On a class of spiral-like functions with respect to a boundary point related to subordination

Maisarah Haji Mohd and Maslina Darus*
Dedicated to Professor Hari M Srivastava

*Correspondence: maslina@ukm.my School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor D Ehsan 43600, Malaysia

Abstract

For $\mu \in \mathbb{C}, \varphi$ a starlike univalent function, the class of functions f that are spiral-like with respect to a boundary point satisfying the subordination $$
\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z} \prec \varphi(z), \quad z \in \mathbb{D},
$$ is investigated. The integral representation, growth and distortion theorem are proved by relating these functions with Ma and Minda starlike functions. Some earlier results are shown to be a special case of the results obtained. MSC: 30C80; 30C45 Keywords: subordination; starlike with respect to boundary point; spiral-like with respect to a boundary point

1 Introduction and motivation

Let $\mathbb{D}=\{z:|z|<1\}$ be an open unit disk of the complex plane \mathbb{C} and let \mathcal{A} be a class of analytic functions f normalized by $f(0)=0$ and $f^{\prime}(0)=1$. Let w_{0} be an interior or a boundary point of a set \mathcal{D} in \mathbb{C}. The set \mathcal{D} is starlike with respect to w_{0} if the line segment joining w_{0} to every other point in \mathcal{D} lies in the interior of \mathcal{D}. If a function $f \in \mathcal{A}$ maps \mathbb{D} onto a starlike domain with respect to origin, then f is a starlike function. The class of starlike functions with respect to origin is denoted by \mathcal{S}^{*}. Analytically,

$$
\mathcal{S}^{*}:=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0\right\} .
$$

Robertson [1] took a leap forward with the characterization of the class \mathcal{S}^{*} and defined the class \mathcal{S}_{b}^{*} of starlike functions with respect to a boundary point. Geometrically, it is the characterization of a function $f \in \mathcal{S}_{b}=\left\{f(z)=1+d_{1} z+d_{2} z^{2}+\cdots \mid f\right.$ univalent $\}$ such that $f(\mathbb{D})$ is starlike with respect to the boundary point $f(1):=\lim _{r \rightarrow 1^{-}} f(r)=0$ and lies in a half-plane. The analytic description given by Robertson was

$$
\mathcal{S}_{b}^{*}:=\left\{f \in \mathcal{S}_{b}: \operatorname{Re}\left(2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right)>0\right\} .
$$

This was partially proved in [1]. It was only in 1984 that the characterization was validated by Lyzzaik [2]. Todorov [3] associated this class with a functional $f(z) /(1-z)$ and obtained a structured formula and coefficient estimates in the year 1986. Later, Silverman and Silvia [4] gave a full description of the class of univalent functions on \mathbb{D}, the image of which is star-shaped, with respect to a boundary point. Since then, this class of starlike functions with respect to a boundary point has gained notable interest among geometric function theorist and also other researchers. Among them, Abdullah et al. [5] studied the properties of functions in this class. The distortion results for starlike functions with respect to a boundary point were obtained in [6, 7]. The dynamical characterizations of functions starlike with respect to a boundary point can be found in [8]. In the year 2001, Lecko [9] gave another representation of starlike functions with respect to a boundary point. Also, Lecko and Lyzzaik obtained different characterizations of this class in [10].
Following the studies on the class of starlike functions, many authors extensively studied the class of spiral-like functions. For recent work on the class of spiral-like functions, see [11]. Later, there was interest towards the class of spiral-like functions with respect to a boundary point. See [12-15]. Aharonov et al. [16] gave a comprehensive definition for spiral-shaped domains with respect to a boundary point.

Definition 1.1 A simply connected domain $\Omega \subset \mathbb{C}, 0 \in \partial \Omega$, is called a spiral-shaped domain with respect to a boundary point if there is a number $\mu \in \mathbb{C}$ with $\operatorname{Re} \mu>0$ such that, for any point $\omega \in \Omega$, the curve $e^{-t \mu} \omega, t \geq 0$, is contained in Ω.

It was also showed in [16] (see also [17]) that each spiral-like function with respect to a boundary point is a complex power of starlike function with respect to a boundary point. In particular, if $\mu \in \mathbb{R}$ in Definition 1.1, then Ω is called a star-shaped domain with respect to a boundary point. The following was proved in the same.

Theorem 1.1 Letf be an analytic function with $f(0)=1, f(1)=0$, and let it be a spiral-like function with respect to a boundary point. Then there exists a number $\mu \in \Omega:=\{\lambda \in \mathbb{C}$: $|\lambda-1| \leq 1, \lambda \neq 0\}$ such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right)>0 . \tag{1.1}
\end{equation*}
$$

Conversely, if f is a univalent function with $f(0)=1$ and $f(1)=0$ satisfies (1.1) for some $\mu \in \Omega$, then f is a spiral-like function with respect to a boundary point.

Elin [18] then considered the class of spiral-like functions of order β ($0<\beta \leq 1$) with respect to a boundary point and obtained interesting results including the distortion and covering theorems.
On the other hand, Ma and Minda [19] gave a unified presentation of the class starlike using the method of subordination. For two functions h and g in \mathcal{A}, the function h is subordinate to g, written

$$
h(z) \prec g(z), \quad z \in \mathbb{D},
$$

if there exists a function $w \in \mathcal{A}$, with $w(0)=0$ and $|w(z)|<1$, such that $h(z)=g(w(z))$. In particular, if the function g is univalent in \mathbb{D}, then $h(z) \prec g(z)$ is equivalent to $h(0)=g(0)$
and $h(\mathbb{D}) \subset g(\mathbb{D})$. A function $h \in \mathcal{A}$ is starlike if $z h^{\prime}(z) / h(z)$ is subordinated to $(1+z) /(1-z)$. Ma and Minda [19] introduced the class

$$
\mathcal{S}^{*}(\varphi)=\left\{h \in \mathcal{A}: \frac{z h^{\prime}(z)}{h(z)} \prec \varphi(z)\right\},
$$

where φ is an analytic function with a positive real part in $\mathbb{D}, \varphi(\mathbb{D})$ is symmetric with respect to the real axis and starlike with respect to $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$. A function $f \in \mathcal{S}^{*}(\varphi)$ is called Ma and Minda starlike (with respect to φ). The class $\mathcal{S}^{*}(\beta)$ consisting of starlike functions of order $\beta, 0 \leq \beta<1$ and the class $\mathcal{S}^{*}(A, B)$ of Janowski starlike functions are special cases of $\mathcal{S}^{*}(\varphi)$ when $\varphi(z):=(1+(1-2 \beta) z) /(1-z)$ and $\varphi(z):=(1+A z) /(1+B z)$ for $-1 \leq B<A \leq 1$, respectively.

In the same direction and motivated mainly by [18] and [19], we consider the following class.

Definition 1.2 Let $f \in \mathcal{S}_{b}, f(0)=1$ and $\mu \in \Omega:=\{\lambda \in \mathbb{C}:|\lambda-1| \leq 1, \lambda \neq 0\}$. Also, let φ be an analytic function with a positive real part \mathbb{D}, let $\varphi(\mathbb{D})$ be symmetric with respect to the real axis and starlike with respect to $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$. The function $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ if the subordination

$$
\begin{equation*}
\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z} \prec \varphi(z), \quad z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

holds.

For $\varphi(z)=(1+A z) /(1+B z)(-1 \leq B<A \leq 1)$, denote the class $\mathcal{S}_{b}^{*}(\mu, \varphi)$ by $\mathcal{S}_{b}^{*}(\mu, A, B)$. For $0 \leq \beta<1, A=1-2 \beta$ and $B=-1$, denote $\mathcal{S}_{b}^{*}(\mu, A, B)$ by $\mathcal{S}_{b}^{*}(\mu, \beta)$.

The class $\mathcal{S}_{b}^{*}(\mu, \varphi)$ defined by subordination is investigated to obtain representation, estimates for f and f^{\prime} and subordination conditions. We obtained some interesting result in a wider context and our approach is mainly based on [19].

2 Representation for the class $\mathcal{S}_{b}^{*}(\mu, \varphi)$

The following result provides an integral representation of functions belonging to the class $\mathcal{S}_{b}^{*}(\mu, \varphi)$.

Theorem 2.1 The function $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ if and only if there exists p satisfying $p \prec \varphi$ such that

$$
f(z)=(1-z)^{\mu} \exp \left(\frac{\mu}{2} \int_{0}^{z} \frac{p(\zeta)-1}{\zeta} d \zeta\right)
$$

Proof Let $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$. Then define $p: \mathbb{D} \rightarrow \mathbb{C}$ by

$$
p(z)=\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z} .
$$

Then $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ implies that $p \prec \varphi$. Rewriting the above equation as

$$
\frac{2}{\mu} \frac{f^{\prime}(z)}{f(z)}+\frac{2}{1-z}=\frac{p(z)-1}{z}
$$

and integrating from 0 to z, it follows that

$$
\log \left(\frac{f(z)^{\frac{2}{\mu}}}{(1-z)^{2}}\right)=\int_{0}^{z} \frac{p(\zeta)-1}{\zeta} d \zeta
$$

An exponentiation gives

$$
f(z)^{\frac{2}{\mu}}=(1-z)^{2} \exp \left(\int_{0}^{z} \frac{p(\zeta)-1}{\zeta} d \zeta\right)
$$

The desired result follows from this. The converse follows easily.

3 Estimates for f and f^{\prime} in the class $\mathcal{S}_{b}^{*}(\mu, \varphi)$

Theorem 3.1 Let $^{h_{\varphi}}$ be an analytic function with $h_{\varphi}(0)=0, h_{\varphi}^{\prime}(0)=1$ satisfying the equation $z h_{\varphi}^{\prime}(z) / h_{\varphi}(z)=\varphi(z)$. Iff $\in \mathcal{S}_{b}^{*}(\mu, \varphi)$, then

$$
\begin{equation*}
\frac{-h_{\varphi}(-r)}{r}|1-z|^{2} \leq\left|f(z)^{\frac{2}{\mu}}\right| \leq \frac{h_{\varphi}(r)}{r}|1-z|^{2}, \quad|z|=r . \tag{3.1}
\end{equation*}
$$

Proof Define the function $h \in \mathcal{A}$ by

$$
\begin{equation*}
h(z)=\frac{z}{(1-z)^{2}} f(z)^{\frac{2}{\mu}}, \quad z \in \mathbb{D} . \tag{3.2}
\end{equation*}
$$

Since f is univalent and $f(1):=\lim _{r \rightarrow 1^{-}} f(r)=0$, it is clear that $f(z) \neq 0$ in \mathbb{D}. Therefore, the function h is well defined and analytic in \mathbb{D}. A computation shows that

$$
\begin{equation*}
\frac{z h^{\prime}(z)}{h(z)}=\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z} \tag{3.3}
\end{equation*}
$$

Hence we have the relation $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ if and only if $h \in \mathcal{S}^{*}(\varphi)$. Ma and Minda [19, Corollary $\left.1^{\prime}\right]$ have shown that for $h \in \mathcal{S}^{*}(\varphi)$,

$$
-h_{\varphi}(-r) \leq|h(z)| \leq h_{\varphi}(r), \quad|z|=r .
$$

Using this inequality for h in (3.2) gives

$$
-h_{\varphi}(-r) \leq\left|\frac{z}{(1-z)^{2}} f(z)^{\frac{2}{\mu}}\right| \leq h_{\varphi}(r), \quad|z|=r
$$

and hence the desired result follows.

If $\mathcal{S}_{b}^{*}(\mu, A, B)$ and hence

$$
h_{\varphi}(z)= \begin{cases}z(1+B z)^{\frac{A-B}{B}}, & B \neq 0 \\ z \exp (A z), & B=0\end{cases}
$$

then

$$
\begin{aligned}
& |1-z|^{2}(1-B r)^{\frac{A-B}{B}} \leq\left|f(z)^{\frac{2}{\mu}}\right| \leq|1-z|^{2}(1+B r)^{\frac{A-B}{B}} \quad \text { for } B \neq 0, \\
& |1-z|^{2} \exp (-A r) \leq\left|f(z)^{\frac{2}{\mu}}\right| \leq|1-z|^{2} \exp (A r) \quad \text { for } B=0
\end{aligned}
$$

If $\mathcal{S}_{b}^{*}(\mu, \beta)$ and

$$
h_{\varphi}(z)=\frac{z}{(1-z)^{2-2 \beta}},
$$

then

$$
\frac{|1-z|^{2}}{(1+r)^{2-2 \beta}} \leq\left|f(z)^{\frac{2}{\mu}}\right| \leq \frac{|1-z|^{2}}{(1-r)^{2-2 \beta}}
$$

In particular, for $0 \neq \mu \in \mathbb{R}$, the inequality reduces to the following inequality [18]:

$$
\frac{|1-z|^{\mu}}{(1+r)^{\mu(1-\beta)}} \leq|f(z)| \leq \frac{|1-z|^{\mu}}{(1-r)^{\mu(1-\beta)}}
$$

Theorem 3.2 Let $\varphi(z)=z h_{\varphi}^{\prime}(z) / h_{\varphi}(z)$ and $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$. Then, for $|z|=r$,

$$
\left|\arg \frac{f(z)^{\frac{1}{\mu}}}{(1-z)}\right| \leq \frac{1}{2} \max _{|z|=r} \arg \frac{h_{\varphi}(z)}{z}
$$

For $0 \neq \mu \in \mathbb{R}$,

$$
\left|\arg \frac{f(z)}{(1-z)^{\mu}}\right| \leq \frac{|\mu|}{2} \max _{|z|=r}^{\arg } \frac{h_{\varphi}(z)}{z} .
$$

Proof For a function $h \in \mathcal{S}^{\prime \prime}(\varphi)$, in the paper [19, Corollary $\left.3^{\prime}\right]$ it is shown that

$$
\left|\arg \frac{h(z)}{z}\right| \leq \max _{|z|=r}^{\arg } \frac{h_{\varphi}(z)}{z}, \quad|z|=r .
$$

The result then follows easily as the relation (3.3) holds.

Corollary 3.1 Iff $\in \mathcal{S}_{b}^{*}(\mu, A, B)$, then for $|z|=r$,

$$
\left|\arg \frac{f(z)^{\frac{1}{\mu}}}{(1-z)}\right| \leq \frac{A-B}{2 B} \max _{|z|=r} \arg (1+B z) \quad \text { for } B \neq 0
$$

and

$$
\left|\arg \frac{f(z)^{\frac{1}{\mu}}}{(1-z)}\right| \leq \frac{1}{2} \max _{|z|=r} \arg \exp (A z) \quad \text { for } B=0
$$

Corollary 3.2 Iff $\in \mathcal{S}_{b}^{*}(\mu, \beta)$, then for $|z|=r$

$$
\left|\arg \frac{f(z)^{\frac{1}{\mu}}}{(1-z)}\right| \leq(1-\beta) \max _{|z|=r} \arg \frac{1}{(1-z)} .
$$

Theorem 3.3 Let $\varphi(z)=z h_{\varphi}^{\prime}(z) / h_{\varphi}(z)$ and

$$
\begin{equation*}
\min _{|z|=r}|\varphi(z)|=\varphi(-r) \quad \text { and } \quad \max _{|z|=r}|\varphi(z)|=\varphi(r) \tag{3.4}
\end{equation*}
$$

Also, let

$$
H_{\varphi 1}=\frac{|\mu||1-z|^{\mu}}{2 r}\left(\frac{h_{\varphi}(-r)}{-r}\right)^{\frac{\mu}{2}}\left(-\left|\frac{1+z}{1-z}\right|+\varphi(-r)\right)
$$

and

$$
H_{\varphi 2}=\frac{|\mu||1-z|^{\mu}}{2 r}\left(\frac{h_{\varphi}(r)}{r}\right)^{\frac{\mu}{2}}\left(\left|\frac{1+z}{1-z}\right|+\varphi(r)\right) .
$$

For $\mu \in \mathbb{R}$, if $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ then

$$
H_{\varphi 1} \leq\left|f^{\prime}(z)\right| \leq H_{\varphi 2} .
$$

Proof By Definition 1.2, for $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$, we have

$$
\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z} \prec \varphi(z), \quad z \in \mathbb{D} .
$$

When (3.4) holds, the above subordination indicates that

$$
\varphi(-r) \leq\left|\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right| \leq \varphi(r), \quad|z|=r .
$$

This shows that

$$
-\left|\frac{1+z}{1-z}\right|+\varphi(-r) \leq\left|\frac{2}{\mu} \frac{z f^{\prime}(z)}{f(z)}\right| \leq\left|\frac{1+z}{1-z}\right|+\varphi(r)
$$

or

$$
\begin{equation*}
\frac{|\mu|}{2 r}\left(-\left|\frac{1+z}{1-z}\right|+\varphi(-r)\right) \leq\left|\frac{f^{\prime}(z)}{f(z)}\right| \leq \frac{|\mu|}{2 r}\left(\left|\frac{1+z}{1-z}\right|+\varphi(r)\right) . \tag{3.5}
\end{equation*}
$$

For $\mu \in \mathbb{R}$, Theorem 3.1 gives

$$
\begin{equation*}
|1-z|^{\mu}\left(\frac{h_{\varphi}(-r)}{-r}\right)^{\frac{\mu}{2}} \leq|f(z)| \leq|1-z|^{\mu}\left(\frac{h_{\varphi}(r)}{r}\right)^{\frac{\mu}{2}} . \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6), the desired results follows.

We have the following corollaries as (3.4) holds.

Corollary 3.3 Let $\varphi(z)=z h_{\varphi}^{\prime}(z) / h_{\varphi}(z)$. For $B \neq 0$, let

$$
H_{\varphi 1}=\frac{|\mu||1-z|^{\mu}}{2 r}(1-B r)^{\frac{\mu(A-B)}{2 B}}\left(-\left|\frac{1+z}{1-z}\right|+\frac{1-A r}{1-B r}\right)
$$

and

$$
H_{\varphi 2}=\frac{|\mu||1-z|^{\mu}}{2 r}(1+B r)^{\frac{\mu(A-B)}{2 B}}\left(\left|\frac{1+z}{1-z}\right|+\frac{1+A r}{1+B r}\right) .
$$

For $B=0$, let

$$
H_{\varphi 1}=\frac{|\mu \| 1-z|^{\mu}}{2 r} \exp \left(\frac{-\mu A r}{2}\right)\left(-\left|\frac{1+z}{1-z}\right|-r \exp (-A r)\right)
$$

and

$$
H_{\varphi 2}=\frac{|\mu||1-z|^{\mu}}{2 r} \exp \left(\frac{\mu A r}{2}\right)\left(\left|\frac{1+z}{1-z}\right|+r \exp (A r)\right)
$$

For $\mu \in \mathbb{R}$, iff $\in \mathcal{S}_{b}^{*}(\mu, A, B)$ then

$$
H_{\varphi 1} \leq\left|f^{\prime}(z)\right| \leq H_{\varphi 2}
$$

Corollary 3.4 Let $\varphi(z)=z h_{\varphi}^{\prime}(z) / h_{\varphi}(z)$,

$$
H_{\varphi 1}=\frac{|\mu||1-z|^{\mu}}{2 r(1+r)^{\mu(1-\beta)}}\left(-\left|\frac{1+z}{1-z}\right|+\frac{1-(1-2 \beta) r}{1+r}\right)
$$

and

$$
H_{\varphi 2}=\frac{|\mu||1-z|^{\mu}}{2 r(1-r)^{\mu(1-\beta)}}\left(\left|\frac{1+z}{1-z}\right|+\frac{1+(1-2 \beta) r}{1-r}\right) .
$$

For $\mu \in \mathbb{R}$, iff $\in \mathcal{S}_{b}^{*}(\mu, \beta)$ then

$$
H_{\varphi 1} \leq\left|f^{\prime}(z)\right| \leq H_{\varphi 2} .
$$

4 Necessary and sufficient condition

Theorem 4.1 Let φ be a convex univalent function defined on \mathbb{D}. The function $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ if and only iffor all $|s| \leq 1,|t| \leq 1$,

$$
\frac{s}{t}\left(\frac{1-t z}{1-s z}\right)^{2}\left(\frac{f(s z)}{f(t z)}\right)^{\frac{2}{\mu}} \prec \frac{h_{\varphi}(s z)}{h_{\varphi}(t z)},
$$

where $h_{\varphi}(z)=z \exp \left(\int_{0}^{z}((\varphi(\zeta)-1) / \zeta) d \zeta\right)$.

Proof Ruscheweyh [20, Theorem 1] showed that for φ a convex univalent function, F as in the hypothesis and $h \in \mathcal{A}$

$$
\frac{z h^{\prime}(z)}{h(z)} \prec \varphi(z)
$$

if and only if for all $|s| \leq 1,|t| \leq 1$,

$$
\begin{equation*}
\frac{h(s z)}{h(t z)} \prec \frac{h_{\varphi}(s z)}{h_{\varphi}(t z)} . \tag{4.1}
\end{equation*}
$$

From the relation (3.3), we know that $f \in \mathcal{S}_{b}^{*}(\mu, \varphi)$ if and only if $h \in \mathcal{S}^{*}(\varphi)$. Substituting (3.2) in (4.1), we have

$$
\frac{\frac{s z}{(1-s z)^{2}} f(s z)^{\frac{2}{\mu}}}{\frac{t z}{(1-t z)^{2}} f(t z)^{\frac{2}{\mu}}} \prec \frac{h_{\varphi}(s z)}{h_{\varphi}(t z)}
$$

and hence the desired result follows.

The following corollaries hold for $\varphi(z)=\frac{1+A z}{1+B z}$ is convex univalent on \mathbb{D}.

Corollary 4.1 The function $f \in \mathcal{S}_{b}^{*}(\mu, A, B)$ if and only iffor all $|s| \leq 1,|t| \leq 1$,

$$
\begin{aligned}
& \left(\frac{1-t z}{1-s z}\right)^{\mu}\left(\frac{f(s z)}{f(t z)}\right) \prec\left(\frac{1+B s z}{1+B t z}\right)^{\frac{\mu(A-B)}{2 B}} \quad \text { for } B \neq 0, \\
& \left(\frac{1-t z}{1-s z}\right)^{\mu}\left(\frac{f(s z)}{f(t z)}\right) \prec \exp \left(\frac{\mu A z(s-t)}{2}\right) \quad \text { for } B=0 .
\end{aligned}
$$

Let $0 \leq \beta<1, A=1-2 \beta$ and $B=-1$ in Corollary 4.1 and hence we have the result.

Corollary 4.2 [18] The function $f \in \mathcal{S}_{b}^{*}(\mu, \beta)$ if and only iffor all $|s| \leq 1,|t| \leq 1$,

$$
\left(\frac{1-t z}{1-s z}\right)^{\mu} \frac{f(s z)}{f(t z)} \prec\left(\frac{1-t z}{1-s z}\right)^{\mu(1-\beta)}
$$

Theorem 4.2 as well as Corollaries 4.3 and 4.4 below are respectively special cases of Theorem 4.1 and Corollaries 4.1 and 4.2 when $s=1$ and $t=0$. However, we prove the below without the convexity assumption on φ.

Theorem 4.2 Iff $\in \mathcal{S}_{b}^{*}(\mu, \varphi)$, then

$$
\frac{f(z)^{\frac{2}{\mu}}}{(1-z)^{2}} \prec \frac{h_{\varphi}(z)}{z}
$$

where $h_{\varphi}(z)=z \exp \left(\int_{0}^{z}((\varphi(\zeta)-1) / \zeta) d \zeta\right)$.

Proof Clearly $z h_{\varphi}^{\prime}(z) / h_{\varphi}(z)=\varphi(z)$. If $h \in \mathcal{S}^{*}(\varphi)$, then

$$
\frac{z h^{\prime}(z)}{h(z)} \prec \frac{z h_{\varphi}^{\prime}(z)}{h_{\varphi}(z)} .
$$

Therefore by [19, Theorem $\left.1^{\prime}\right]$

$$
\frac{h(z)}{z} \prec \frac{h_{\varphi}(z)}{z} .
$$

Let $h(z)$ be defined as in (3.2) and hence we arrive at the desired conclusion.

Corollary 4.3 Iff $\in \mathcal{S}_{b}^{*}(\mu, A, B)$ then

$$
\frac{f(z)}{(1-z)^{\mu}} \prec(1+B z)^{\frac{\mu(A-B)}{2 B}} \quad \text { for } B \neq 0
$$

and

$$
\frac{f(z)}{(1-z)^{\mu}} \prec \exp \left(\frac{\mu A z}{2}\right) \quad \text { for } B=0
$$

When $0 \leq \beta<1, A=1-2 \beta$ and $B=-1$, the above corollary reduces to the following result.

Corollary 4.4 [18] Iff $\in \mathcal{S}_{b}^{*}(\mu, \beta)$ then

$$
\frac{f(z)}{(1-z)^{\mu}} \prec \frac{1}{(1-z)^{\mu(1-\beta)}} .
$$

5 Coefficient estimate for $f \in \mathcal{S}_{b}^{*}(\varphi)$

In particular, when $\mu=1$, (1.2) becomes

$$
2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z} \prec \varphi(z), \quad z \in \mathbb{D}
$$

We denote the class satisfying the above subordination as $\mathcal{S}_{b}^{*}(\varphi)$.
Theorem 5.1 Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$. If $f \in \mathcal{S}_{b}^{*}(\varphi)$, then the coefficients d_{1}, d_{2}, d_{3} satisfy the following inequalities:

$$
\begin{aligned}
& \left|d_{1}\right| \leq \frac{B_{1}}{2}+1 \\
& \left|d_{2}\right| \leq \frac{B_{1}}{4} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{2}\right|\right\}+\frac{B_{1}}{2}, \\
& \left|d_{3}\right| \leq \frac{B_{1}}{6} H\left(\frac{6 B_{1}^{2}+16 B_{2}}{8 B_{1}}, \frac{B_{1}^{3}+6 B_{1} B_{2}+8 B_{3}}{8 B_{1}}\right)+\frac{B_{1}}{4} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{2}\right|\right\},
\end{aligned}
$$

where $H\left(q_{1}, q_{2}\right)^{\mathrm{a}}$ is as defined in [21] (see also [22, Lemma 3]) and

$$
\left|d_{2}-v d_{1}^{2}\right| \leq \begin{cases}\frac{B_{1}}{4}\left(\frac{B_{2}}{B_{1}}-(2 v-1) \frac{B_{1}}{2}\right)+(2 v+1) \frac{B_{1}}{2}+2 v, & v \leq \sigma_{1} \\ \frac{B_{1}}{4}+(2 v+1) \frac{B_{1}}{2}+2 v, & \sigma_{1} \leq v \leq \sigma_{2} \\ \frac{B_{1}}{4}\left((2 v-1) \frac{B_{1}}{2}-\frac{B_{2}}{B_{1}}\right)+(2 v+1) \frac{B_{1}}{2}+2 v, & v \geq \sigma_{2},\end{cases}
$$

where

$$
\sigma_{1}=\frac{1}{B_{1}}\left(\frac{B_{2}}{B_{1}}-1\right)+\frac{1}{2}, \quad \sigma_{2}=\frac{1}{B_{1}}\left(\frac{B_{2}}{B_{1}}+1\right)+\frac{1}{2} .
$$

Proof Define the function $g(z)=1+g_{1} z+g_{2} z^{2}+\cdots$ by

$$
g(z)=\frac{f(z)}{(1-z)}, \quad z \in \mathbb{D} .
$$

Then a computation shows that

$$
2 \frac{z g^{\prime}(z)}{g(z)}+1=2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}
$$

Since $f \in \mathcal{S}_{b}^{*}(\varphi)$, we have

$$
2 \frac{z g^{\prime}(z)}{g(z)}+1 \prec \varphi(z)
$$

or there is an analytic function $w(z)=w_{1} z+w_{2} z^{2}+\cdots$ such that

$$
2 \frac{z g^{\prime}(z)}{g(z)}+1=\varphi(w(z)) .
$$

Since

$$
2 \frac{z g^{\prime}(z)}{g(z)}+1=1+2 g_{1} z+\left(-2 g_{1}^{2}+4 g_{2}\right) z^{2}+\left(2 g_{1}^{3}-6 g_{1} g_{2}+6 g_{3}\right) z^{3}+\cdots
$$

and

$$
\varphi(w(z))=1+B_{1} w_{1} z+\left(B_{2} w_{1}^{2}+B_{1} w_{2}\right) z^{2}+\left(B_{3} w_{1}^{3}+2 B_{2} w_{1} w_{2}+b_{1} w_{3}\right) z^{3}+\cdots,
$$

we see that

$$
\begin{aligned}
& g_{1}=\frac{B_{1} w_{1}}{2} \\
& g_{2}=\frac{B_{1}}{4}\left(w_{2}+\left(\frac{B_{2}}{B_{1}}+\frac{B_{1}}{2}\right) w_{1}^{2}\right), \\
& g_{3}=\frac{B_{1}}{6}\left(w_{3}+\left(\frac{6 B_{1}^{2}+16 B_{2}}{8 B_{1}}\right) w_{1} w_{2}+\left(\frac{B_{1}^{3}+6 B_{1} B_{2}+8 B_{3}}{8 B_{1}}\right) w_{1}^{3}\right) .
\end{aligned}
$$

In view of the well-known inequality $\left|w_{1}\right| \leq 1$, we have

$$
\left|g_{1}\right| \leq \frac{B_{1}}{2}
$$

Applying [23, inequality 7, p.10] and [22, Lemma 3] (see also [21]), we get

$$
\left|g_{2}\right| \leq \frac{B_{1}}{4} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{2}\right|\right\}
$$

and

$$
\left|g_{3}\right| \leq \frac{B_{1}}{6} H\left(\frac{6 B_{1}^{2}+16 B_{2}}{8 B_{1}}, \frac{B_{1}^{3}+6 B_{1} B_{2}+8 B_{3}}{8 B_{1}}\right),
$$

respectively. Also, we see that applying [22, Lemma 1] (see also [19]) to inequality

$$
g_{2}-v g_{1}^{2}=\frac{B_{1}}{4}\left(w_{2}-\left((2 v-1) \frac{B_{1}}{2}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right)
$$

yields

$$
\left|g_{2}-v g_{1}^{2}\right| \leq \begin{cases}\frac{B_{1}}{4}\left(\frac{B_{2}}{B_{1}}-(2 v-1) \frac{B_{1}}{2}\right), & v \leq \sigma_{1} \\ \frac{B_{1}}{4}, & \sigma_{1} \leq v \leq \sigma_{2} \\ \frac{B_{1}}{4}\left((2 v-1) \frac{B_{1}}{2}-\frac{B_{2}}{B_{1}}\right), & v \geq \sigma_{2}\end{cases}
$$

for σ_{1} and σ_{2} as in the hypothesis. Todorov in [3] shows that for

$$
g(z)=1+\sum_{1}^{\infty} g_{n} z^{n}
$$

the coefficient

$$
g_{n}=1+d_{1}+d_{2}+\cdots+d_{n},
$$

and hence from the above relation the desired results are obtained.

Corollary 5.1 When $\varphi(z)=(1+z) /(1-z)$, our results coincide with [3, Corollary 2.3].

Remark 5.1 All the results for the special case when $\mu=1$ or the class starlike with respect to a boundary point defined by subordination were presented at the 8th International Symposium on GFTA, 27-31 August 2012, Ohrid, Republic of Macedonia and thereafter published as [24].

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The first author MHM is currently a PhD student under supervision of the second author MD and jointly worked on deriving the results. All authors read and approved the final manuscript.

Acknowledgements

The work here is partially supported by MOHE:LRGS/TD/2011/UKM/ICT/03/02.

Endnote

a The expression for H is too lengthy to be reproduced here. See [21] or [22] for the full expression.

Received: 29 December 2012 Accepted: 1 May 2013 Published: 31 May 2013

References

1. Robertson, MS: Univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 81(2), 327-345 (1981)
2. Lyzzaik, A: On a conjecture of M.S. Robertson. Proc. Am. Math. Soc. 91(1), 108-110 (1984)
3. Todorov, PG: On the univalent functions starlike with respect to a boundary point. Proc. Am. Math. Soc. 97(4), 602-604 (1986)
4. Silverman, H, Silvia, EM: Subclasses of univalent functions starlike with respect to a boundary point. Houst. J. Math. 16(2), 289-299 (1990)
5. Abdullah, AS, Ali, RM, Singh, V: On functions starlike with respect to a boundary point. Ann. Univ. Mariae Curie-SkĪodowska, Sect. A 50, 7-15 (1996)
6. Chên, MP, Owa, S: Generalization of Robertson functions. In: Complex Analysis and Its Applications (Hong Kong, 1993). Pitman Res. Notes Math. Ser., vol. 305, pp. 159-165. Longman, Harlow (1994)
7. Dong, J, Liu, L: Distortion properties of a class of functions starlike with respect of a boundary point. Heilongjiang Daxue Ziran Kexue Xuebao 15(4), 1-6 (1998)
8. Elin, M, Reich, S, Shoikhet, D: Dynamics of inequalities in geometric function theory. J. Inequal. Appl. 6(6), 651-664 (2001)
9. Lecko, A: On the class of functions starlike with respect to a boundary point. J. Math. Anal. Appl. 261(2), 649-664 (2001)
10. Lecko, A, Lyzzaik, A: A note on univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 282(2), 846-851 (2003)
11. $\mathrm{Xu}, \mathrm{Q}-\mathrm{H}, \mathrm{Lv}, \mathrm{C}-\mathrm{B}$, Srivastava, HM : Coefficient estimates for the inverses of a certain general class of spirallike functions. Appl. Math. Comput. 219(12), 7000-7011 (2013)
12. Elin, M, Reich, S, Shoikhet, D: Holomorphically accretive mappings and spiral-shaped functions of proper contractions. Nonlinear Anal. Forum 5, 149-161 (2000)
13. Elin, M, Shoikhet, D: Angle distortion theorems for starlike and spirallike functions with respect to a boundary point. Int. J. Math. Math. Sci. 2006, Art. ID 81615 (2006)
14. Lecko, A: The class of functions spirallike with respect to a boundary point. Int. J. Math. Math. Sci. 2004(37-40), 2133-2143 (2004)
15. Shoikhet, D: Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point. Int. J. Pure Appl. Math. 5(3), 335-361 (2003)
16. Aharonov, D, Elin, M, Shoikhet, D: Spiral-like functions with respect to a boundary point. J. Math. Anal. Appl. 280(1), 17-29 (2003)
17. Elin, M, et al.: Dynamics of spirallike functions. In: Complex Analysis and Dynamical Systems. Contemp. Math., vol. 364, pp. 41-57. Am. Math. Soc., Providence (2004)
18. Elin, M: Covering and distortion theorems for spirallike functions with respect to a boundary point. Int. J. Pure Appl. Math. 28(3), 387-400 (2006)
19. Ma, WC, Minda, D: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992). Conf. Proc. Lecture Notes Anal., vol. I, pp. 157-169. Int. Press, Cambridge (1994)
20. Ruscheweyh, S: A subordination theorem for F-like functions. J. Lond. Math. Soc. 13(2), 275-280 (1976)
21. Prokhorov, DV, Szynal, J: Inverse coefficients for (α, β)-convex functions. Ann. Univ. Mariae Curie-SkTodowska, Sect. A 35(1981), 125-143 (1984)
22. Ali, RM, Ravichandran, V, Seenivasagan, N: Coefficient bounds for p-valent functions. Appl. Math. Comput. 187(1), 35-46 (2007)
23. Keogh, FR, Merkes, EP: A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 20, 8-12 (1969). MR0232926
24. Mohd, MH, Darus, M: Starlike function with respect to a boundary point defined by subordination. Adv. Math. Sci. J. 1(1), 15-21 (2012)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1029-242X-2013-274
 Cite this article as: Haji Mohd and Darus: On a class of spiral-like functions with respect to a boundary point related to subordination. Journal of Inequalities and Applications 2013 2013:274.

