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Abstract

In this study we extend the concept of Z-asymptotically lacunary statistical
equivalent sequences by using the sequence p = (px) which is the sequence of
positive real numbers where 0 is a lacunary sequence and Z is an ideal of the subset
of positive integers.
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1 Introduction

The concept of Z-convergence was introduced by Kostyrko et al. in a metric space [1].
Later it was further studied by Dems [2], Das and Savas [3], Savas [4—7] and many others.
Z-convergence is a generalization form of statistical convergence, which was introduced
by Fast (see [8]) and that is based on the notion of an ideal of the subset of positive inte-

gers N.

Definition 1.1 A family Z C 2" is said to be an ideal of N if the following conditions hold:
(a) A,BeZimpliesAUB€Z,
(b) AeZ, BC AimpliesBeT.

Anideal is called non-trivial if N ¢ 7, and a non-trivial ideal is called admissible if {n} € 7

for each n € N.

Definition 1.2 A family of sets F C 2" is a filter in N if and only if:
(i) W& F.
(ii) For each A,Be F,wehave ANBE€EF.
(iii) For each A € F and each B2 A, we have B€ F.

Proposition 1.1 7 is a non-trivial ideal in N if and only if
F=FZ)={M=N\A:AeI}

is a filter in N (see [1]).
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Definition 1.3 A real sequence x = (xy) is said to be Z-convergent to L € R if and only if
for each ¢ > 0 the set

A.={keN:|x—L| > ¢}
belongs to Z. The number L is called the Z-limit of the sequence x (see [1]).

Remark1 IfwetakeZ =7y = {A € N: A is a finite subset}. Then Zy is a non-trivial admis-
sible ideal of N and the corresponding convergence coincides with the usual convergence.

A lacunary sequence is an increasing integer sequence 6 = (k,) such that ko = 0 and

hy, =k, — k,.1 — 00 as r — 00. The intervals determined by 6 are denoted I, = (k,_1, k,] and

the ratio k]:il is denoted by g,

In 1993, Marouf presented definitions for asymptotically equivalent sequences and
asymptotic regular matrices.

Definition 1.4 [9] Two nonnegative sequences x = (x;) and y = (yx) are said to be asymp-
totically equivalent if

lim =% =1
k- Yk
and it is denoted by x ~ y.

Definition 1.5 (Fridy [10]) The sequence x = (x;) has statistic limit L, denoted by
st-limx = L, provided that for every € > 0,

1
lim—{the number of k <n: |x; —L| > e} =0.
non

In 2003, Patterson defined asymptotically statistical equivalent sequences by using the
definition of statistical convergence as follows.

Definition 1.6 (Patterson [11]) Two nonnegative sequences x = (xx) and y = (y) are said
to be asymptotically statistical equivalent of multiple L provided that for every € > 0,

g
Yk

1
lim—{the number of k< n: ZE} =0
n n

(denoted by x X y), and simply asymptotically statistical equivalent if L = 1.

In 2006, Patterson and Savas presented definitions for asymptotically lacunary statisti-
cal equivalent sequences (see [12]).

Definition 1.7 Let 0 = (k,) be a lacunary sequence, two nonnegative sequences [x] and
[y] are said to be asymptotically lacunary statistical equivalent of multiple L provided that

.

where the vertical bars indicate the number elements in the enclosed set.

for every ¢ >0

L
Yk

1
lim —

:O,
r h,

{ke],:
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Definition 1.8 Let 0 = (k) be a lacunary sequence, two number sequences x = (x) and
y = (yx) are said to be strong asymptotically lacunary equivalent of multiple L provided
that

kel

In 2008, Savas and Patterson gave an extension on asymptotically lacunary statistical
equivalent sequences, and they investigated some relations between strongly asymptot-
ically lacunary equivalent sequences and strongly Cesdro asymptotically equivalent se-
quences. More applications of the asymptotically statistical equivalent sequences can be
seen in [13-16].

Definition 1.9 [17] Let 6 = (k,) be a lacunary sequence and let p = (px) be a sequence of
positive real numbers. Two number sequences x = (x) and y = (yx) are said to be strongly
asymptotically lacunary equivalent of multiple L provided that

hm Z

" kel,

L(p)
(denoted by x L y) and simply strongly asymptotically lacunary equivalent if L = 1.

Definition 1.10 Let p = (px) be a sequence of positive real numbers. Two number se-
quences x = (x;) and y = (yx) are said to be strongly Ceséaro asymptotically equivalent to L
provided that

hznn Z

%l
Yk

(denoted by x 4 y) and simply strongly Cesédro asymptotically equivalent if L = 1.
The following definitions are given in [3].

Definition 1.11 A sequence x = (xy) is said to be Z-statistically convergent to L or S(Z)-
convergent to L if, forany ¢ >0 and é > 0,

{neN:%|{k§n:|xk—L|Zs}|28}GI.

In this case, we write xx — L(S(Z)). The class of all Z-statistically convergent sequences
will be denoted by S(Z).

Definition1.12 Let 6 be alacunary sequence. A sequence x = (x) is said to be Z-lacunary
statistically convergent to L or S¢(Z)-convergent to L if, for any ¢ >0 and § > 0,

{reN:hi|{kel,:|xk—L|zs}| 35} el

In this case, we write xx — L(Sp(Z)). The class of all Z-lacunary statistically convergent
sequences will be denoted by Sy(Z).
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Definition 1.13 Let 6 be a lacunary sequence. A sequence x = (xx) is said to be strong
Z-lacunary convergent to L or Ny(Z)-convergent to L if, for any ¢ > 0,

{reN-—E:Mk<u>s}eI

kely

In this case, we write xy — L(Ny(Z)). The class of all strong Z-lacunary statistically con-
vergent sequences will be denoted by Ny (Z).

Throughout Z will stand for a proper admissible ideal of N, and by sequence we always
mean sequences of real numbers.

Recently, Savas defined Z-asymptotically lacunary statistical equivalent sequences by
using the definitions Z-convergence and asymptotically lacunary statistical equivalent se-
quences together.

Definition 1.14 [18] Let 6 = (k,) be a lacunary sequence; the two nonnegative sequences
x = (x) and y = (yx) are said to be Z-asymptotically lacunary statistical equivalent of mul-
tiple L provided that for every ¢ >0 and § > 0,

e oo

. LSO
In this case we write x ~ y.

L)

{EN 1
r T —
h Yk

r

2 Main results
In this section we shall give some new definitions and also examine some inclusion rela-

tions.

Definition 2.1 Let 6 = (k,) be a lacunary sequence and let p = (px) be a sequence of pos-
itive real numbers. Two number sequences x = (xx) and y = (yx) are said to be strongly
T-asymptotically lacunary equivalent of multiple L for the sequence p provided that

{reN:hiZ

r kel,

L
Yk

Pk
zs} el.

N )
In this situation we writex "~ y.

L N@ N V@)
If we take py =p forall k e N, we writex ~ yinsteadofx "~ y.

Definition 2.2 Let 6 = (k,) be a lacunary sequence and let p = (px) be a sequence of pos-
itive real numbers. Two number sequences x = (x¢) and y = (yx) are said to be strongly
Cesaro Z-asymptotically equivalent of multiple L provided that

:neN }: zs}ez

k=1
o®)(D) . . : . .
(denoted by x  ~ " y) and simply strongly Cesaro Z-asymptotically equivalent if L = 1.

*_r
Yk
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Theorem 2.1 Let 0 = (k,) be a lacunary sequence. Then:

NI (@) S5(@)
a) Ifx ~ y, thenx Ny
sk NgP(T)
b) Ifx,y€looandx ~ y,thenx ~ y;

L Lp(

L(T) N,
© (@~ PNle=(x ~ y)

Lp

Ny (D)
Proof (a) Letx ‘~  yande >0 be given. Then

P p
BEEVENDY
kely < ke]r&lf,—f—L\zs Yk
> g? {kel,: Jﬁ—L za}
Yk
and so
1
LU {kez, g >€}.
5phr kel, Yk r

Then, for any § > 0,

1
{reN:— {ke] ——L >s} 28}
hr Yk
1 p
C{reN:—Zﬁ—L’ >8p5}EI
" kel, Vi

SH(T)
Therefore x ~ y.
L

sk
(b) Let x and y be bounded sequences and x N y. Then there is an M such that | ;—: -L| <
M for all k. For each ¢ > 0,

12 1 p
—Z——LI -1 Z ’&_L‘ Loy B
r Yk hr X Yk
kely ke],&l —L|ze kelr&\ﬁ—Lks
1 1
< M {ke] ——L >8} + —¢gf {ke],: ﬁ—L <s}
hy Yk r Yk
P
{ke] ——L'>8} + P,
r Yk
Then, for any § > 0,
1 X
reN:h—Z——L >¢
rkelr Y
Xk ep
CireN:—\{kel,:|—=L|>¢y|>—1t el
r 3 MpP
NP (@)

Therefore x '~ y.
(c) This follows from (a) and (b). O
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Theorem 2.2 Let 6 = (k,) be a lacunary sequence, infy px = h and sup, p = H. Then

N S
x '~ 'y implies x ~ y.

L) 7
Proof Assume that x ' yand ¢ > 0. Then

1 Xk Pk 1 Xk Pk 1 Xk Pk
h_ Z y— —-L = h_ Z — L + h_ Z — =L
r k r x Vi r X k
kel kel,&\y—i—uzs kelr&\y—i—Lks
Pk
-
hy o Yk
kelr&\ﬁ—uzs
1
= h_ Z (e)Pk
" kel,&\;‘—f—uzs
1
> ), min{e)" )"}
’ keI,&\’yLi—uzs
1
> —min{(s)h,(s)H} {ke[,: Xk -L zs}
hr Yk
and
1
{reN:— {kel,: o ze} za}
hr Yk
1 Pk
c {reN: —Z _p ermin{(s)h,(s)H}} eT.
hr kel, Yk
SE(T)
Thus we have x ~ . g

Theorem 2.3 Let x and y be bounded sequences, infy py = h and sup, p = H. Then

sko NPT
x ~ y implies x "~ y.

Proof Suppose that x and y are bounded and ¢ > 0. Then there is an integer K such that
|;—£ —L| <K forall k,

1 Pk Pk Pk
D) D M R -
h, Yk h - Yk - - Yk
kely kelr&\yfi—uz keIr&\}Ti—Lke
1
<— {ke[,: x—k—L‘ > f”max{Kh,KH}
hr Vi 2
1 X ¢ | | max(g)Pk
+ — ke],:—k—L < = L
hy Yk 2 2
1 h, H
< max K", KM} — {ke],: *_1 zf} , maxle’, e}
hr yk 2 2
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and
1 Pk
{reN:h—Zﬁ_ ZS}
" kel, Vi
_ B H
g{,eN;i{kelr ﬁ_sz}‘>28LW}
h, Vi 2 2 max (K", K1}
NP ()
Thus we havex "~ " y. O

Theorem 2.4 Let 6 = (k,) be a lacunary sequence with liminf, q, > 1, then

O . NP
x ~ 'y implies x "~ y.

Proof 1f liminf, g, > 1, then there exists § > 0 such that g, > 1+ § for all r > 1. Since %, =

k, — k,_1, we have k—; < % and k;l—;‘ < % Let ¢ > 0 and define the set

h )
Pk
<E&¢.

We can easily say that S € F(Z), which is the filter of the ideal Z,

g
Yk

1 &
S:!kreNIk—Z

" k=1

K K
1 Pk 1 r Pk 1 r-1 Pk
N Dy D
AN hy 4519k hy 459
— _rl - ﬁ L‘Pk kr—l 1 kri ﬁ Pk
hr kr k-1 Vi hr kr—l k-1 Vi
1+6 1,
<|—)e-=¢
- 8 8
for each k, € S. Choose n = (lsﬁ)e - %s/. Therefore,
1 X Pk
{reN:h—Z *_r <n} e F(T)
r kel, Vi
and it completes the proof. O

For the next result, we assume that the lacunary sequence 0 satisfies the condition that
for any set C € F(Z), | {n: k1 <n<k,,reC} e FZ).

Theorem 2.5 Let 0 = (k,) be a lacunary sequence with limsup g, < 0o, then

NP 0
x '~ 'y implies x ~ y.
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NI (1)
Proof If limsup g, < 0o, then there exists B > 0 such that g, < Bforall » > 1. Let x '~ y

and define the sets T and R such that

1 Pk
T:{reN:h—Zﬁ—L <51}
rke],yk
and
1 Pk
R={neN: - ﬂ—L <&
o 1 VK
Let
1 i Pk
Aj=— — - <&
] hzyk 1

J kel;

for all j € T. It is obvious that T € F(Z). Choose n is any integer with k,_; < n < k,, where

reT,
1 | Pk 1 b Xk Pk
o s YR
n P Yk Kr-1 P Yk
1 Pk Pk Pk
=k_<2ﬂ_l" +Zﬁ_L‘ +...+Zﬁ_L )
-1 kel Vi kel Vi kely Vi
k 1 Pk ky—ki (1 Pk
:_1<_Z’&_L )+#(—ZQ—L >+
k1 \ I 1K k1 \ b
ke —k—1 (1 Pk
+#(_Z’ﬁ_L )
kr—l hrkelr Yk
kl kz - k1 kr - kr,l
=—A Ay +---+ ———A,
kr—l o kr—l 2t * kr—l
k,
§<su A»)—
je]P ! k—l
< &1B.

Choose g5 = % and in view of the fact that | J{r : k.1 <n < k,,r € T} C R, where T € F(Z),
it follows from our assumption on 6 that the set R also belongs to F(Z) and this completes
the proof of the theorem. d
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