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1 Introduction
Acontinuous function f = u+iv is a complex-valuedharmonic function in a domainD ⊂C

if both u and v are real harmonic in D. In any simply connected domain D, we can write
f = h + g , where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f . The harmonic function f = h+ g is sense preserving and locally one-to-one in D
if |h′(z)| > |g ′(z)| in D. See Clunie and Sheil-Small [].
For p ≥ , n ∈ N, denote by SH(n,p) the class of functions f = h + g that are sense pre-

serving, harmonic multivalent in the unit disk U = {z : |z| < }, where h and g are defined
by

h(z) = zp +
∞∑

k=n+p

akzk , g(z) =
∞∑

k=n+p–

bkzk , |bp| < , ()

which are analytic and multivalent functions in U .
Also, denote by SH(n,p) the subclass of SH(n,p) consisting of harmonic functions f =

h + g , where h and g are of the form

h(z) = zp –
∞∑

k=n+p

akzk , g(z) = –
∞∑

k=n+p–

bkzk , ak ,bk ≥ . ()

Note that SH(n,p) reduces to S(n,p), the class of analytic multivalent functions with
negative coefficients, if the co-analytic part of f = h + g is identically zero.
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We define an extended linear derivative operator of a Ruscheweyh-type harmonic func-
tion f = h + g in SH(n,p) by

Dμ,pf (z) =Dμ,ph(z) +Dμ,pg(z), ()

whereD is the Ruscheweyh derivative [] of power series φ(z) = zp +
∑∞

k=p+ φkzk , given by

Dμ,pφ(z) =
zp

( – z)μ+p
∗ φ(z)

= zp +
∞∑

k=p+

(
k +μ – 
k – p

)
φkzk

= zp +
∞∑

k=p+

�(k +μ)
(k – p)!�(p +μ)

φkzk (μ > –p).

The operator ∗ stands for the Hadamard product or convolution of two power series

φ(z) = zp +
∞∑

k=n+p

φkzk and �(z) = zp +
∞∑

k=n+p

�kzk

defined by

(φ ∗ �)(z) = φ(z) ∗ �(z) = zp +
∞∑

k=n+p

φk�kzk .

Raina and Srivastava [] introduced this extended Ruscheweyh operator for the class
S(n, ).
Next, we define the ordinary differential operator (Dμ,pf (z))(q) to be

(
Dμ,pf (z)

)(q) = (
Dμ,ph(z)

)(q) + (
Dμ,pg(z)

)(q), ()

where

(
Dμ,ph(z)

)(q) = p!
(p – q)!

zp–q +
∞∑

k=n+p

�(k +μ)
(k – p)!�(p +μ)

k!
(k – q)!

akzk–q and

(
Dμ,pg(z)

)(q) = ∞∑
k=n+p–

�(k +μ)
(k – p)!�(p +μ)

k!
(k – q)!

bkzk–q, p > q,p ∈N,q ∈N =N∪ {}.

Let SHq
μ(n,p,λ,α) denote the subclass of SH(n,p) consisting of functions f = h + g ∈

SH(n,p) that satisfy the condition

Re

{
λz(Dμ,pf (z))(q+) + ( – λ)z(D+μ,pf (z))(q+)

λ(Dμ,pf (z))(q) + ( – λ)(D+μ,pf (z))(q)

}
≥ α(p – q)

(
 ≤ λ ≤ , ≤ α < ,p > q,p ∈N,q ∈N =N∪ {},μ > –p,n ∈N, z ∈U

)
. ()

Define SHq
μ(n,p,λ,α) := SHq

μ(n,p,λ,α)∩ SH(n,p).
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Taking the co-analytic part of f = h+ g identically zero and specializing the parameters,
we obtain the following subclasses:

(i) SH
μ(n, ,λ,  – α)⊃ Kμ(n,λ,α) (Irmak et al. []),

(ii) SHq
μ(n,p,λ, ( – α)(p – q)) ⊃ Tq

μ(n,p,λ,α) (Ashwah []),
(iii) SH

μ(n, , ,  – α|γ |)⊃ Sn(γ ,μ,α) (γ ∈ C \ {}) (Murugusundaramoorthy and
Srivastava []).

We will use the notations

�(i,q) :=
i!

(i – q)!
, i ∈ {p,k},

Cp(k,μ) :=
�(k +μ)

(k – p)!�(p +μ)
.

Following Goodman [] and Ruscheweyh [] (see also [–] and []), for δ ≥ , we
define the set of the δ-neighborhood of f = h + g ∈ SH(n,p),

N δ
n,p

(
f (q); s(q)

)
=

{
s ∈ SH(n,p) : s(z) = zp –

∞∑
k=n+p

Akzk –
∞∑

k=n+p–

Bkz̄k ,

∞∑
k=n+p

k�(k,q)
(|ak –Ak| + |bk – Bk|

)

+ (n + p – )�(n + p – ,q)|bn+p– – Bn+p–| ≤ δ

}
. ()

In particular, for the function e(z) = zp, we immediately have

N δ
n,p

(
e(q); s(q)

)
=

{
s ∈ SH(n,p) : s(z) = zp –

∞∑
k=n+p

Akzk –
∞∑

k=n+p–

Bkz̄k ,

∞∑
k=n+p

k�(k,q)(Ak + Bk) + (n + p – )�(n + p – ,q)Bn+p– ≤ δ

}
. ()

Ruscheweyh-type harmonic univalent functions have been studied by several authors
such as [, ] and []. The object of the present paper is to investigate the various prop-
erties of multivalent harmonic functions belonging to the subclass SHq

μ(n,p,λ,α). This
class is motivated by two earlier investigations [] and []. We extend the results of []
which include harmonic multivalent functions. Necessary and sufficient coefficient con-
ditions, distortion bounds, extreme points and convex combination of the above men-
tioned class are derived. Also, inclusion relationships involving the (n, δ) neighborhoods
of multivalent harmonic functions belonging to this subclass are established.

2 Main results
Denote by SH∗(n,p) the class of functions f = h + g of the form () which are sense pre-
serving and multivalent harmonic starlike, satisfying the condition ∂

∂θ
(arg f (reiθ )) ≥ , for

each z = reiθ ,  ≤ θ < π , and  ≤ r < .
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Lemma . Let f = h + g be of the form (). If

∞∑
k=n+p

k|ak| +
∞∑

k=n+p–

k|bk| ≤ p (p≥ ,n ∈N) ()

then f ∈ SH∗(n,p).

Remark Lemma . follows immediately from the result due to Ahuja [] upon setting
p and k instead ofm and n +m – , respectively.

Theorem . Let f = h + g be given by (). Furthermore, let

∞∑
k=n+p


[
k +μ – λ(k – p)

][
k – q – α(p – q)

] Cp(k,μ)
� × (p +μ)

�(k,q)
�(p,q)

|ak|

+
∞∑

k=n+p–

[
k +μ – λ(k – p)

][(
k – q – α(p – q) + 

)
+

∣∣k – q – α(p – q) – 
∣∣]

×
(

Cp(k,μ)
� × (p +μ)

�(k,q)
�(p,q)

)
|bk| ≤ 

(
 ≤ λ ≤ , ≤ α < ,p > q,p ∈N,q ∈N =N∪ {},n ∈ N, z ∈U

)
()

then f is sense preserving, harmonic multivalent in U , and f ∈ SHq
μ(n,p,λ,α), where

� =
[(
( – α)(p – q) + 

)
–

∣∣( – α)(p – q) – 
∣∣].

Proof If the inequality () holds for the coefficients of f = h + g , then by (), f is sense
preserving, harmonic multivalent and starlike in U . In view of (), we need to prove that
Re{w} > , where

w =
(
λz

(
Dμ,pf (z)

)(q+) + ( – λ)z
(
D+μ,pf (z)

)(q+) – α(p – q)
[
λ
(
Dμ,pf (z)

)(q)
+ ( – λ)

(
D+μ,pf (z)

)(q)])/(λ(
Dμ,pf (z)

)(q) + ( – λ)
(
D+μ,pf (z)

)(q))
:=

A(z)
B(z)

.

Using the fact that Rew≥  ⇔ | +w| ≥ | –w|, it suffices to show that

∣∣A(z) + B(z)
∣∣ – ∣∣A(z) – B(z)

∣∣ ≥ .

Therefore we obtain

∣∣A(z) + B(z)
∣∣ – ∣∣A(z) – B(z)

∣∣
≥ [

�(p,q)× �
]|z|p–q

–
∞∑

k=n+p


[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)�(k,q)
(p +μ)

|ak||z|k–q

http://www.journalofinequalitiesandapplications.com/content/2013/1/271
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–
∞∑

k=n+p–

([
k +μ – λ(k – p)

][(
k – q – α(p – q) + 

)
+

∣∣k – q – α(p – q) – 
∣∣]

× Cp(k,μ)�(k,q)
(p +μ)

|bk||z|k–q
)

>
[
�(p,q)× �

]|z|p–q
×

{
 –

∞∑
k=n+p


[
k +μ – λ(k – p)

][
k – q – α(p – q)

] Cp(k,μ)
� × (p +μ)

�(k,q)
�(p,q)

|ak|

–
∞∑

k=n+p–

([
k +μ – λ(k – p)

][(
k – q – α(p – q) + 

)
+

∣∣k – q – α(p – q) – 
∣∣]

× Cp(k,μ)
� × (p +μ)

�(k,q)
�(p,q)

|bk|
)}

≥ .

This last expression is non-negative by (), and so the proof is complete. �

Corollary . For ( – α)(p – q) <  and n ≥ , if the inequality

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

|ak|

+
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

|bk|

≤ ( – α)(p – q)(
 ≤ λ ≤ ,  ≤ α < ,p > q,p ∈N,q ∈N =N∪ {})

holds, then f is sense preserving, harmonic multivalent in U , and f ∈ SHq
μ(n,p,λ,α).

Corollary . For ( – α)(p – q) ≥ , if the inequality

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

|ak|

+
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

|bk|

≤ (
 ≤ λ ≤ ,  ≤ α < ,p > q,p ∈N,q ∈N =N∪ {})

holds, then f is sense preserving, harmonic multivalent in U , and f ∈ SHq
μ(n,p,λ,α).

Theorem . Let f = h + g be given by (). Then

http://www.journalofinequalitiesandapplications.com/content/2013/1/271


Yaşar and Yalçın Journal of Inequalities and Applications 2013, 2013:271 Page 6 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/271

(i) for ( – α)(p – q) <  and n ≥ , f ∈ SHq
μ(n,p,λ,α) if and only if

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

ak

+
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bk

≤ ( – α)(p – q), ()

(ii) for ( – α)(p – q) ≥ , f ∈ SHq
μ(n,p,λ,α) if and only if

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

ak

+
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bk ≤ . ()

Proof The ‘if ’ part follows fromTheorem ., Corollary . and Corollary . upon noting
that SHq

μ(n,p,λ,α) ⊂ SHq
μ(n,p,λ,α). For the ‘only if ’ part, we show that f /∈ SHq

μ(n,p,λ,α)
if the condition () does not hold.
Note that a necessary and sufficient condition for f = h + g given by () to be in

SHq
μ(n,p,λ,α) is that the condition () to be satisfied. This is equivalent to

Re

{(
( – α)(p – q) –

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]

× Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

akzk–p

–
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bkzk–p
)

/(
 –

∞∑
k=n+p

[
k +μ – λ(k – p)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

akzk–p

–
∞∑

k=n+p–

[
k +μ – λ(k – p)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bkzk–p
)}

≥ .

The above condition must hold for all values of z, |z| = r < . Upon choosing the values
of z on the positive real axis where ≤ z = r < , we must have

(
( – α)(p – q) –

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

akrk–p

–
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bkrk–p
)
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/(
 –

∞∑
k=n+p

[
k +μ – λ(k – p)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

akrk–p

–
∞∑

k=n+p–

[
k +μ – λ(k – p)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bkrk–p
)

≥ . ()

If the condition () does not hold, then the numerator of () is negative for r sufficiently
close to  because of conditions (i) or (ii). Thus there exists a z = r in (, ), for which the
quotient in () is negative. This contradicts the required condition for f ∈ SHq

μ(n,p,λ,α)
and so the proof is complete. �

Next we determine the distortion bounds for the functions in SHq
μ(n,p,λ,α).

Theorem . Let f ∈ SHq
μ(n,p,λ,α). Then for |z| = r < , we have

(i) for ( – α)(p – q) <  and n ≥ ,

∣∣f (z)∣∣ ≤ ( + bn+p–)rp +
(

( – α)(p – q)
[n( – λ) + p +μ][n + ( – α)(p – q)]

× (p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]

[n( – λ) + p +μ][n + ( – α)(p – q)]

× n(n + p – q)
(n + p +μ – )(n + p)

bn+p–
)
rn+p

and

∣∣f (z)∣∣ ≥ ( – bn+p–)rp –
(

( – α)(p – q)
[n( – λ) + p +μ][n + ( – α)(p – q)]

× (p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]

[n( – λ) + p +μ][n + ( – α)(p – q)]

× n(n + p – q)
(n + p +μ – )(n + p)

bn+p–
)
rn+p,

(ii) for ( – α)(p – q) ≥ ,

∣∣f (z)∣∣ ≤ ( + bn+p–)rp +
(


[n( – λ) + p +μ][n + ( – α)(p – q)]

× (p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]

[n( – λ) + p +μ][n + ( – α)(p – q)]

× n(n + p – q)
(n + p +μ – )(n + p)

bn+p–
)
rn+p

http://www.journalofinequalitiesandapplications.com/content/2013/1/271
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and

∣∣f (z)∣∣ ≥ ( – bn+p–)rp –
(


[n( – λ) + p +μ][n + ( – α)(p – q)]

× (p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]

[n( – λ) + p +μ][n + ( – α)(p – q)]

× n(n + p – q)
(n + p +μ – )(n + p)

bn+p–
)
rn+p.

Proof (i) We only prove the right-hand inequality. The proof for the left-hand inequality
is similar and will be omitted. Let f ∈ SHq

μ(n,p,λ,α). Taking the absolute value of f , we
have

∣∣f (z)∣∣ ≤ ( + bn+p–)rp +
∞∑

k=n+p

(ak + bk)rk

≤ ( + bn+p–)rp +
∞∑

k=n+p

(ak + bk)rn+p

= ( + bn+p–)rp +


[n( – λ) + p +μ][n + ( – α)(p – q)]
(p +μ)

Cp(n + p,μ)
�(p,q)

�(n + p,q)

×
∞∑

k=n+p

[
n( – λ) + p +μ

][
n + ( – α)(p – q)

]

× Cp(n + p,μ)
(p +μ)

�(n + p,q)
�(p,q)

(ak + bk)rn+p

≤ ( + bn+p–)rp +


[n( – λ) + p +μ][n + ( – α)(p – q)]
(p +μ)

Cp(n + p,μ)
�(p,q)

�(n + p,q)

×
∞∑

k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

(ak + bk)rn+p.

Using Theorem .(i), we obtain

∣∣f (z)∣∣ ≤ ( + bn+p–)rp +
(

( – α)(p – q)
[n( – λ) + p +μ][n + ( – α)(p – q)]

× (p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]

[n( – λ) + p +μ][n + ( – α)(p – q)]

× n(n + p – q)
(n + p +μ – )(n + p)

bn+p–
)
rn+p.

The proof of the other case is similar and so is omitted. �

The following covering result follows from the left-hand inequality in Theorem ..

http://www.journalofinequalitiesandapplications.com/content/2013/1/271
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Corollary . Let f of the form () be so that f ∈ SHq
μ(n,p,λ,α). Then

(i) for ( – α)(p – q) <  and n ≥ ,

{
w : |w| <

[
 –

( – α)(p – q)
[n( – λ) + p +μ][n + ( – α)(p – q)]

(p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
([
n( – λ) + p +μ

][
n + ( – α)(p – q)

]
(n + p +μ – )(n + p)

–
[
n( – λ) + p +μ + λ – 

][
n –  + ( – α)(p – q)

])
× ([

n( – λ) + p +μ
][
n + ( – α)(p – q)

])–
× n(n + p – q)

(n + p +μ – )(n + p)
bn+p–

]}
⊂ f (U),

(ii) for ( – α)(p – q) ≥ ,

{
w : |w| <

[
 –


[n( – λ) + p +μ][n + ( – α)(p – q)]

(p +μ)
Cp(n + p,μ)

�(p,q)
�(n + p,q)

–
([
n( – λ) + p +μ

][
n + ( – α)(p – q)

]
(n + p +μ – )(n + p)

–
[
n( – λ) + p +μ + λ – 

][
n –  + ( – α)(p – q)

])
× ([

n( – λ) + p +μ
][
n + ( – α)(p – q)

])–
× n(n + p – q)

(n + p +μ – )(n + p)
bn+p–

]}
⊂ f (U).

Theorem . Let f be given by (). Then f ∈ SHq
μ(n,p,λ,α) if and only if

f (z) =
∞∑

k=n+p–

(
xkhk(z) + ykgk(z)

)
,

where hn+p–(z) = zp, hk(z), for k = n + p,n + p + , . . . is of the form

hk(z) =

⎧⎨
⎩zp – (–α)(p–q)(p+μ)�(p,q)

[k+μ–λ(k–p)][k–q–α(p–q)]Cp(k,μ)�(k,q)z
k ; ( – α)(p – q) <  and n≥ ,

zp – (p+μ)�(p,q)
[k+μ–λ(k–p)][k–q–α(p–q)]Cp(k,μ)�(k,q)z

k ; ( – α)(p – q) ≥ 

and gk(z), for k = n + p – ,n + p, . . . is of the form

gk(z) =

⎧⎨
⎩zp – (–α)(p–q)(p+μ)�(p,q)

[k+μ–λ(k–p)][k–q–α(p–q)]Cp(k,μ)�(k,q)z
k ; ( – α)(p – q) <  and n ≥ ,

zp – (p+μ)�(p,q)
[k+μ–λ(k–p)][k–q–α(p–q)]Cp(k,μ)�(k,q)z

k ; ( – α)(p – q) ≥ ,

xn+p– ≡ xp =  –

( ∞∑
k=n+p

xk +
∞∑

k=n+p–

yk

)
, xk ≥ , yk ≥ .

In particular, the extreme points of SHq
μ(n,p,λ,α) are {hk} and {gk}.
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Proof Suppose ( – α)(p – q) < , n≥ , and

f (z) =
∞∑

k=n+p–

(
xkhk(z) + ykgk(z)

)

= zp –
∞∑

k=n+p

( – α)(p – q)(p +μ)�(p,q)
[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)

xkzk

–
∞∑

k=n+p–

( – α)(p – q)(p +μ)�(p,q)
[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)

ykzk .

Then

∞∑
k=n+p

[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)
( – α)(p – q)(p +μ)�(p,q)

× ( – α)(p – q)(p +μ)�(p,q)
[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)

xk

+
∞∑

k=n+p–

[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)
( – α)(p – q)(p +μ)�(p,q)

× ( – α)(p – q)(p +μ)�(p,q)
[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)

yk

=
∞∑

k=n+p

xk +
∞∑

k=n+p–

yk =  – xp ≤ 

and so f ∈ SHq
μ(n,p,λ,α).

Conversely, if f ∈ SHq
μ(n,p,λ,α), then

ak ≤ ( – α)(p – q)
[k +μ – λ(k – p)][k – q – α(p – q)]

(p +μ)
Cp(k,μ)

�(p,q)
�(k,q)

and

bk ≤ ( – α)(p – q)
[k +μ – λ(k – p)][k – q – α(p – q)]

(p +μ)
Cp(k,μ)

�(p,q)
�(k,q)

.

Set

xk =
[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)

( – α)(p – q)(p +μ)�(p,q)
ak (k = n + p,n + p + , . . .),

yk =
[k +μ – λ(k – p)][k – q – α(p – q)]Cp(k,μ)�(k,q)

( – α)(p – q)(p +μ)�(p,q)
bk (k = n + p – ,n + p, . . .)

and

xp =  –

( ∞∑
k=n+p

xk +
∞∑

k=n+p–

yk

)
,
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where xp ≥ . Then, as required, we obtain

f (z) = xpzp +
∞∑

k=n+p

xkhk(z) +
∞∑

k=n+p–

ykgk(z).

The proof for the case ( – α)(p – q) ≥  is similar and hence is omitted. �

Theorem . The class SHq
μ(n,p,λ,α) is closed under convex combinations.

Proof Let fi ∈ SHq
μ(n,p,λ,α) for i = , , . . . , where fi is given by

fi(z) = zp –
∞∑

k=n+p

akiz
k –

∞∑
k=n+p–

bkiz
k .

Then by () and (),

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

aki

+
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bki

≤
⎧⎨
⎩( – α)(p – q) if ( – α)(p – q) <  and n≥ ,

 if ( – α)(p – q) ≥ .
()

For
∑∞

i= ti = ,  ≤ ti ≤ , the convex combination of fi may be written as

∞∑
i=

tif (z) = zp –
∞∑

k=n+p

( ∞∑
i=

tiaki

)
zk –

∞∑
k=n+p–

( ∞∑
i=

tibki

)
zk .

Then by (),

∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

( ∞∑
i=

tiaki

)

–
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

( ∞∑
i=

tibki

)

=
∞∑
i=

ti

{ ∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

aki

–
∞∑

k=n+p–

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

bki

}

≤
⎧⎨
⎩( – α)(p – q)

∑∞
i= ti = ( – α)(p – q) if ( – α)(p – q) <  and n≥ ,


∑∞

i= ti =  if ( – α)(p – q) ≥ .

This is the condition required by () and (), and so
∑∞

i= tifi(z) ∈ SHq
μ(n,p,λ,α). �
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Theorem . Let s(z) ∈ SHq
μ(n,p,λ,α), then

SHq
μ(n,p,λ,α)⊂N δ

n,p
(
e(q); s(q)

)
,

where e(z) and s(z) are given by (),
(i) for ( – α)(p – q) <  and n ≥ ,

δ =
( – α)(p – q)(p +μ)�(p,q)(n + p)

[n( – λ) + p +μ]Cp(n + p,μ)[n + ( – α)(p – q)]

–
[
 – (n + p – )�(n + p – ,q)

]
Bn+p–,

(ii) for ( – α)(p – q) ≥ ,

δ =
(p +μ)�(p,q)(n + p)

[n( – λ) + p +μ]Cp(n + p,μ)[n + ( – α)(p – q)]

–
[
 – (n + p – )�(n + p – ,q)

]
Bn+p–,

where

 =
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]�(n + p – ,q)n(n + p)

[n( – λ) + p +μ](n + p +μ – )[n + ( – α)(p – q)]
.

Proof Let s(z) ∈ SHq
μ(n,p,λ,α), ( – α)(p – q) <  and n ≥ . We need to show that s(z) ∈

N δ
n,p(e(q); s(q)). It suffices to show that s satisfies the condition (). In view of Theorem .(i),

we have

(
[n( – λ) + p +μ]Cp(n + p,μ)

(p +μ)�(p,q)

) ∞∑
k=n+p

(
k – q – α(p – q)

)
�(k,q)(Ak + Bk)

≤ ( – α)(p – q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]Cp(n + p – ,μ)�(n + p – ,q)

(p +μ)�(p,q)

× Bn+p–.

Then

∞∑
k=n+p

k�(k,q)(Ak + Bk)

≤ ( – α)(p – q)(p +μ)�(p,q)
[n( – λ) + p +μ]Cp(n + p,μ)

–
(
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]�(n + p – ,q)n

[n( – λ) + p +μ](n + p +μ – )

)
Bn+p–

+
(q + α(p – q))

(n + p)

∞∑
k=n+p

k�(k,q)(Ak + Bk)
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so that

∞∑
k=n+p

k�(k,q)(Ak + Bk) ≤ ( – α)(p – q)(p +μ)�(p,q)(n + p)
[n( – λ) + p +μ]Cp(n + p,μ)[n + ( – α)(p – q)]

–Bn+p–

= δ – (n + p – )�(n + p – ,q)Bn+p–,

which, in view of definition (), completes the proof of Theorem .. The proof of other
case is similar and so is omitted. �

Remark Taking the co-analytic part of s(z) of the form () identically zero and letting
s ∈ SHq

μ(n,p,λ, ( – α)(p – q)), we obtain the neighborhood result of Ashwah [].

Remark Taking the co-analytic part of s(z) of the form () identically zero and letting
s ∈ SH

μ(n, , ,  – α|γ |), we obtain the neighborhood result of Murugusundaramoorthy
and Srivastava [].

Theorem . Let f ∈ SHm
n,p(q,λ,α) and

(i) for ( – α)(p – q) <  and n ≥ ,

δ ≤ �(n + p – ,q)

×
[
p –

( – α)(p – q)(p +μ)�(p,q)(n + p – q)!
[n( – λ) + p +μ][n + ( – α)(p – q)]Cp(n + p,μ)(n + p – )!

–
(
(n + p – ) –�

)
bn+p–

]
,

(ii) for ( – α)(p – q) ≥ ,

δ ≤ �(n + p – ,q)

×
[
p –

(p +μ)�(p,q)(n + p – q)!
[n( – λ) + p +μ][n + ( – α)(p – q)]Cp(n + p,μ)(n + p – )!

–
(
(n + p – ) –�

)
bn+p–

]

then

N δ
n,p

(
f (q); s(q)

) ⊂ SH∗(n,p),

where

� =
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]�(n + p – ,q)n(n + p – q)!

[n( – λ) + p +μ][n + ( – α)(p – q)](n + p – )!(n + p +μ – )
.

Proof Let ( – α)(p – q) <  and n ≥ . Also, suppose that f (z) ∈ SHm
n,p(q,λ,α) and s(z) ∈

N δ
n,p(f (q); s(q)). We need to show that s(z) ∈ SH∗(n,p). It suffices to show that s satisfies the
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condition (). We have

∞∑
k=n+p

k(Ak + Bk) + (n + p – )Bn+p–

≤
∞∑

k=n+p

k
[|ak –Ak| + |bk – Bk|

]
+ (n + p – )|bn+p– – Bn+p–|

+
∞∑

k=n+p

k(ak + bk) + (n + p – )bn+p–

≤ 
�(n + p – ,q)

[ ∞∑
k=n+p

k�(k,q)
(|ak –Ak| + |bk – Bk|

)

+ (n + p – )�(n + p – ,q)|bn+p– – Bn+p–|
]
+ (n + p – )bn+p–

+
(

(p +μ)�(p,q)(n + p – q)!
[n( – λ) + p +μ][n + ( – α)(p – q)]Cp(n + p,μ)(n + p – )!

)

×
( ∞∑
k=n+p

[
k +μ – λ(k – p)

][
k – q – α(p – q)

]Cp(k,μ)
(p +μ)

�(k,q)
�(p,q)

(ak + bk)

)

≤ δ

�(n + p – ,q)
+ (n + p – )bn+p–

+
(

(p +μ)�(p,q)(n + p – q)!
[n( – λ) + p +μ][n + ( – α)(p – q)]Cp(n + p,μ)(n + p – )!

)

×
(
( – α)(p – q)

–
[n( – λ) + p +μ + λ – ][n –  + ( – α)(p – q)]Cp(n + p – ,μ)�(n + p – ,q)

(p +μ)�(p,q)

× bn+p–
)
.

Now this expression is never greater than p provided that

δ ≤ �(n + p – ,q)
[
p –

( – α)(p – q)(p +μ)�(p,q)(n + p – q)!
[n( – λ) + p +μ][n + ( – α)(p – q)]Cp(n + p,μ)(n + p – )!

–
(
(n + p – ) –�

)
bn+p–

]
.

The proof of the other case is similar and so is omitted. �
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