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Abstract
Given a Banach space X , letMC ∈ B(X ⊕X ) denote the upper triangular operator
matrixMC = ( A C

0 B), and let δAB ∈ B(B(X )) denote the generalized derivation

δAB(X) = AX – XB. If limn→∞ ‖δnAB(C)‖
1
n = 0, then σx(MC) = σx(M0), where σx stands for

the spectrum or a distinguished part thereof (but not the point spectrum);
furthermore, if R = R1 ⊕ R2 ∈ B(X ⊕X ) is a Riesz operator which commutes withMC ,
then σx(MC + R) = σx(MC), where σx stands for the Fredholm essential spectrum or a
distinguished part thereof. These results are applied to prove the equivalence of
Browder’s (a-Browder’s) theorem forM0,MC ,M0 + R andMC + R. Sufficient conditions
for the equivalence of Weyl’s (a-Weyl’s) theorem are also considered.
MSC: Primary 47B40; 47A10; secondary 47B47; 47A11
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1 Introduction
A Banach space operator T ∈ B(X ), the algebra of bounded linear transformations from a
Banach space X into itself, satisfies Browder’s theorem if the Browder spectrum σb(T)
of T coincides with the Weyl spectrum σw(T) of T ; T satisfies Weyl’s theorem if the
complement of σw(T) in σ (T) is the set �(T) of finite multiplicity isolated eigenval-
ues of T . Weyl’s theorem implies Browder’s theorem, but the converse is generally false
(see [–]). Let M and MC ∈ B(X ⊕ X ) denote, respectively, the upper triangular op-
erators M = A ⊕ B and MC =

( A C
 B

)
for some operators A,C,B ∈ B(X ). It is well known

that σx(M) = σx(A) ∪ σx(B) = σx(MC) ∪ {σx(A) ∩ σx(B)} for σx = σ or σb, and σw(M) ⊆
σw(A) ∪ σw(B) = σw(MC) ∪ {σw(A) ∩ σw(B)}. The problem of finding sufficient conditions
ensuring the equality of the spectrum (and certain of its distinguished parts) of M and
MC , along with the problem of finding sufficient conditions for M satisfies Browder’s
theorem and/or Weyl’s theorem to imply MC satisfies Browder’s theorem and/or Weyl’s
theorem (and vice versa), has been considered by a number of authors in the recent past
(see [], and some of the references cited there). For example, if either A* or B has the
single-valued extension property, SVEP for short, then σ (M) = σ (MC) = σ (A) ∪ σ (B).
Again, if σw(MC) = σw(A)∪ σw(B), then σ (M) = σ (MC) = σ (A)∪ σ (B) [, Proposition .]
andM satisfies Browder’s theorem if and only ifMC satisfies Browder’s theorem [, The-
orem .]; furthermore, in such a case, M satisfies Weyl’s theorem if and only if MC

satisfies Weyl’s theorem if and only if �(M) = �(MC) [, Theorem .]. The equal-

© 2013 Duggal et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/268
mailto:ihkim@incheon.ac.kr
http://creativecommons.org/licenses/by/2.0


Duggal et al. Journal of Inequalities and Applications 2013, 2013:268 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/268

ity σw(MC) = σw(A) ∪ σw(B) may be achieved in a number of ways: if either A and A*, or
A and B, or A* and B*, or B and B* have SVEP, then σw(MC) = σw(A) ∪ σw(B) [, Proposi-
tion .]. In this paper we consider conditions of another kind, conditions which do not
assume SVEP.
Given S,T ∈ B(X ), S and T are said to be asymptotically intertwined by X ∈ B(X ) if

limn→∞ ‖δnST (X)‖

n = . Here δST ∈ B(B(X )) is the generalized derivation δST (X) = SX –XT

and δnST = δST (δn–ST ). Evidently, S and T asymptotically intertwined by X does not imply T
and S asymptotically intertwined by X. Furthermore, S and T asymptotically intertwined
by X does not imply σ (S) = σ (T), not even σ (S)⊆ σ (T); see [, Example ..]. However,
as we shall see, if A, B, C are as in the definition ofMC above, then A and B asymptotically
intertwined by C implies the equality of the spectra, andmany distinguished parts thereof
to spectrum ofM andMC . We prove in the following that if limn→∞ ‖δnAB(C)‖


n = , then

MC satisfies Browder’s theorem if and only ifM satisfies Browder’s theorem. If, addition-
ally, the isolated points of σ (M) are poles of the resolvent ofM, thenMc satisfies Weyl’s
theorem if and only if M satisfies Weyl’s theorem. Extensions to a-Browder’s theorem,
a-Weyl’s theorem and perturbations by Riesz operators are considered.

2 Notation and complementary results
For a bounded linear Banach space operator S ∈ B(X ), let σ (S), σp(S), σa(S), σs(S) and
isoσ (S) denote, respectively, the spectrum, the point spectrum, the approximate point
spectrum, the surjectivity spectrum and the isolated points of the spectrum of S. Let α(S)
and β(S) denote the nullity and the deficiency of S, defined by

α(S) = dimS–() and β(S) = codimS(X ).

If the range S(X ) of S is closed and α(S) < ∞ (resp. β(S) < ∞), then S is called an upper
semi-Fredholm (resp. a lower semi-Fredholm) operator. If S ∈ B(X ) is either upper or lower
semi-Fredholm, S is called a semi-Fredholm operator, and ind(S), the index of S, is then de-
fined by ind(S) = α(S)–β(S). If both α(S) and β(S) are finite, then S is a Fredholm operator.
The ascent, denoted asc(S), and the descent, denoted dsc(S), of S are given by

asc(S) = inf
{
n : S–n() = S–(n+)()

}
, dsc(S) = inf

{
n : Sn(X ) = Sn+(X )

}

(where the infimum is taken over the set of non-negative integers); if no such integer n
exists, then asc(S) = ∞, respectively dsc(S) = ∞. Let

�+(S) = {λ ∈ C : S – λ is upper semi-Fredholm},
�–(S) = {λ ∈ C : S – λ is lower semi-Fredholm},
�(S) = {λ ∈ C : S – λ is Fredholm},
σSF+(S) =

{
λ ∈ σa(S) : λ /∈ �+(S)

}
,

σSF–(S) =
{
λ ∈ σa(S) : λ /∈ �–(S)

}
,

σe(S) =
{
λ ∈ σ (S) : λ /∈ �(S)

}
,

σw(S) =
{
λ ∈ σ (S) : λ ∈ σe(S) or ind(S – λ) 
= 

}
,
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σaw(S) =
{
λ ∈ σa(S) : λ ∈ σSF+(S) or ind(S – λ) > 

}
,

σsw(S) =
{
λ ∈ σs(S) : λ ∈ σSF–(S) or ind(S – λ) < 

}
,

σb(S) =
{
λ ∈ σ (S) : λ ∈ σe(S) or asc(S – λ) 
= dsc(S – λ)

}
,

σab(S) =
{
λ ∈ σa(S) : λ ∈ σSF+(S) or asc(S – λ) = ∞}

,

σsb(S) =
{
λ ∈ σs(S) : λ ∈ σSF–(S) or dsc(S – λ) = ∞}

,

�(S) =
{
λ ∈ isoσ (S) :  < dim(S – λ)–() = α(S – λ) <∞}

,

p(S) =
{
λ ∈ isoσ (S) : λ ∈ �(S), asc(S – λ) = dsc(S – λ) < ∞}

,

H(S) =
{
x ∈X : lim

n→∞
∥∥Snx∥∥/n = 

}
.

Here σw(S) is the Weyl spectrum, σaw(S) denotes the Weyl (essential) approximate point
spectrum, σsw(S) the Weyl (essential) surjectivity spectrum, σb(S) the Browder spectrum,
σab(S) the Browder (essential) approximate point spectrum, σsb(S) the Browder (essential)
surjectivity spectrum, and H(S) the quasi-nilpotent part of S []. Recall, [], that H(S)
and K(S), where K(S) denotes the analytic core

K(S) =
{
x ∈X : there exists a sequence {xn} ⊂X and δ >  for which

x = x,S(xn+) = xn and ‖xn‖ ≤ δn‖x‖ for all n = , , . . .
}
,

are hyper-invariant (generally non-closed) subspaces of S such that S–p() ⊆ H(S) for
every integer p ≥  and SK(S) = K(S). Recall also that if  ∈ isoσ (S), then X = H(S) ⊕
K(S).
We say that S has the single valued extension property, or SVEP, at λ ∈ C if for every open

neighborhood U of λ, the only analytic solution f to the equation (S – μ)f (μ) =  for all
μ ∈ U is the constant function f ≡ ; we say that S has SVEP if S has a SVEP at every
λ ∈ C. It is well known that finite ascent implies SVEP; also, an operator has SVEP at every
isolated point of its spectrum (as well as at every isolated point of its approximate point
spectrum).
S ∈ B(X ) satisfies Browder’s theorem, shortened to S satisfies Bt, if σw(S) = σb(S) (if and

only if σ (S) \ σw(S) = p(S), see [, p.]); S satisfies Weyl’s theorem, shortened to S sat-
isfies Wt, if σ (S) \ σw(S) = �(S) (if and only if S satisfies Bt and p(S) = �(S)) [, p.].
The implication Wt �⇒ Bt is well known.
An isolated point λ ∈ isoσ (S) is a pole (of the resolvent) of S ∈ B(X ) if asc(S – λ) =

dsc(S – λ) < ∞. In such a case we say that S is polar at λ; we say that S is polaroid (resp.,
polaroid on a subset F of the set of isolated points of σ (S)) if S is polar at every λ ∈ isoσ (S)
(resp., at every λ ∈ F). Let p(S) denote the set of poles of S.
Throughout the following,M ∈ B(X ⊕X ) shall denote the diagonal operatorM = A⊕

B and MC ∈ B(X ⊕X ) shall denote the upper triangular operator matrix
( A C
 B

)
, for some

operators A,B,C ∈ B(X ). Recall, [, Exercise , p.], that asc(A) ≤ asc(MC) ≤ asc(A) +
asc(B) and dsc(B) ≤ dsc(MC) ≤ dsc(A) + dsc(B).

Lemma . If σ (M) = σ (MC), then p(M) = p(MC).

Proof Since σ (MC) = σ (M) = σ (A)∪σ (B), if a complex number λ ∈ p(MC) or p(M) then
λ ∈ iso(σ (A)∪ σ (B)). We consider the case in which λ ∈ isoσ (A)∩ isoσ (B): the argument

http://www.journalofinequalitiesandapplications.com/content/2013/1/268


Duggal et al. Journal of Inequalities and Applications 2013, 2013:268 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/268

works just as well for the case in which λ ∈ ρ(A) (= C \ σ (A)) or λ ∈ ρ(B). Let λ ∈ p(MC).
Then

asc(A – λ)≤ asc(MC – λ) < ∞ and dsc(B – λ)≤ dsc(MC – λ) < ∞.

If λ ∈ isoσ (B) and dsc(B – λ) < ∞, then asc(B – λ) = dsc(B – λ) < ∞ and B is polar at λ [,
Theorem .]. Now let λ ∈ isoσ (A). Since MC is polar at λ, H(MC – λ) = (MC – λ)–p()
for some integer p≥ . Observe that

H(A – λ) =H(MC – λ)∩X = (MC – λ)–p()∩X = (A – λ)–p().

Hence, if λ ∈ isoσ (A), then

X =H(A – λ)⊕K(A – λ) = (A – λ)–p()⊕K(A – λ)

�⇒ (A – λ)pX = ⊕ (A – λ)pK(A – λ) = K(A – λ)

�⇒ X = (A – λ)–p()⊕ (A – λ)pX ,

i.e., A is polar at λ. Now, since

asc(M – λ)≤ asc(A – λ) + asc(B – λ) and dsc(M – λ)≤ dsc(A – λ) + dsc(B – λ),

we have

asc(M – λ) = dsc(M – λ) <∞,

i.e.,M is polar at λ. Conversely, if λ ∈ p(M), then asc(M –λ) =max{asc(A–λ), asc(B–λ)}
and dsc(M –λ) =max{dsc(A–λ),dsc(B–λ)} implies asc(MC –λ) ≤ asc(A–λ) + asc(B–λ)
and dsc(MC – λ) ≤ dsc(A – λ) + dsc(B – λ) are both finite, hence equal. Thus MC is polar
at λ. �

Remark . A number of conditions guaranteeing (the spectral equality) σ (MC) = σ (M)
are to be found in the literature. Thus, for example, if A* or B has SVEP, or if σw(MC) =
σw(A)∪σw(B), or σaw(MC) = σaw(A)∪σaw(B) [, (I) p. and Proposition .], then σ (MC) =
σ (M). Compact operators have SVEP; hence, if either ofA or B is compact, then σ (MC) =
σ (M).

Lemma . shows that if B is a compact operator then p(M) = p(MC). A proof of the
following lemma may be obtained from that of Lemma .: we give here an independent
proof, exploiting the additional information contained in the hypothesis.

Lemma . If σ (M) = σ (MC), then p(M) = p(Mc).

Proof Once againwe consider points λ ∈ isoσ (A)∩ isoσ (B). Let λ ∈ p(MC). Then α(MC–
λ) = β(MC –λ) < ∞ impliesMC –λ ∈ �, and this in turn impliesA–λ ∈ �+ andB–λ ∈ �–.
Since λ is isolated in σ (A) and σ (B), λ ∈ p(A) ∩ p(B) [, Theorem .]. Consequently,
λ ∈ p(M); furthermore, since α(M – λ) ≤ α(A – λ) + α(B – λ), λ ∈ p(M). Conversely,
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if λ ∈ p(M), then A – λ and B – λ ∈ �, and hence (since λ is isolated in σ (A) and σ (B))
λ ∈ p(A)∩ p(B). This, as above, implies λ ∈ p(MC). �

The following technical lemma will be required in the sequel.

Lemma . If A is polaroid on �(MC) and σ (MC) = σ (M), then �(MC) ⊆ �(M).

Proof Evidently, (MC – λ)–() 
= ∅ implies (M – λ)–() 
= ∅, and α(MC – λ) < ∞ implies
α(A – λ) < ∞. Let λ ∈ �(MC); then λ ∈ isoσ (M). We prove that α(B – λ) < ∞. Suppose
to the contrary that α(B – λ) = ∞. Since

(MC – λ)(x⊕ y) =
{
(A – λ)x +Cy

} ⊕ (B – λ)y,

either dim(C(B – λ)–()) < ∞ or dim(C(B – λ)–()) = ∞. If dim(C(B – λ)–()) < ∞,
then (since α(B – λ) = ∞) (B – λ)–() contains an orthonormal sequence {yj} such that
(MC – λ)( ⊕ yj) =  for all j = , , . . . . But then α(MC – λ) = ∞, a contradiction. Hence
dim(C(B–λ)–()) =∞. Since λ ∈ ρ(A)∪ isoσ (A) andA is (by hypothesis) polar at λ (with,
as observed above, α(A– λ) < ∞) α(A– λ) = β(A– λ) < ∞. Thus dim{C(B– λ)–()∩ (A–
λ)X } = ∞, and so there exists a sequence {xj} such that (A – λ)xj = Cyj for all j = , , . . . .
But then (MC – λ)(xj ⊕ –yj) =  for all j = , , . . . , and hence α(MC – λ) = ∞. This contra-
diction implies that we must have α(B–λ) < ∞. Since α(M –λ) ≤ α(A–λ) +α(B–λ), we
conclude that λ ∈ �(M). �

Let δST ∈ B(B(X )) denote the generalized derivation δST (X) = SX – XT , and define δnST
by δn–ST (δST ). The operators S,T ∈ B(X ) are said to be asymptotically intertwined by the
identity operator I ∈ B(X ) if limn→∞ ‖δnST (I)‖


n = ; S, T are said to be quasi-nilpotent

equivalent if limn→∞ ‖δnST (I)‖

n = limn→∞ ‖δnTS(I)‖


n =  [, p.]. Quasi-nilpotent equiv-

alence preserves a number of spectral properties [, Proposition ..]. In particular:

Lemma . Quasi-nilpotent equivalent operators have the same spectrum, the same ap-
proximate point spectrum and the same surjectivity spectrum.

3 Results
Let K(X ) denote the ideal of compact operators in B(X ). The following construction,
known in the literature as the Sadovskii/Buoni, Harte and Wickstead construction [,
p.], leads to a representation of the Calkin algebra B(X )/K(X ) as an algebra of op-
erators on a suitable Banach space. Let S ∈ B(X ). Let 
∞(X ) denote the Banach space
of all bounded sequences x = (xn)∞n= of elements of X endowed with the norm ‖x‖∞ :=
supn∈N ‖xn‖, and write S∞, S∞x := (Sxn)∞n= for all x = (xn)∞n=, for the operator induced by S
on 
∞(X ). The setm(X ) of all precompact sequences of elements ofX is a closed subspace
of 
∞(X ) which is invariant for S∞. Let Xq := 
∞(X )/m(X ), and denote by Sq the operator
S∞ onXq. The mapping S �→ Sq is then a unital homomorphism from B(X )→ B(Xq) with
kernelK(X ) which induces a norm decreasingmonomorphism from B(X )/K(X ) to B(Xq)
with the following properties (see [, Section ] for details):

(i) S is upper semi-Fredholm, S ∈ �+, if and only if Sq is injective, if and only if Sq is
bounded below;

(ii) S is lower semi-Fredholm, S ∈ �–, if and only if Sq is surjective;
(iii) S is Fredholm, S ∈ �, if and only if Sq is invertible.
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Lemma . For every S ∈ B(X ), σe(S) = σ (Sq), σSF+(S) = σa(Sq) and σSF–(S) = σs(Sq).

Proof The following implications hold:

λ /∈ σSF+(S) ⇐⇒ S – λ ∈ �+ ⇐⇒ (S – λ)q is bounded below

⇐⇒ λ /∈ σa(Sq),

λ /∈ σSF–(S) ⇐⇒ S – λ ∈ �– ⇐⇒ (S – λ)q is onto

⇐⇒ λ /∈ σs(Sq) and

λ /∈ σe(S) ⇐⇒ S – λ ∈ � ⇐⇒ (S – λ)q is invertible ⇐⇒ λ /∈ σ (Sq). �

The following theorem is essentially known [] we provide here an alternative proof,
using quasi-nilpotent equivalence and the construction above. Let � denote either of σe,
σSF+ , σSF– , σw, σaw, σsw, σb, σab and σsb.

Theorem . Let S,R ∈ B(X ). If R is a Riesz operator which commutes with S, then σx(S +
R) = σx(S), where σx ∈ �.

Proof It is clear from the definition of a Riesz operator R ∈ B(X ) that R–μ is Browder (i.e.,
μ /∈ σb(R)), and a-Browder and s-Browder, for all non-zero μ ∈ σ (R) (see, for example, [,
Theorem .]). Hence σ (Rq) = {}, i.e., Rq ∈ B(Xq) is quasi-nilpotent. Let t ∈ [, ]; then
S commutes with tR and (S + tR)q = Sq + tRq. It follows that

lim
n→∞

∥∥δn(S+tR)qSq (Iq)
∥∥ 

n = lim
n→∞

∥∥δnSq(S+tR)q (Iq)
∥∥ 

n = ,

i.e., Sq and Sq + tRq are quasi-nilpotent equivalent operators for all t ∈ [, ]. Thus σx((S +
R)q) = σx(Sq), where σx = σ or σa or σs. Hence

σx(S + R) = σx(S); σx = σe or σae or σse.

The semi-Fredholm index being a continuous function, we also have from the above that

σx(S + R) = σx(S); σx = σw or σaw or σsw.

To complete the proof, we prove next that σb(S + R) = σb(S); the proof for σab and σsb is
similar, and left to the reader. It would suffice to prove that  ∈ σb(S) ⇐⇒  ∈ σb(S + R).
Suppose that  /∈ σb(S). Then S ∈ � (and asc(S) = dsc(S) < ∞), hence S + tR ∈ � for all
t ∈ [, ]. For an operator T , let N∞(T) and T∞(X ) denote, respectively, the closure of
the hyper kernel and the hyper range of T . Then N∞(S + tR) ∩ (S + tR)∞(X ) is constant
on [, ], and so, sinceN∞(S)∩S∞(X ) =N∞(S)∩S∞(X ) = {}, it follows thatN∞(S+R)∩
(S + R)∞(X ) = {}. Consequently, S + R has SVEP at  [, Corollary .]. But then since
S +R ∈ �, S +R is Browder. Considering S = (S +R) –R proves  /∈ σb(S +R) �⇒  /∈ σb(S).

�

The following lemma appears in [, Lemma .]. Let �f (S) = {λ ∈ isoσ (S) : α(S – λ) <
∞}. Clearly, �(S)⊆ �f (S).

http://www.journalofinequalitiesandapplications.com/content/2013/1/268
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Lemma . If S,R ∈ B(X ), and R is a Riesz operator which commutes with S, then �f (S+
R)∩ σ (S)⊆ isoσ (S).

Let � = � ∪ σ ∪ σa ∪ σs.

Theorem . If limn→∞ ‖δnAB(C)‖

n = , then σx(MC) = σx(M), where σx ∈ �.

Proof A straightforward calculation shows that

δnMCM (I) = –δnMMC
(I) =

(
 δn–AB (C)
 

)
.

Hence

lim
n→∞

∥∥δnMCM (I)
∥∥ 

n = lim
n→∞

∥∥δnMMC
(I)

∥∥ 
n ≤ lim

n→∞
∥∥δn–AB (C)

∥∥ 
n = ,

i.e., MC and M are quasi-nilpotent equivalent. Similarly, writing MC(q) for (MC)q and
M(q) for (M)q,

lim
n→∞

∥∥δnMC(q)M(q)
(Iq)

∥∥ 
n = lim

n→∞
∥∥δnM(q)MC(q)

(Iq)
∥∥ 

n

≤ lim
n→∞

∥∥δn–AqBq (Cq)
∥∥ 

n

= lim
n→∞

∥∥δn–AB (C)
∥∥ 

n = ,

i.e., MC(q) and M(q) are quasi-nilpotent equivalent (in B((X ⊕ X )q)). Hence σx(MC) =
σx(M), where σx = σ or σa or σs or σe or σSF+ or σSF– . Since

M =

(
A 
 I

)(
I 
 B

)
=

(
I 
 B

)(
A 
 I

)

and

MC =

(
I 
 B

)(
I C
 I

)(
A 
 I

)
,

where
( I C
 I

)
is invertible, and since λ /∈ σe(MC) ⇐⇒ λ /∈ σe(M) �⇒ A – λ,B – λ ∈ �

(similarly, λ /∈ σSF+(MC) �⇒ A – λ,B – λ ∈ �+ and λ /∈ σSF–(MC) �⇒ A – λ,B – λ ∈ �–),
ind(MC – λ) = ind(A – λ) + ind(B – λ) = ind(M – λ). Hence σx(MC) = σx(M), where
σx = σw or σaw or σsw. Observe that

σb(MC) =
{
λ ∈ σ (MC) : λ ∈ σw(MC) or λ /∈ isoσ (MC)

}
=

{
λ ∈ σ (M) : λ ∈ σw(M) or λ /∈ isoσ (M)

}
,

σab(MC) =
{
λ ∈ σa(MC) : λ ∈ σaw(MC) or λ /∈ isoσa(MC)

}
=

{
λ ∈ σa(M) : λ ∈ σaw(M) or λ /∈ isoσa(M)

}

http://www.journalofinequalitiesandapplications.com/content/2013/1/268
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and

σsb(MC) =
{
λ ∈ σs(MC) : λ ∈ σsw(MC) or λ /∈ isoσs(MC)

}
=

{
λ ∈ σs(M) : λ ∈ σsw(M) or λ /∈ isoσs(M)

}
[, Corollary ., Theorem . and Theorem .]. Hence σx(MC) = σx(M), where σx =
σb or σab or σsb. �

Remark . IfM ∈ B(X ⊕X ) is the operatorM =
( A C
D B

)
such that the entries A, B, C and

Dmutually commute, then σx(M) = {λ ∈ C :  ∈ σx((A–λ)(B–λ) –CD)} [, Theorem .],
where σx = σ or σe. Dispensing with the mutual commutativity hypothesis and assuming
instead that CD = DC = , C commutes with A and B, and limn→∞ ‖δnAB(D)‖


n = , an

argument similar to that used to prove Theorem . shows that σx(M) = σx(MC), where
σx = σ or σa or σs or σe or σSF± .

Theorem . Suppose that limn→∞ ‖δnAB(C)‖

n = . Then:

(a) MC satisfies Bt if and only ifM satisfies Bt.
(b) Let Ri ∈ B(X ), i = , , be Riesz operators such that R = R ⊕ R commutes withMC .

ThenM satisfies Bt ⇐⇒MC + R satisfies Bt ⇐⇒M + R satisfies Bt ⇐⇒MC

satisfies Bt.

Proof The hypothesis R commutes withMC implies R commutes withM, RC = CR and
δn(MC+R)(M+R)(I) = δnMCM(I).
(a) Recall that an operator S satisfies Bt if and only if σw(S) = σb(S). Hence the following

implications hold:

M satisfies Bt ⇐⇒ σw(M) = σb(M)

⇐⇒ σw(Mc) = σb(MC) (Theorem .)

⇐⇒ MC satisfies Bt.

(b) The hypothesis limn→∞ ‖δnAB(C)‖

n =  implies that MC + R and M + R are quasi-

nilpotent equivalent (�⇒ by Theorem . that σx(MC + R) = σx(M + R), where σx ∈ �).
The operator R being Riesz, Theorem . implies σx(T +R) = σx(T), where T =MC orM

and σx = σw or σb. The (two way) implications

M satisfies Bt ⇐⇒ σw(M) = σb(M) ⇐⇒ σw(M + R) = σb(M + R)

(⇐⇒M + R satisfies Bt)

⇐⇒ σw(MC + R) = σb(MC + R) ⇐⇒ MC + R satisfies Bt

⇐⇒ σw(MC) = σb(MC) ⇐⇒ MC satisfies Bt

now complete the proof. �

Remark . (i) S ∈ B(X ) satisfies a-Browder’s theorem, a-Bt, if and only if σaw(S) = σab(S)
(equivalently, if and only if σa(S)\σaw(S) = pa(S) = {λ ∈ isoσa(S) : S–λ ∈ �+} = {λ ∈ σa(S) :

http://www.journalofinequalitiesandapplications.com/content/2013/1/268
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S–λ ∈ �+, asc(S–λ) < ∞} [, Theorem .]). Theorem . holds with Bt replaced by a-Bt.
(Thus, if eitherM orMC satisfies a-Bt, thenM,MC ,M +R andMC +R all satisfy a-Bt.)
Furthermore, since S satisfies generalized Browder’s theorem, gBt, if and only if it satisfies
Bt and S satisfies generalized a-Browder’s theorem, a-gBt, if and only if it satisfies a-Bt
[], Bt may be replaced by gBt or a-gBt in Theorem .. Here, we refer the interested
reader to consult [, ] for information about gBt and a-gBt.
(ii) The equivalence S satisfies Bt ⇐⇒ S* satisfies Bt is well known. This does not hold

for a-Bt: S satisfies a-Bt does not imply S* satisfies a-Bt (or vice versa). We say that S
satisfies s-Bt if S* satisfies a-Bt (equivalently, if σsb(S) = σsw(S)). It is easily seen, we leave
the verification to the reader, if eitherM orMC satisfies s-Bt, then (in Theorem .)M,
MC ,M + R andMC + R all satisfy s-Bt.

We consider next a sufficient condition for the equivalence ofWeyl’s theorem for opera-
torsM andMC such that limn→∞ ‖δnAB(C)‖


n = .We say in the following that an operator

S is finitely polaroid on a subset F ⊆ isoσ (S) if every λ ∈ F is a finite rank pole of S. Evi-
dently,M is finitely polaroid if and only if A and B are finitely polaroid.

Theorem . Suppose that limn→∞ ‖δnAB(C)‖

n = .

(a) If A is polaroid, thenMC satisfies Wt if and only ifM satisfies Wt.
(b) Let Ri ∈ B(X ), i = , , be Riesz operators such that R = R ⊕ R commutes withMC .

A sufficient condition for the equivalence MC + R satisfies Wt ⇐⇒M + R satisfies
Wt is thatM is finitely polaroid.

Proof (a) If MC satisfies Wt, then σ (MC) \ σw(MC) = p(MC) = �(MC). Since σ (M) =
σ (MC) and σw(MC) = σw(M) (Theorem .) and since Wt implies Bt, Theorem .(a)
implies σ (M) \ σw(M) = p(M) ⊆ �(M). Consequently, �(MC) ⊆ �(M). Let λ ∈
�(M). Then λ ∈ isoσ (MC), α(A – λ) < ∞ and α(B – λ) < ∞. Hence, since α(A – λ) ≤
α(MC – λ) ≤ α(A – λ) + α(B – λ), α(MC – λ) < ∞. Evidently, λ ∈ isoσ (A) ∪ ρ(A). If λ ∈
isoσ (A), thenA polaroid implies  < α(A–λ), and hence  < α(MC –λ). If instead λ ∈ ρ(A),
then –(A–λ)–Cx⊕x ∈ (MC –λ)–() for every x ∈ (B–λ)–(); once again,  < α(MC –λ).
Consequently, λ ∈ �(MC –λ) = p(MC –λ) = p(M –λ) and hence�(M) = p(M) �⇒
M satisfiesWt. Conversely, ifM satisfiesWt, then σ (MC)\σw(MC) = p(MC) = p(M) =
�(M) = σ (M) \ σw(M) and �(M) ⊆ �(MC). Since A is polaroid (hence polar on
�(MC)) and σ (M) = σ (MC), Lemma . implies �(M) = �(MC). Thus MC satisfies
Wt.
(b) Start by observing that σ (M) = σ (MC), and henceMC is finitely polaroid if and only

ifM is finitely polaroid (Lemma .). SupposeM + R satisfies Wt. Then the implication
Wt�⇒ Bt combined with Theorem .(b) implies that bothM +R andMC +R satisfy Bt.
As noted in the proof of Theorem .(b), σw(T +R) = σw(T), T =M orMC . Furthermore,
since M + R and MC + R are quasi-nilpotent equivalent, σx(M + R) = σx(MC + R), σx =
σ or σw (Theorem .). Hence

�(M + R) = σ (M + R) \ σw(M + R) = σ (MC + R) \ σw(MC + R)

= p(MC + R)⊆ �(MC + R).

If λ ∈ �(MC + R) and λ /∈ σ (MC), then (MC – λ) is invertible and so MC – λ ∈ � �⇒
MC + R – λ ∈ �. Hence, since λ ∈ isoσ (MC + R), λ ∈ p(MC + R). If, instead, λ ∈ σ (MC),

http://www.journalofinequalitiesandapplications.com/content/2013/1/268
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then λ ∈ isoσ (MC) (Lemma .) �⇒ λ ∈ isoσ (M) �⇒ λ ∈ p(M) (since M is finitely
polaroid) �⇒ λ ∈ p(MC) (Lemma .) �⇒ MC – λ ∈ �, and this as above implies λ ∈
p(Mc + R). Hence �(MC + R) = p(MC + R), and MC + R satisfies Wt. The converse,
MC + R satisfies Wt �⇒ M + R satisfies Wt follows from a similar argument (recall that
MC is finitely polaroid follows from the hypothesis thatM is finitely polaroid). �

Remark . The equivalence of Theorem .(b) extends to

M satisfies Bt ⇐⇒ M + R satisfies Wt ⇐⇒ MC + R satisfies Wt

⇐⇒ MC satisfies Bt.

This is seen as follows. The implicationM +R satisfiesWt �⇒ M satisfies Bt andMC +R
satisfies Wt�⇒ MC satisfies Bt are clear from Theorem .(b). IfM satisfies Bt, then the
hypothesisM is finitely polaroid impliesM satisfiesWt. By Theorem .(b),M +R sat-
isfies Bt, i.e., σ (M +R)\σw(M +R) = p(M +R)⊆ �(M +R). Let λ ∈ �(M +R). If λ /∈
σ (M), then (M –λ ∈ � �⇒)M +R–λ ∈ � �⇒ λ ∈ p(M +R) (since λ ∈ isoσ (M +R));
if λ ∈ σ (M), then λ ∈ isoσ (M) (by Lemma .) and so (since M is finitely polaroid)
λ ∈ p(M) �⇒ M – λ ∈ � �⇒ M + R – λ ∈ � �⇒ λ ∈ p(M + R). Thus, in either case,
�(M + R) ⊆ p(M + R), and hence M + R satisfies Wt. The proof for MC satisfies
Bt�⇒ MC + R satisfies Wt is similar: recall from Lemma . thatM finitely polaroid im-
pliesMC finitely polaroid.

a-Wt.T ∈ B(X ) satisfies a-Weyl’s theorem, a-Wt for short, ifT satisfies a-Bt and pa(T) =
�a

(T) (equivalently, if σa(T) \ σaw(T) = pa(T) = �a
(T)), where �a

(T) = {λ ∈ isoσa(T) :
 < α(T – λ) < ∞} []. We say in the following that T is a-polaroid if T is polar at every
λ ∈ isoσa(T). Trivially, a-polaroid implies polaroid (indeed, pa(T) = p(T) in such a case),
but the converse is not true in general. Theorem . has an a-Wt analogue, which we
prove below.We note, however, that the perturbation of an operator by a commuting Riesz
operator preserves neither its spectrum nor its approximate point spectrum: this will, per
se, force us into making an assumption on the approximate point spectrum of M and
M + R in the analogue of Theorem .(b).

Theorem . Suppose that limn→∞ ‖δnAB(C)‖

n = .

(a) IfM is a-polaroid, thenMC satisfies a-Wt if and only ifM satisfies a-Wt.
(b) Let Ri ∈ B(X ), i = , , be Riesz operators such that R = R ⊕R commutes withMC . If

σa(M) = σa(M + R), then a sufficient condition for the equivalenceMC + R satisfies
a-Wt ⇐⇒M + R satisfies a-Wt is thatM is finitely a-polaroid.

Proof (a) We prove �a
(M) = �a

(MC): the proof of (a) would then follow from the fact
that ifM satisfies a-Wt (�⇒ M satisfies a-Bt ⇐⇒MC satisfies a-Bt), then

�a
(M) = σa(M) \ σaw(M) = σa(MC) \ σaw(MC) = pa(MC)⊆ �a

(MC)

and ifMC satisfies a-Wt, then

�a
(MC) = σa(MC) \ σaw(MC) = σa(M) \ σaw(M) = pa(M)⊆ �a

(M).
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If λ ∈ �a
(M), then

λ ∈ isoσa(M),  < α(M – λ) < ∞
⇐⇒ λ ∈ p(M) (sinceM is a-polaroid)

⇐⇒ λ ∈ (
p(A)∪ p(B)

) ∪ (
p(A)∪ ρ(B)

) ∪ (
ρ(A)∪ p(B)

)
�⇒ α(MC – λ) ≤ α(A – λ) + α(B – λ) < ∞,

asc(MC – λ)≤ asc(A – λ) + asc(B – λ) < ∞,

dsc(MC – λ) ≤ dsc(A – λ) + dsc(B – λ) < ∞
�⇒ asc(MC – λ) = dsc(MC – λ) < ∞,  < α(MC – λ) <∞
�⇒ λ ∈ p(MC) ⊆ �(MC)⊆ �a

(MC);

if instead λ ∈ �a
(MC), then

λ ∈ isoσa(MC),  < α(MC – λ) < ∞
⇐⇒ λ ∈ isoσa(M),  < α(MC – λ) < ∞
�⇒ λ ∈ p(M),  < α(MC – λ) <∞
⇐⇒ λ ∈ p(Mc) (Lemma .)

⇐⇒ λ ∈ p(M) (Lemma .)

�⇒ λ ∈ �(M) ⊆ �a
(MC).

(b) If σa(M + R) = σa(M), then it follows from Lemma . and Theorem . that

σx(M) = σx(M + R) = σx(MC + R) = σx(MC); σx = σa or σaw.

Recall from Remark . that if either ofM + R orMC +R satisfies a-Bt, thenM,M + R,
MC andMC + R all satisfy a-Bt. Hence, in view of the spectral equalities above,

pa(M) = pa(MC) = pa(MC + R) = pa(M + R),

whenever either of M, M + R, MC and MC + R satisfies a-Bt. Observe that the hypoth-
esis M is finitely a-polaroid implies pa(M) = p(M) = p(MC) = pa(M + R); hence
(since pa(M) = pa(MC) = pa(MC + R) = pa(M + R)) pa(S) = pa(T) for every choice of
S,T =M orMC orM + R orMC + R. We prove now that if either ofM + R andMC + R
satisfies a-Wt, then �a

(M + R) = �a
(MC + R): this would then imply that if one satisfies

a-Wt, then so does the other.
Suppose M + R satisfies a-Wt. Then p(M + R) = pa(M + R) = �a

(M + R) (�⇒
�a

(M + R) = �(M + R)) and �a
(M + R) ⊆ �a

(MC + R). Let λ ∈ �a
(Mc + R); then

λ ∈ isoσa(MC + R) = isoσa(M) implies λ ∈ p(M) = pa(MC + R). Thus �a
(MC + R) ⊆

pa(MC + R) = pa(M + R) = �a
(M + R). Consequently, �a

(M + R) = �a
(MC + R) in this

case. Suppose next thatMC +R satisfies a-Wt. Then p(MC +R) = pa(MC +R) = �a
(MC +R)
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and �a
(MC + R) ⊆ �a

(M + R). Let λ ∈ �a
(M + R); then λ ∈ isoσa(M) implies λ ∈

pa(M) = pa(MC + R). As above, this implies �a
(M + R) = �a

(MC + R). �

The following corollary is immediate from Theorem .(b).

Corollary . Suppose that limn→∞ ‖δnAB(C)‖

n = . If Ri ∈ B(X ), i = , , are quasi-

nilpotent operators such that R = R ⊕ R commutes with MC , then a sufficient condition
for the equivalence MC + R satisfies a-Wt ⇐⇒ M + R satisfies a-Wt is that M is finitely
a-polaroid.
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