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Abstract
In this study we extend the concept of I-asymptotically lacunary statistical
equivalent sequences by using the sequence p = (pk) which is the sequence of
positive real numbers where θ is a lacunary sequence and I is an ideal of the subset
of positive integers.
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1 Introduction
The concept of I-convergence was introduced by Kostyrko et al. in a metric space [].
Later it was further studied by Dems [], Das and Savaş [], Savaş [–] and many others.
I-convergence is a generalization form of statistical convergence, which was introduced
by Fast (see []) and that is based on the notion of an ideal of the subset of positive inte-
gers N.

Definition . A family I ⊂ N is said to be an ideal ofN if the following conditions hold:
(a) A,B ∈ I implies A∪ B ∈ I ,
(b) A ∈ I , B⊂ A implies B ∈ I .

An ideal is called non-trivial ifN /∈ I , and a non-trivial ideal is called admissible if {n} ∈ I
for each n ∈N.

Definition . A family of sets F ⊂ N is a filter in N if and only if:
(i) ∅ /∈ F .
(ii) For each A,B ∈ F , we have A∩ B ∈ F .
(iii) For each A ∈ F and each B ⊇ A, we have B ∈ F .

Proposition . I is a non-trivial ideal in N if and only if

F = F(I) = {M =N\A : A ∈ I}

is a filter in N (see []).
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Definition . A real sequence x = (xk) is said to be I-convergent to L ∈ R if and only if
for each ε >  the set

Aε =
{
k ∈N : |xk – L| ≥ ε

}
belongs to I . The number L is called the I-limit of the sequence x (see []).

Remark  If we take I = If = {A⊆N : A is a finite subset}. Then If is a non-trivial admis-
sible ideal ofN and the corresponding convergence coincides with the usual convergence.

A lacunary sequence is an increasing integer sequence θ = (kr) such that k =  and
hr = kr – kr– → ∞ as r → ∞. The intervals determined by θ are denoted Ir = (kr–,kr] and
the ratio kr

kr–
is denoted by qr .

In , Marouf presented definitions for asymptotically equivalent sequences and
asymptotic regular matrices.

Definition . [] Two nonnegative sequences x = (xk) and y = (yk) are said to be asymp-
totically equivalent if

lim
k

xk
yk

= 

and it is denoted by x ∼ y.

Definition . (Fridy []) The sequence x = (xk) has statistic limit L, denoted by
st- limx = L, provided that for every ε > ,

lim
n


n

{
the number of k ≤ n : |xk – L| ≥ ε

}
= .

In , Patterson defined asymptotically statistical equivalent sequences by using the
definition of statistical convergence as follows.

Definition . (Patterson []) Two nonnegative sequences x = (xk) and y = (yk) are said
to be asymptotically statistical equivalent of multiple L provided that for every ε > ,

lim
n


n

{
the number of k < n :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}
= 

(denoted by x
SL∼ y), and simply asymptotically statistical equivalent if L = .

In , Patterson and Savaş presented definitions for asymptotically lacunary statisti-
cal equivalent sequences (see []).

Definition . Let θ = (kr) be a lacunary sequence, two nonnegative sequences [x] and
[y] are said to be asymptotically lacunary statistical equivalent of multiple L provided that
for every ε > 

lim
r


hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ = ,

where the vertical bars indicate the number elements in the enclosed set.
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Definition . Let θ = (kr) be a lacunary sequence, two number sequences x = (xk) and
y = (yk) are said to be strong asymptotically lacunary equivalent of multiple L provided
that

lim
r


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣ = .

In , Savaş and Patterson gave an extension on asymptotically lacunary statistical
equivalent sequences, and they investigated some relations between strongly asymptot-
ically lacunary equivalent sequences and strongly Cesáro asymptotically equivalent se-
quences. More applications of the asymptotically statistical equivalent sequences can be
seen in [–].

Definition . [] Let θ = (kr) be a lacunary sequence and let p = (pk) be a sequence of
positive real numbers. Two number sequences x = (xk) and y = (yk) are said to be strongly
asymptotically lacunary equivalent of multiple L provided that

lim
r


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk
= 

(denoted by x
NL(p)

θ∼ y) and simply strongly asymptotically lacunary equivalent if L = .

Definition . Let p = (pk) be a sequence of positive real numbers. Two number se-
quences x = (xk) and y = (yk) are said to be strongly Cesáro asymptotically equivalent to L
provided that

lim
n


n

n∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk
= 

(denoted by x
σ (p)∼ y) and simply strongly Cesáro asymptotically equivalent if L = .

The following definitions are given in [].

Definition . A sequence x = (xk) is said to be I-statistically convergent to L or S(I)-
convergent to L if, for any ε >  and δ > ,

{
n ∈ N :


n

∣∣{k ≤ n : |xk – L| ≥ ε
}∣∣ ≥ δ

}
∈ I .

In this case, we write xk → L(S(I)). The class of all I-statistically convergent sequences
will be denoted by S(I).

Definition . Let θ be a lacunary sequence. A sequence x = (xk) is said to be I-lacunary
statistically convergent to L or Sθ (I)-convergent to L if, for any ε >  and δ > ,

{
r ∈N :


hr

∣∣{k ∈ Ir : |xk – L| ≥ ε
}∣∣ ≥ δ

}
∈ I .

In this case, we write xk → L(Sθ (I)). The class of all I-lacunary statistically convergent
sequences will be denoted by Sθ (I).
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Definition . Let θ be a lacunary sequence. A sequence x = (xk) is said to be strong
I-lacunary convergent to L or Nθ (I)-convergent to L if, for any ε > ,

{
r ∈N :


hr

∑
k∈Ir

|xk – L| ≥ ε

}
∈ I .

In this case, we write xk → L(Nθ (I)). The class of all strong I-lacunary statistically con-
vergent sequences will be denoted by Nθ (I).

Throughout I will stand for a proper admissible ideal of N, and by sequence we always
mean sequences of real numbers.
Recently, Savaş defined I-asymptotically lacunary statistical equivalent sequences by

using the definitions I-convergence and asymptotically lacunary statistical equivalent se-
quences together.

Definition . [] Let θ = (kr) be a lacunary sequence; the two nonnegative sequences
x = (xk) and y = (yk) are said to be I-asymptotically lacunary statistical equivalent of mul-
tiple L provided that for every ε >  and δ > ,

{
r ∈N :


hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ δ

}
∈ I .

In this case we write x
SLθ (I)∼ y.

2 Main results
In this section we shall give some new definitions and also examine some inclusion rela-
tions.

Definition . Let θ = (kr) be a lacunary sequence and let p = (pk) be a sequence of pos-
itive real numbers. Two number sequences x = (xk) and y = (yk) are said to be strongly
I-asymptotically lacunary equivalent of multiple L for the sequence p provided that

{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk

≥ ε

}
∈ I .

In this situation we write x
NL(p)

θ (I)∼ y.

If we take pk = p for all k ∈N, we write x
NLp

θ (I)∼ y instead of x
NL(p)

θ (I)∼ y.

Definition . Let θ = (kr) be a lacunary sequence and let p = (pk) be a sequence of pos-
itive real numbers. Two number sequences x = (xk) and y = (yk) are said to be strongly
Cesáro I-asymptotically equivalent of multiple L provided that

{
n ∈ N :


n

n∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk

≥ ε

}
∈ I

(denoted by x
σ (p)(I)∼ y) and simply strongly Cesáro I-asymptotically equivalent if L = .
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Theorem . Let θ = (kr) be a lacunary sequence. Then:

(a) If x
NLp

θ (I)∼ y, then x
SLθ (I)∼ y;

(b) If x, y ∈ l∞ and x
SLθ (I)∼ y, then x

NLp
θ (I)∼ y;

(c) (x
SLθ (I)∼ y)∩ l∞ = (x

NLp
θ (I)∼ y)∩ l∞.

Proof (a) Let x
NLp

θ (I)∼ y and ε >  be given. Then

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
p

≥
∑

k∈Ir & | xkyk –L|≥ε

∣∣∣∣xkyk – L
∣∣∣∣
p

≥ εp
∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣
and so


εphr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
p

≥ 
hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣.
Then, for any δ > ,

{
r ∈N :


hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ δ

}

⊆
{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
p

≥ εpδ

}
∈ I .

Therefore x
SLθ (I)∼ y.

(b) Let x and y be bounded sequences and x
SLθ (I)∼ y. Then there is anM such that | xkyk –L| ≤

M for all k. For each ε > ,


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
p

=

hr

∑
k∈Ir & | xkyk –L|≥ε

∣∣∣∣xkyk – L
∣∣∣∣
p

+

hr

∑
k∈Ir & | xkyk –L|<ε

∣∣∣∣xkyk – L
∣∣∣∣
p

≤ 
hr
Mp

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ + 
hr

εp
∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ < ε

}∣∣∣∣
≤ Mp

hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ + εp.

Then, for any δ > ,

{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
p

≥ ε

}

⊆
{
r ∈N :


hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ εp

Mp

}
∈ I .

Therefore x
NLp

θ (I)∼ y.
(c) This follows from (a) and (b). �
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Theorem . Let θ = (kr) be a lacunary sequence, infk pk = h and supk p =H . Then

x
NL(p)

θ (I)∼ y implies x
SLθ (I)∼ y.

Proof Assume that x
NL(p)

θ (I)∼ y and ε > . Then


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk

=

hr

∑
k∈Ir & | xkyk –L|≥ε

∣∣∣∣xkyk – L
∣∣∣∣
pk
+


hr

∑
k∈Ir & | xkyk –L|<ε

∣∣∣∣xkyk – L
∣∣∣∣
pk

≥ 
hr

∑
k∈Ir & | xkyk –L|≥ε

∣∣∣∣xkyk – L
∣∣∣∣
pk

≥ 
hr

∑
k∈Ir & | xkyk –L|≥ε

(ε)pk

≥ 
hr

∑
k∈Ir & | xkyk –L|≥ε

min
{
(ε)h, (ε)H

}

≥ 
hr

min
{
(ε)h, (ε)H

}∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣
and

{
r ∈N :


hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ δ

}

⊆
{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk

≥ δmin
{
(ε)h, (ε)H

}} ∈ I .

Thus we have x
SLθ (I)∼ y. �

Theorem . Let x and y be bounded sequences, infk pk = h and supk p =H . Then

x
SLθ (I)∼ y implies x

NL(p)
θ (I)∼ y.

Proof Suppose that x and y are bounded and ε > . Then there is an integer K such that
| xkyk – L| ≤ K for all k,


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk

=

hr

∑
k∈Ir & | xkyk –L|≥ε

∣∣∣∣xkyk – L
∣∣∣∣
pk
+


hr

∑
k∈Ir & | xkyk –L|<ε

∣∣∣∣xkyk – L
∣∣∣∣
pk

≤ 
hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε



}∣∣∣∣max
{
Kh,KH}

+

hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ < ε



}∣∣∣∣max(ε)pk


≤ max
{
Kh,KH} 

hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε



}∣∣∣∣ + max{εh, εH}
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and

{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk

≥ ε

}

⊆
{
r ∈N :


hr

∣∣∣∣
{
k ∈ Ir :

∣∣∣∣xkyk – L
∣∣∣∣ ≥ ε



}∣∣∣∣ ≥ ε –max{εh, εH}
max{Kh,KH}

}
∈ I .

Thus we have x
NL(p)

θ (I)∼ y. �

Theorem . Let θ = (kr) be a lacunary sequence with lim infr qr > , then

x
σ (p)(I)∼ y implies x

NL(p)
θ (I)∼ y.

Proof If lim infr qr > , then there exists δ >  such that qr ≥  + δ for all r ≥ . Since hr =
kr – kr–, we have kr

hr ≤ +δ
δ

and kr–
hr ≤ 

δ
. Let ε >  and define the set

S =

{
kr ∈N :


kr

kr∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk
< ε

}
.

We can easily say that S ∈ F(I), which is the filter of the ideal I ,


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk

=

hr

kr∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk
–


hr

kr–∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk

=
kr
hr


kr

kr∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk
–
kr–
hr


kr–

kr–∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk

≤
(
 + δ

δ

)
ε –


δ
ε′

for each kr ∈ S. Choose η = ( +δ
δ
)ε – 

δ
ε′. Therefore,

{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk
< η

}
∈ F(I)

and it completes the proof. �

For the next result, we assume that the lacunary sequence θ satisfies the condition that
for any set C ∈ F(I),

⋃{n : kr– < n < kr , r ∈ C} ∈ F(I).

Theorem . Let θ = (kr) be a lacunary sequence with lim supqr < ∞, then

x
NL(p)

θ (I)∼ y implies x
σ (p)(I)∼ y.

http://www.journalofinequalitiesandapplications.com/content/2013/1/270
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Proof If lim supqr < ∞, then there exists B >  such that qr < B for all r ≥ . Let x
NL(p)

θ (I)∼ y
and define the sets T and R such that

T =
{
r ∈N :


hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk
< ε

}

and

R =

{
n ∈N :


n

n∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk
< ε

}
.

Let

Aj =

hj

∑
k∈Ij

∣∣∣∣xkyk – L
∣∣∣∣
pk
< ε

for all j ∈ T . It is obvious that T ∈ F(I). Choose n is any integer with kr– < n < kr , where
r ∈ T ,


n

n∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk

≤ 
kr–

kr∑
k=

∣∣∣∣xkyk – L
∣∣∣∣
pk

=


kr–

(∑
k∈I

∣∣∣∣xkyk – L
∣∣∣∣
pk
+

∑
k∈I

∣∣∣∣xkyk – L
∣∣∣∣
pk
+ · · · +

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk)

=
k
kr–

(

h

∑
k∈I

∣∣∣∣xkyk – L
∣∣∣∣
pk)

+
k – k
kr–

(

h

∑
k∈I

∣∣∣∣xkyk – L
∣∣∣∣
pk)

+ · · ·

+
kr – kr–
kr–

(

hr

∑
k∈Ir

∣∣∣∣xkyk – L
∣∣∣∣
pk)

=
k
kr–

A +
k – k
kr–

A + · · · + kr – kr–
kr–

Ar

≤
(
sup
j∈T

Aj

) kr
kr–

< εB.

Choose ε = ε
B and in view of the fact that

⋃{n : kr– < n < kr , r ∈ T} ⊂ R, where T ∈ F(I),
it follows from our assumption on θ that the set R also belongs to F(I) and this completes
the proof of the theorem. �
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