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Abstract
The projection algorithms for solving the constrained multiple-sets split feasibility
problem are presented. The strong convergence results of the algorithms are given
under some mild conditions. Especially, the minimum norm solution of the
constrained multiple-sets split feasibility problem can be found.

1 Introduction
LetH andH be two real Hilbert spaces. Let C,C, . . . ,CN beN nonempty closed convex
subsets of H and let Q,Q, . . . ,QM be M nonempty closed convex subsets of H. Let
A : H → H be a bounded linear operator. The multiple-sets split feasibility problem is
formulated as follows:

Find an x ∈
N⋂
i=

Ci such that Ax ∈
M⋂
j=

Qj. (.)

A special case If N =M = , then the multiple-sets split feasibility problem is reduced to
the split feasibility problem which is formulated as finding a point x with the property

x ∈ C and Ax ∈ Q.

The split feasibility problem in finite-dimensional Hilbert spaces was first introduced by
Censor and Elfving [] for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction []. It has been found that the multiple-sets split
feasibility problem and the split feasibility problem can be used to model the intensity-
modulated radiation therapy [–]. Various algorithms have been invented to solve the
multiple-sets split feasibility problem and the split feasibility problem, see, e.g., [–]
and references therein.

The popular algorithm that solves themultiple-sets split feasibility problem and the split
feasibility problem is Byrne’s CQ algorithm [] which is found to be a gradient-projection
method in convex minimization. Motivated by this idea, in this paper, we present the
composite projection algorithms for solving the constrained multiple-sets split feasibil-
ity problem. The strong convergence results of the algorithms are given under some mild
conditions. Especially, the minimum norm solution of the constrained multiple-sets split
feasibility problem can be found.
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2 Preliminaries
2.1 Concepts
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively,
and let � be a nonempty closed convex subset of H . Recall that the (nearest point or
metric) projection from H onto �, denoted by P�, is defined in such a way that, for each
x ∈H , P�(x) is the unique point in � with the property

∥∥x – P�(x)
∥∥ =min

{‖x – y‖ : y ∈ �
}
.

It is known that P� satisfies

〈
x – y,P�(x) – P�(y)

〉 ≥ ∥∥P�(x) – P�(y)
∥∥, ∀x, y ∈H .

Moreover, P� is characterized by the following properties:

〈
x – P�(x), y – P�(x)

〉 ≤ 

for all x ∈H and y ∈ �.
We also recall that a mapping f :� →H is said to be ρ-contractive if ‖Tx–Ty‖ ≤ ρ‖x–

y‖ for some constant ρ ∈ [, ) and for all x, y ∈ �. A mapping T : � → � is said to be
nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ �. A mapping T is called averaged if
T = ( – δ)I + δU , where δ ∈ (, ) andU : � → � is nonexpansive. In this case, we also say
that T is δ-averaged. A bounded linear operator B is said to be strongly positive on H if
there exists a constant α >  such that

〈Bx,x〉 ≥ α‖x‖, ∀x ∈H .

Let A be an operator with domain D(A) and range R(A) in H .
(i) A is monotone if for all x, y ∈D(A),

〈Ax –Ay,x – y〉 ≥ .

(ii) Given a number ν > , A is said to be ν-inverse strongly monotone (ν-ism) (or
co-coercive) if

〈Ax –Ay,x – y〉 ≥ ν‖Ax –Ay‖, x, y ∈ H .

It is easily seen that a projection P� is a -ism and hence P� is 
 -averaged.

We will need to use the following notation:
• Fix(T) stands for the set of fixed points of T ;
• xn ⇀ x stands for the weak convergence of {xn} to x;
• xn → x stands for the strong convergence of {xn} to x.

2.2 Mathematical model
Now, we consider the mathematical model of the multiple-sets split feasibility problem.
Let x ∈ C. Assume that Ax ∈ Q. Then we get (I – PQ )Ax = , which implies γA∗(I –

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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PQ )Ax = , hence x satisfies the fixed point equation x = (I –γA∗(I –PQ )A)x. At the same
time, note that x ∈ C. Thus,

x = PC

(
I – γA∗(I – PQ )A

)
x.

Now, we know x solves the split feasibility problem if and only if x solves the above fixed
point equation. This result reminds us that the multiple-sets split feasibility problem is
equivalent to a common fixed point problem of finitely many nonexpansive mappings. On
the other hand, x solves the multiple-sets split feasibility problem implies that x satisfies
two properties:

(i) the distance from x to each Ci is zero and
(ii) the distance from Ax to each Qj is also zero.
First, we consider the following proximity function:

g(x) =



N∑
i=

αi‖x – PCix‖ +



M∑
j=

βj‖Ax – PQjAx‖,

where {αi} and {βj} are positive real numbers, and PCi and PQj are the metric projections
onto Ci and Qj, respectively. It is clear that the proximity function g is convex and differ-
entiable with the gradient

∇g(x) =
N∑
i=

αi(I – PCi )x +
M∑
j=

βjA∗(I – PQj )Ax.

We can check that the gradient ∇g(x) is L-Lipschitz continuous with constant

L =
N∑
i=

αi +
M∑
j=

βj‖A‖.

Note that x∗ is a solution of the multiple-sets split feasibility problem (.) if and only
if g(x∗) = . Since g(x) ≥  for all x ∈ H, a solution of the multiple-sets split feasibility
problem (.) is a minimizer of g over any closed convex subset, with minimum value of
zero. This motivates us to consider the following minimization problem:

min
x∈�

g(x), (.)

where � is a closed convex subset of H whose intersection with the solution set of the
multiple-sets split feasibility problem is nonempty, and get a solution of the so-called con-
strained multiple-sets split feasibility problem

x∗ ∈ � such that x∗ solves (.). (.)

2.3 The well-known lemmas
The following lemmas will be helpful for our main results in the next section.

Lemma . [] Let {xn} and {zn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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( –βn)zn +βnxn for all integers n ≥  and lim supn→∞(‖zn+ – zn‖– ‖xn+ – xn‖) ≤ . Then
limn→∞ ‖zn – xn‖ = .

Lemma . [] Let K be a nonempty closed convex subset of a real Hilbert space H . Let
T : K → K be a nonexpansive mapping with Fix(T) = ∅. Then T is demiclosed on K , i.e., if
xn ⇀ x ∈ K weakly and xn – Txn → , then x = Tx.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that
an+ ≤ ( – γn)an + δn, where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ an = .

3 Main results
LetH andH be two real Hilbert spaces. Let C,C, . . . ,CN beN nonempty closed convex
subsets of H and let Q,Q, . . . ,QM be M nonempty closed convex subsets of H. Let
A : H → H be a bounded linear operator. Assume that the multiple-sets split feasibility
problem is consistent, i.e., it is solvable. Now, we are devoted to solving the constrained
multiple-set split feasibility problem (.).
For solving (.), we introduce the following iterative algorithm.

Algorithm . Let f : H → H be a ρ-contraction. Let B : H → H be a self-adjoint,
strongly positive bounded linear operator with coefficient α > . Let σ and γ be two con-
stants such that  < γ < 

L and  < σρ < α. For arbitrary initial point x ∈ H, we define a
sequence {xn} iteratively by

xn+ = P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))

× P�

(
ξnσ f + (I – ξnB)

)
xn, (.)

for all n ≥ , where {ξn} is a real sequence in (, ).

Fact . The mapping I – γ (
∑N

i= αi(I – PCi ) +
∑M

j= βjA∗(I – PQj )A) is
γL
 -averaged.

In order to check Fact ., we need the following lemmas.

Lemma . (Baillon-Haddad) [] If h : H → R has an L-Lipschitz continuous gradient
∇h, then ∇h is 

L -ism.

Lemma . Given T : H → H and let V = I – T be the complement of T . Given also S :
H →H .

(i) T is nonexpansive if and only if V is 
 -inverse strongly monotone (in short, 

 -ism).
(ii) If S is ν-ism, then for γ > , γ S is ν

γ
-ism.

(iii) S is averaged if and only if the complement I – S is ν-ism for some ν > 
 .

Lemma . Given operators S,T ,V :H →H .
(i) If S = ( – α)T + αV for some α ∈ (, ) and if T is averaged and V is nonexpansive,

then S is averaged.

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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(ii) S is firmly nonexpansive if and only if the complement I – S is firmly nonexpansive.
If S is firmly nonexpansive, then S is averaged.

(iii) If S = ( – α)T + αV for some α ∈ (, ), T is firmly nonexpansive and V is
nonexpansive, then S is averaged.

(iv) If S and T are both averaged, then the product (composite) ST is averaged.

Proof of Fact . Since gradient ∇g(x) =
∑N

i= αi(I – PCi )x +
∑M

j= βjA∗(I – PQj )Ax has
an L-Lipschitz constant L =

∑N
i= αi +

∑M
j= βj‖A‖, by Lemma ., ∇g is 

L -ism and
γ (

∑N
i= αi(I – PCi ) +

∑M
j= βjA∗(I – PQj )A) is


γL -ism. Again, from Lemma .(iii), we de-

duce that I – γ (
∑N

i= αi(I – PCi ) +
∑M

j= βjA∗(I – PQj )A) is
γL
 -averaged. �

Now, we prove the convergence of the sequence {xn}.

Theorem . Suppose that S = ∅. Assume that the sequence {ξn} satisfies the control con-
ditions:

(i) limn→∞ ξn =  and
(ii)

∑∞
n= ξn = ∞.

Then the sequence {xn} generated by (.) converges to a solution x∗ of (.), where x∗ also
solves the following VI:

x∗ ∈ S such that
〈
σ f

(
x∗) – Bx∗, x̃ – x∗〉 ≤  for all x̃ ∈ S, (.)

where S is the set of solutions of (.).

Proof Let x∗ ∈ S. Since B is strongly positive bounded linear operator with coefficient
α > , we have ‖I – ξnB‖ ≤  – αξn (without loss of generality, we may assume ξn ≤ 

α
).

Thus, by (.), we have
∥∥xn+ – x∗∥∥

=

∥∥∥∥∥P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))

× P�

(
ξnσ f + (I – ξnB)

)
xn – x∗

∥∥∥∥∥
≤ ∥∥ξnσ f (xn) + (I – ξnB)xn – x∗∥∥
≤ ξnσ

∥∥f (xn) – f
(
x∗)∥∥ + ‖I – ξnB‖∥∥xn – x∗∥∥ + ξn

∥∥σ f
(
x∗) – Bx∗∥∥

≤ ξnσρ
∥∥xn – x∗∥∥ + ( – ξnα)

∥∥xn – x∗∥∥ + ξn
∥∥σ f

(
x∗) – Bx∗∥∥

=
[
 – (α – σρ)ξn

]∥∥xn – x∗∥∥ + (α – σρ)ξn
∥∥f (x∗) – Bx∗∥∥/(α – σρ).

An induction yields

∥∥xn+ – x∗∥∥ ≤ max

{∥∥xn – x∗∥∥, ‖f (x∗) – Bx∗‖
α – σρ

}

≤ max

{∥∥x – x∗∥∥, ‖f (x∗) – Bx∗‖
α – σρ

}
.

Hence, {xn} is bounded.

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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It is well-known that the metric projection P� is firmly nonexpansive, hence averaged.
By Fact ., I – γ (

∑N
i= αi(I –PCi ) +

∑M
j= βjA∗(I –PQj )A) is

γL
 -averaged. From Lemma .,

the composite of three averaged mappings is averaged. So, P�(I – γ (
∑N

i= αi(I – PCi ) +∑M
j= βjA∗(I – PQj )A))P� is an averaged mapping. Thus, there must exist a positive con-

stant δ ∈ (, ) such that

P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))
P� = ( – δ)I + δU ,

where U is a nonexpansive mapping. Set yn = ξnσ f (xn) + (I – ξnB)xn for all n≥ . Then we
have

xn+ =
(
( – δ)I + δU

)(
ξnσ f (xn) + (I – ξnB)xn

)
= ( – δ)xn + ξn( – δ)

(
σ f (xn) – Bxn

)
+ δUyn

= ( – δ)xn + δ

(
 – δ

δ
ξn

(
σ f (xn) – Bxn

)
+Uyn

)

= ( – δ)xn + δzn,

where

zn =
( – δ)ξn

δ

(
σ f (xn) – Bxn

)
+Uyn.

By virtue of ξn →  (as n→ ∞) and the boundedness of the sequences {f (xn)} and {Bxn},
we firstly observe that

lim
n→∞‖yn – xn‖ = lim

n→∞ ξn
∥∥σ f (xn) – Bxn

∥∥ = ,

and

lim
n→∞‖zn –Uyn‖ = lim

n→∞
( – δ)ξn

δ

∥∥σ f (xn) – Bxn
∥∥ = .

Next, we estimate ‖zn+ – zn‖. Note that

zn+ – zn =
( – δ)ξn+

δ

(
σ f (xn+) – Bxn+

)
+Uyn+ –

( – δ)ξn
δ

(
σ f (xn) – Bxn

)
–Uyn.

It follows that

‖zn+ – zn‖ ≤  – δ

δ

(
ξn+

∥∥σ f (xn+) – Bxn+
∥∥ + ξn

∥∥σ f (xn) – Bxn
∥∥)

+ ‖Uyn+ –Uyn‖

≤  – δ

δ

(
ξn+

∥∥σ f (xn+) – Bxn+
∥∥ + ξn

∥∥σ f (xn) – Bxn
∥∥)

+ ‖yn+ – yn‖.

Since yn+ – yn = ξn+σ f (xn+) + (I – ξn+B)xn+ – ξnσ f (xn) – (I – ξnB)xn, we get

‖zn+ – zn‖ ≤ ∥∥ξn+σ f (xn+) + (I – ξn+B)xn+ – ξnσ f (xn) – (I – ξnB)xn
∥∥

+
 – δ

δ

(
ξn+

∥∥σ f (xn+) – Bxn+
∥∥ + ξn

∥∥σ f (xn) – Bxn
∥∥)

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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≤ ‖xn+ – xn‖ + ξn+
∥∥σ f (xn+) – Bxn+

∥∥ + ξn
∥∥σ f (xn) – Bxn

∥∥
+
 – δ

δ

(
ξn+

∥∥σ f (xn+) – Bxn+
∥∥ + ξn

∥∥σ f (xn) – Bxn
∥∥)
.

It follows that

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤ ξn+
∥∥σ f (xn+) – Bxn+

∥∥ + ξn
∥∥σ f (xn) – Bxn

∥∥
+
 – δ

δ

(
ξn+

∥∥σ f (xn+) – Bxn+
∥∥ + ξn

∥∥σ f (xn) – Bxn
∥∥)
.

Since limn→∞ ξn =  and the sequences {f (xn)}, {Bxn} are bounded, we deduce

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we get

lim
n→∞‖zn – xn‖ = .

Therefore,

lim
n→∞‖Uxn – xn‖

= lim
n→∞

∥∥∥∥∥P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))
P�(xn) – xn

∥∥∥∥∥ = .

By the definition of the sequence {xn}, we know that xn ∈ �. Hence, P�(xn) = xn. So,

lim
n→∞

∥∥∥∥∥P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))
xn – xn

∥∥∥∥∥ = .

Next we prove

lim sup
n→∞

〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉 ≤ .

In order to get this inequality, we need to prove the following:

lim sup
n→∞

〈
σ f

(
x∗) – Bx∗,xn – x∗〉 ≤ ,

where x∗ is the unique solution of VI(.). For this purpose, we choose a subsequence {xni}
of {xn} such that

lim sup
n→∞

〈
σ f

(
x∗) – Bx∗,xn – x∗〉 = lim

i→∞
〈
σ f

(
x∗) – Bx∗,xni – x∗〉.

Since {xni} is bounded, there exists a subsequence of {xni} which converges weakly to a
point x̃. Without loss of generality, we may assume that {xni} converges weakly to x̃. Since

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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P�(I – γ (
∑N

i= αi(I – PCi ) +
∑M

j= βjA∗(I – PQj )A)) is nonexpansive, by Lemma ., we have
xni ⇀ x̃ ∈ Fix(P�(I – γ (

∑N
i= αi(I – PCi ) +

∑M
j= βjA∗(I – PQj )A))). Therefore,

lim sup
n→∞

〈
σ f

(
x∗) – Bx∗,xn – x∗〉 = lim

i→∞
〈
σ f

(
x∗) – Bx∗,xni – x∗〉

=
〈
σ f

(
x∗) – Bx∗, x̃ – x∗〉 ≤ .

Since ‖xn – P�(yn)‖ = ‖P�(xn) – P�(yn)‖ ≤ ‖xn – yn‖ → , we obtain

lim sup
n→∞

〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉 ≤ .

Note that

∥∥P�(yn) – x∗∥∥ =
〈
P�(yn) – yn,P�(yn) – x∗〉 + 〈

yn – x∗,P�(yn) – x∗〉.
From the property of the metric P�, we have 〈P�(yn) – yn,P�(yn) – x∗〉 ≤ . Hence,

∥∥P�(yn) – x∗∥∥ ≤ 〈
yn – x∗,P�(yn) – x∗〉

=
〈
ξnσ

(
f (xn) – f

(
x∗)) + (I – ξnB)

(
xn – x∗),P�(yn) – x∗〉

+ ξn
〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉

≤ (
ξnσ

∥∥f (xn) – f
(
x∗)∥∥ + ‖I – ξnB‖∥∥xn – x∗∥∥)∥∥P�(yn) – x∗∥∥

+ ξn
〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉

≤ (
 – ξn(α – σρ)

)∥∥xn – x∗∥∥∥∥P�(yn) – x∗∥∥
+ ξn

〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉

≤  – ξn(α – σρ)


∥∥xn – x∗∥∥ +


∥∥P�(yn) – x∗∥∥

+ ξn
〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉.

It follows that

∥∥P�(yn) – x∗∥∥ ≤ [
 – (α – σρ)ξn

]∥∥xn – x∗∥∥ + ξn
〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉.

Finally, we show that xn → x∗. From (.), we have

∥∥xn+ – x∗∥∥ =

∥∥∥∥∥P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))
P�(yn) – x∗

∥∥∥∥∥


≤ ∥∥P�(yn) – x∗∥∥

≤ [
 – (α – σρ)ξn

]∥∥xn – x∗∥∥

+ (α – σρ)ξn


α – σρ

〈
σ f

(
x∗) – Bx∗,P�(yn) – x∗〉

= ( – γn)
∥∥xn – x∗∥∥ + δn,

http://www.journalofinequalitiesandapplications.com/content/2013/1/272
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where γn = (α – σρ)ξn and δn = (α – σρ)ξn 
α–σρ

〈σ f (x∗) –Bx∗,P�(yn) – x∗〉. Since ∑∞
n= γn =

∞ and lim supn→∞
δn
γn

= lim supn→∞


α–σρ
〈σ f (x∗) – Bx∗,P�(yn) – x∗〉 ≤ , all conditions of

Lemma . are satisfied. Therefore, we immediately deduce that xn → x∗. This completes
the proof. �

From (.) and Theorem ., we can deduce easily the following results.

Algorithm . For an arbitrary initial point x ∈H, we define a sequence {xn} iteratively
by

xn+ = P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))

× P�

(
ξnσ f (xn) + ( – ξn)xn

)
, (.)

for all n ≥ , where {ξn} is a real sequence in (, ).

Corollary . Suppose that S = ∅. Assume that the sequence {ξn} satisfies the conditions
(i) limn→∞ ξn =  and
(ii)

∑∞
n= ξn = ∞.

Then the sequence {xn} generated by (.) converges to a point x∗,which solves the following
variational inequality:

x∗ ∈ S such that
〈
σ f

(
x∗) – x∗, x̃ – x∗〉 ≤  for all x̃ ∈ S.

Algorithm . For an arbitrary initial point x, we define a sequence {xn} iteratively by

xn+ = P�

(
I – γ

( N∑
i=

αi(I – PCi ) +
M∑
j=

βjA∗(I – PQj )A

))
P�

(
( – ξn)xn

)
, (.)

for all n ≥ , where {ξn} is a real sequence in (, ).

Corollary . Suppose that S = ∅. Assume that the sequence {ξn} satisfies the conditions
(i) limn→∞ ξn =  and
(ii)

∑∞
n= ξn = ∞.

Then the sequence {xn} generated by (.) converges to a point x∗ ∈ S which is the minimum
norm element in S.
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