — _ + — —_ e’ +&
<Y (1 x|l > (ry e :
k=1 Jeli k=mj+1 Jelx
my n my R . »
1 1 Ky () + %55 () + - -+ + x5, Pk
Y (R0l - X (R X g
k=1 i N e Pa—1 =

Ky () + 25, () + -+ + %5, (f
n

Pk
) + 26

> I3 (E3mal)”

DNEDS

k=my+1 jeli

Sh0l) +

mi 1 n
=>00(5
k=1 i=1

1€1k k=m+1 ~ i=2 ]EIk
m3 1 n my 1 n
P I (L ml) e X 2R (5 Ekol)
k=my+1 i=3 1€1k k=my_1+1 ~ i=n-1 /elk
oo 1 X . Pk
+ Z (sz—'; ) +(m-1)g
k=mp+1 Jelx
< ((d(xsl,Q))M +(d sy, M + -+ (d(xsn,e))M) lZ( Z|xsn(l)|)
" k=1 ]EIk
oo 1 X » Pk
+ Z (sz—’; ) +(n-1)g
k=mp+1 JElk
1 & %, () [\©
ZZ< Z|xsn(l)|> Z (MZ - ) +(n-1)g
k=1 ]elk =my+1 jelx

st A 5 (%stnw)”)

k=mp+1 jelk

1 < /1 x5, () [\F*
> (Ez—) & (1= ey
k=mp+1 JEIk
0(—1_1
SrM+(n—1)81—<n )s‘
na

0(1 1 é- na—l_l
o= (5)- ()
(5 ()
= — > 5 .

Thus, we have d(M,O) < (M- (”a;—i‘l)%)”M <r—258for§ e (0,r— (M-
(22221 £)UM). Hence, (V[4, pl,d) is k-NUC. O

Since k-NUC implies NUC and NUC implies property (H), by using the previous theo-

rem, we can give the following result.

Corollary 2.5 The space (V[A,pl,d) has property (H).
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