Journal of Inequalities and Applications a SpringerOpen Journal

RESEARCH

Open Access

Upper triangular operator matrices, asymptotic intertwining and Browder, Weyl theorems

Bhagwati P. Duggal¹, In Ho Jeon² and In Hyoun Kim^{3*}

*Correspondence: ihkim@incheon.ac.kr ³Department of Mathematics, Incheon National University, Incheon, 406-772, Korea Full list of author information is available at the end of the article

Abstract

Given a Banach space \mathcal{X} , let $M_C \in \mathcal{B}(\mathcal{X} \oplus \mathcal{X})$ denote the upper triangular operator matrix $M_C = \binom{A \ C}{0 \ B}$, and let $\delta_{AB} \in \mathcal{B}(\mathcal{A}(\mathcal{X}))$ denote the generalized derivation $\delta_{AB}(\mathcal{X}) = A\mathcal{X} - \mathcal{X}B$. If $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$, then $\sigma_x(M_C) = \sigma_x(M_0)$, where σ_x stands for the spectrum or a distinguished part thereof (but not the point spectrum); furthermore, if $R = R_1 \oplus R_2 \in \mathcal{B}(\mathcal{X} \oplus \mathcal{X})$ is a Riesz operator which commutes with M_C , then $\sigma_x(M_C + R) = \sigma_x(M_C)$, where σ_x stands for the Fredholm essential spectrum or a distinguished part thereof. These results are applied to prove the equivalence of Browder's (*a*-Browder's) theorem for $M_0, M_C, M_0 + R$ and $M_C + R$. Sufficient conditions for the equivalence of Weyl's (*a*-Weyl's) theorem are also considered. **MSC:** Primary 47B40; 47A10; secondary 47B47; 47A11

Keywords: Banach space; asymptotically intertwined; SVEP; polaroid operator

1 Introduction

A Banach space operator $T \in B(\mathcal{X})$, the algebra of bounded linear transformations from a Banach space \mathcal{X} into itself, satisfies Browder's theorem if the Browder spectrum $\sigma_h(T)$ of T coincides with the Weyl spectrum $\sigma_w(T)$ of T; T satisfies Weyl's theorem if the complement of $\sigma_w(T)$ in $\sigma(T)$ is the set $\Pi_0(T)$ of finite multiplicity isolated eigenvalues of T. Weyl's theorem implies Browder's theorem, but the converse is generally false (see [1–3]). Let M_0 and $M_C \in B(\mathcal{X} \oplus \mathcal{X})$ denote, respectively, the upper triangular operators $M_0 = A \oplus B$ and $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ for some operators $A, C, B \in B(\mathcal{X})$. It is well known that $\sigma_x(M_0) = \sigma_x(A) \cup \sigma_x(B) = \sigma_x(M_C) \cup \{\sigma_x(A) \cap \sigma_x(B)\}$ for $\sigma_x = \sigma$ or σ_b , and $\sigma_w(M_0) \subseteq$ $\sigma_w(A) \cup \sigma_w(B) = \sigma_w(M_C) \cup \{\sigma_w(A) \cap \sigma_w(B)\}$. The problem of finding sufficient conditions ensuring the equality of the spectrum (and certain of its distinguished parts) of M_0 and M_C , along with the problem of finding sufficient conditions for M_0 satisfies Browder's theorem and/or Weyl's theorem to imply M_C satisfies Browder's theorem and/or Weyl's theorem (and vice versa), has been considered by a number of authors in the recent past (see [3], and some of the references cited there). For example, if either A^* or B has the single-valued extension property, SVEP for short, then $\sigma(M_0) = \sigma(M_C) = \sigma(A) \cup \sigma(B)$. Again, if $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$, then $\sigma(M_0) = \sigma(M_C) = \sigma(A) \cup \sigma(B)$ [3, Proposition 3.2] and M_0 satisfies Browder's theorem if and only if M_C satisfies Browder's theorem [3, Theorem 4.8]; furthermore, in such a case, M_0 satisfies Weyl's theorem if and only if M_C satisfies Weyl's theorem if and only if $\Pi_0(M_0) = \Pi_0(M_C)$ [3, Theorem 5.1]. The equal-

© 2013 Duggal et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ity $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$ may be achieved in a number of ways: if either A and A^* , or A and B, or A^* and B^* , or B and B^* have SVEP, then $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$ [3, Proposition 4.5]. In this paper we consider conditions of another kind, conditions which do not assume SVEP.

Given $S, T \in B(\mathcal{X})$, S and T are said to be *asymptotically intertwined* by $X \in B(\mathcal{X})$ if $\lim_{n\to\infty} \|\delta_{ST}^n(X)\|^{\frac{1}{n}} = 0$. Here $\delta_{ST} \in B(B(\mathcal{X}))$ is the generalized derivation $\delta_{ST}(X) = SX - XT$ and $\delta_{ST}^n = \delta_{ST}(\delta_{ST}^{n-1})$. Evidently, S and T asymptotically intertwined by X does not imply T and S asymptotically intertwined by X. Furthermore, S and T asymptotically intertwined by X does not imply $\sigma(S) = \sigma(T)$, not even $\sigma(S) \subseteq \sigma(T)$; see [4, Example 3.5.9]. However, as we shall see, if A, B, C are as in the definition of M_C above, then A and B asymptotically intertwined by C implies the equality of the spectra, and many distinguished parts thereof to spectrum of M_0 and M_C . We prove in the following that if $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$, then M_C satisfies Browder's theorem if and only if M_0 satisfies Browder's theorem. If, additionally, the isolated points of $\sigma(M_0)$ are poles of the resolvent of M_0 , then M_c satisfies Weyl's theorem if and only if M_0 satisfies weyl's theorem. Extensions to *a*-Browder's theorem, *a*-Weyl's theorem and perturbations by Riesz operators are considered.

2 Notation and complementary results

For a bounded linear Banach space operator $S \in B(\mathcal{X})$, let $\sigma(S)$, $\sigma_p(S)$, $\sigma_a(S)$, $\sigma_s(S)$ and iso $\sigma(S)$ denote, respectively, the spectrum, the point spectrum, the approximate point spectrum, the surjectivity spectrum and the isolated points of the spectrum of *S*. Let $\alpha(S)$ and $\beta(S)$ denote the nullity and the deficiency of *S*, defined by

 $\alpha(S) = \dim S^{-1}(0)$ and $\beta(S) = \operatorname{codim} S(\mathcal{X})$.

If the range $S(\mathcal{X})$ of S is closed and $\alpha(S) < \infty$ (resp. $\beta(S) < \infty$), then S is called an *upper semi-Fredholm* (resp. a *lower semi-Fredholm*) operator. If $S \in B(\mathcal{X})$ is either upper or lower semi-Fredholm, S is called a *semi-Fredholm* operator, and ind(S), the *index* of S, is then defined by ind(S) = $\alpha(S) - \beta(S)$. If both $\alpha(S)$ and $\beta(S)$ are finite, then S is a *Fredholm* operator. The *ascent*, denoted asc(S), and the *descent*, denoted dsc(S), of S are given by

 $\operatorname{asc}(S) = \inf\{n: S^{-n}(0) = S^{-(n+1)}(0)\}, \quad \operatorname{dsc}(S) = \inf\{n: S^{n}(\mathcal{X}) = S^{n+1}(\mathcal{X})\}$

(where the infimum is taken over the set of non-negative integers); if no such integer *n* exists, then $\operatorname{asc}(S) = \infty$, respectively $\operatorname{dsc}(S) = \infty$. Let

 $\Phi_{+}(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is upper semi-Fredholm}\},$ $\Phi_{-}(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is lower semi-Fredholm}\},$ $\Phi(S) = \{\lambda \in \mathbb{C} : S - \lambda \text{ is Fredholm}\},$ $\sigma_{SF_{+}}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \notin \Phi_{+}(S)\},$ $\sigma_{SF_{-}}(S) = \{\lambda \in \sigma_{a}(S) : \lambda \notin \Phi_{-}(S)\},$ $\sigma_{e}(S) = \{\lambda \in \sigma(S) : \lambda \notin \Phi(S)\},$ $\sigma_{w}(S) = \{\lambda \in \sigma(S) : \lambda \in \sigma_{e}(S) \text{ or ind}(S - \lambda) \neq 0\},$

$$\begin{split} &\sigma_{aw}(S) = \left\{ \lambda \in \sigma_a(S) : \lambda \in \sigma_{SF_+}(S) \text{ or } \operatorname{ind}(S - \lambda) > 0 \right\}, \\ &\sigma_{sw}(S) = \left\{ \lambda \in \sigma_s(S) : \lambda \in \sigma_{SF_-}(S) \text{ or } \operatorname{ind}(S - \lambda) < 0 \right\}, \\ &\sigma_b(S) = \left\{ \lambda \in \sigma(S) : \lambda \in \sigma_e(S) \text{ or } \operatorname{asc}(S - \lambda) \neq \operatorname{dsc}(S - \lambda) \right\}, \\ &\sigma_{ab}(S) = \left\{ \lambda \in \sigma_a(S) : \lambda \in \sigma_{SF_+}(S) \text{ or } \operatorname{asc}(S - \lambda) = \infty \right\}, \\ &\sigma_{sb}(S) = \left\{ \lambda \in \sigma_s(S) : \lambda \in \sigma_{SF_-}(S) \text{ or } \operatorname{dsc}(S - \lambda) = \infty \right\}, \\ &\Pi_0(S) = \left\{ \lambda \in \operatorname{iso} \sigma(S) : 0 < \operatorname{dim}(S - \lambda)^{-1}(0) = \alpha(S - \lambda) < \infty \right\}, \\ &\mu_0(S) = \left\{ \lambda \in \operatorname{iso} \sigma(S) : \lambda \in \Phi(S), \operatorname{asc}(S - \lambda) = \operatorname{dsc}(S - \lambda) < \infty \right\}, \\ &H_0(S) = \left\{ x \in \mathcal{X} : \lim_{n \to \infty} \left\| S^n x \right\|^{1/n} = 0 \right\}. \end{split}$$

Here $\sigma_w(S)$ is the Weyl spectrum, $\sigma_{aw}(S)$ denotes the Weyl (essential) approximate point spectrum, $\sigma_{sw}(S)$ the Weyl (essential) surjectivity spectrum, $\sigma_b(S)$ the Browder spectrum, $\sigma_{ab}(S)$ the Browder (essential) approximate point spectrum, $\sigma_{sb}(S)$ the Browder (essential) surjectivity spectrum, and $H_0(S)$ the quasi-nilpotent part of S [1]. Recall, [1], that $H_0(S)$ and K(S), where K(S) denotes the *analytic core*

$$K(S) = \left\{ x \in \mathcal{X} : \text{there exists a sequence } \{x_n\} \subset \mathcal{X} \text{ and } \delta > 0 \text{ for which} \\ x = x_0, S(x_{n+1}) = x_n \text{ and } \|x_n\| \le \delta^n \|x\| \text{ for all } n = 1, 2, \dots \right\},$$

are hyper-invariant (generally non-closed) subspaces of *S* such that $S^{-p}(0) \subseteq H_0(S)$ for every integer $p \ge 0$ and SK(S) = K(S). Recall also that if $0 \in iso \sigma(S)$, then $\mathcal{X} = H_0(S) \oplus K(S)$.

We say that *S* has the *single valued extension property*, or SVEP, at $\lambda \in C$ if for every open neighborhood *U* of λ , the only analytic solution *f* to the equation $(S - \mu)f(\mu) = 0$ for all $\mu \in U$ is the constant function $f \equiv 0$; we say that *S* has SVEP if *S* has a SVEP at every $\lambda \in C$. It is well known that finite ascent implies SVEP; also, an operator has SVEP at every isolated point of its spectrum (as well as at every isolated point of its approximate point spectrum).

 $S \in B(\mathcal{X})$ satisfies Browder's theorem, shortened to *S* satisfies Bt, if $\sigma_w(S) = \sigma_b(S)$ (if and only if $\sigma(S) \setminus \sigma_w(S) = p_0(S)$, see [1, p.156]); *S* satisfies Weyl's theorem, shortened to *S* satisfies Wt, if $\sigma(S) \setminus \sigma_w(S) = \Pi_0(S)$ (if and only if *S* satisfies Bt and $p_0(S) = \Pi_0(S)$) [1, p.177]. The implication Wt \Longrightarrow Bt is well known.

An isolated point $\lambda \in iso \sigma(S)$ is a pole (of the resolvent) of $S \in B(\mathcal{X})$ if $\operatorname{asc}(S - \lambda) = \operatorname{dsc}(S - \lambda) < \infty$. In such a case we say that *S* is polar at λ ; we say that *S* is polaroid (resp., polaroid on a subset *F* of the set of isolated points of $\sigma(S)$) if *S* is polar at every $\lambda \in iso \sigma(S)$ (resp., at every $\lambda \in F$). Let p(S) denote the set of poles of *S*.

Throughout the following, $M_0 \in B(\mathcal{X} \oplus \mathcal{X})$ shall denote the diagonal operator $M_0 = A \oplus B$ and $M_C \in B(\mathcal{X} \oplus \mathcal{X})$ shall denote the upper triangular operator matrix $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$, for some operators $A, B, C \in B(\mathcal{X})$. Recall, [5, Exercise 7, p.293], that $\operatorname{asc}(A) \leq \operatorname{asc}(M_C) \leq \operatorname{asc}(A) + \operatorname{asc}(B)$ and $\operatorname{dsc}(B) \leq \operatorname{dsc}(M_C) \leq \operatorname{dsc}(A) + \operatorname{dsc}(B)$.

Lemma 2.1 If $\sigma(M_0) = \sigma(M_C)$, then $p(M_0) = p(M_C)$.

Proof Since $\sigma(M_C) = \sigma(M_0) = \sigma(A) \cup \sigma(B)$, if a complex number $\lambda \in p(M_C)$ or $p(M_0)$ then $\lambda \in iso(\sigma(A) \cup \sigma(B))$. We consider the case in which $\lambda \in iso \sigma(A) \cap iso \sigma(B)$: the argument

$$\operatorname{asc}(A-\lambda) \leq \operatorname{asc}(M_C-\lambda) < \infty$$
 and $\operatorname{dsc}(B-\lambda) \leq \operatorname{dsc}(M_C-\lambda) < \infty$.

If $\lambda \in iso \sigma(B)$ and $dsc(B - \lambda) < \infty$, then $asc(B - \lambda) = dsc(B - \lambda) < \infty$ and *B* is polar at λ [1, Theorem 3.81]. Now let $\lambda \in iso \sigma(A)$. Since M_C is polar at λ , $H_0(M_C - \lambda) = (M_C - \lambda)^{-p}(0)$ for some integer p > 1. Observe that

$$H_0(A-\lambda) = H_0(M_C-\lambda) \cap \mathcal{X} = (M_C-\lambda)^{-p}(0) \cap \mathcal{X} = (A-\lambda)^{-p}(0).$$

Hence, if $\lambda \in iso \sigma(A)$, then

$$\mathcal{X} = H_0(A - \lambda) \oplus K(A - \lambda) = (A - \lambda)^{-p}(0) \oplus K(A - \lambda)$$
$$\implies (A - \lambda)^p \mathcal{X} = 0 \oplus (A - \lambda)^p K(A - \lambda) = K(A - \lambda)$$
$$\implies \mathcal{X} = (A - \lambda)^{-p}(0) \oplus (A - \lambda)^p \mathcal{X},$$

i.e., *A* is polar at λ . Now, since

$$\operatorname{asc}(M_0 - \lambda) \leq \operatorname{asc}(A - \lambda) + \operatorname{asc}(B - \lambda)$$
 and $\operatorname{dsc}(M_0 - \lambda) \leq \operatorname{dsc}(A - \lambda) + \operatorname{dsc}(B - \lambda)$,

we have

$$\operatorname{asc}(M_0 - \lambda) = \operatorname{dsc}(M_0 - \lambda) < \infty$$
,

i.e., M_0 is polar at λ . Conversely, if $\lambda \in p(M_0)$, then $\operatorname{asc}(M_0 - \lambda) = \max\{\operatorname{asc}(A - \lambda), \operatorname{asc}(B - \lambda)\}$ and $\operatorname{dsc}(M_0 - \lambda) = \max\{\operatorname{dsc}(A - \lambda), \operatorname{dsc}(B - \lambda)\}$ implies $\operatorname{asc}(M_C - \lambda) \leq \operatorname{asc}(A - \lambda) + \operatorname{asc}(B - \lambda)$ and $\operatorname{dsc}(M_C - \lambda) \leq \operatorname{dsc}(A - \lambda) + \operatorname{dsc}(B - \lambda)$ are both finite, hence equal. Thus M_C is polar at λ .

Remark 2.2 A number of conditions guaranteeing (the spectral equality) $\sigma(M_C) = \sigma(M_0)$ are to be found in the literature. Thus, for example, if A^* or B has SVEP, or if $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$, or $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$ [3, (I) p.5 and Proposition 3.2], then $\sigma(M_C) = \sigma(M_0)$. Compact operators have SVEP; hence, if either of A or B is compact, then $\sigma(M_C) = \sigma(M_0)$.

Lemma 2.1 shows that if *B* is a compact operator then $p(M_0) = p(M_C)$. A proof of the following lemma may be obtained from that of Lemma 2.1: we give here an independent proof, exploiting the additional information contained in the hypothesis.

Lemma 2.3 If $\sigma(M_0) = \sigma(M_C)$, then $p_0(M_0) = p_0(M_c)$.

Proof Once again we consider points $\lambda \in iso \sigma(A) \cap iso \sigma(B)$. Let $\lambda \in p_0(M_C)$. Then $\alpha(M_C - \lambda) = \beta(M_C - \lambda) < \infty$ implies $M_C - \lambda \in \Phi$, and this in turn implies $A - \lambda \in \Phi_+$ and $B - \lambda \in \Phi_-$. Since λ is isolated in $\sigma(A)$ and $\sigma(B)$, $\lambda \in p_0(A) \cap p_0(B)$ [1, Theorem 3.77]. Consequently, $\lambda \in p(M_0)$; furthermore, since $\alpha(M_0 - \lambda) \le \alpha(A - \lambda) + \alpha(B - \lambda)$, $\lambda \in p_0(M_0)$. Conversely, if $\lambda \in p_0(M_0)$, then $A - \lambda$ and $B - \lambda \in \Phi$, and hence (since λ is isolated in $\sigma(A)$ and $\sigma(B)$) $\lambda \in p_0(A) \cap p_0(B)$. This, as above, implies $\lambda \in p_0(M_C)$.

The following technical lemma will be required in the sequel.

Lemma 2.4 If A is polaroid on $\Pi_0(M_C)$ and $\sigma(M_C) = \sigma(M_0)$, then $\Pi_0(M_C) \subseteq \Pi_0(M_0)$.

Proof Evidently, $(M_C - \lambda)^{-1}(0) \neq \emptyset$ implies $(M_0 - \lambda)^{-1}(0) \neq \emptyset$, and $\alpha(M_C - \lambda) < \infty$ implies $\alpha(A - \lambda) < \infty$. Let $\lambda \in \Pi_0(M_C)$; then $\lambda \in iso \sigma(M_0)$. We prove that $\alpha(B - \lambda) < \infty$. Suppose to the contrary that $\alpha(B - \lambda) = \infty$. Since

 $(M_C - \lambda)(x \oplus y) = \{(A - \lambda)x + Cy\} \oplus (B - \lambda)y,$

either dim $(C(B - \lambda)^{-1}(0)) < \infty$ or dim $(C(B - \lambda)^{-1}(0)) = \infty$. If dim $(C(B - \lambda)^{-1}(0)) < \infty$, then (since $\alpha(B - \lambda) = \infty$) $(B - \lambda)^{-1}(0)$ contains an orthonormal sequence $\{y_j\}$ such that $(M_C - \lambda)(0 \oplus y_j) = 0$ for all j = 1, 2, ... But then $\alpha(M_C - \lambda) = \infty$, a contradiction. Hence dim $(C(B - \lambda)^{-1}(0)) = \infty$. Since $\lambda \in \rho(A) \cup iso \sigma(A)$ and A is (by hypothesis) polar at λ (with, as observed above, $\alpha(A - \lambda) < \infty$) $\alpha(A - \lambda) = \beta(A - \lambda) < \infty$. Thus dim $\{C(B - \lambda)^{-1}(0) \cap (A - \lambda)X\} = \infty$, and so there exists a sequence $\{x_i\}$ such that $(A - \lambda)x_j = Cy_j$ for all j = 1, 2, ...But then $(M_C - \lambda)(x_j \oplus -y_j) = 0$ for all j = 1, 2, ..., and hence $\alpha(M_C - \lambda) = \infty$. This contradiction implies that we must have $\alpha(B - \lambda) < \infty$. Since $\alpha(M_0 - \lambda) \leq \alpha(A - \lambda) + \alpha(B - \lambda)$, we conclude that $\lambda \in \Pi_0(M_0)$.

Let $\delta_{ST} \in B(B(\mathcal{X}))$ denote the generalized derivation $\delta_{ST}(X) = SX - XT$, and define δ_{ST}^n by $\delta_{ST}^{n-1}(\delta_{ST})$. The operators $S, T \in B(\mathcal{X})$ are said to be asymptotically intertwined by the identity operator $I \in B(\mathcal{X})$ if $\lim_{n\to\infty} \|\delta_{ST}^n(I)\|^{\frac{1}{n}} = 0$; S, T are said to be *quasi-nilpotent* equivalent if $\lim_{n\to\infty} \|\delta_{ST}^n(I)\|^{\frac{1}{n}} = \lim_{n\to\infty} \|\delta_{TS}^n(I)\|^{\frac{1}{n}} = 0$ [4, p.253]. Quasi-nilpotent equivalence preserves a number of spectral properties [4, Proposition 3.4.11]. In particular:

Lemma 2.5 *Quasi-nilpotent equivalent operators have the same spectrum, the same approximate point spectrum and the same surjectivity spectrum.*

3 Results

Let $\mathcal{K}(\mathcal{X})$ denote the ideal of compact operators in $B(\mathcal{X})$. The following construction, known in the literature as the Sadovskii/Buoni, Harte and Wickstead construction [6, p.159], leads to a representation of the Calkin algebra $B(\mathcal{X})/\mathcal{K}(\mathcal{X})$ as an algebra of operators on a suitable Banach space. Let $S \in B(\mathcal{X})$. Let $\ell^{\infty}(\mathcal{X})$ denote the Banach space of all bounded sequences $x = (x_n)_{n=1}^{\infty}$ of elements of \mathcal{X} endowed with the norm $||x||_{\infty} :=$ $\sup_{n \in \mathbb{N}} ||x_n||$, and write $S_{\infty}, S_{\infty}x := (Sx_n)_{n=1}^{\infty}$ for all $x = (x_n)_{n=1}^{\infty}$, for the operator induced by Son $\ell^{\infty}(\mathcal{X})$. The set $m(\mathcal{X})$ of all precompact sequences of elements of \mathcal{X} is a closed subspace of $\ell^{\infty}(\mathcal{X})$ which is invariant for S_{∞} . Let $\mathcal{X}_q := \ell^{\infty}(\mathcal{X})/m(\mathcal{X})$, and denote by S_q the operator S_{∞} on \mathcal{X}_q . The mapping $S \mapsto S_q$ is then a unital homomorphism from $B(\mathcal{X}) \to B(\mathcal{X}_q)$ with kernel $\mathcal{K}(\mathcal{X})$ which induces a norm decreasing monomorphism from $B(\mathcal{X})/\mathcal{K}(\mathcal{X})$ to $B(\mathcal{X}_q)$ with the following properties (see [6, Section 17] for details):

- (i) *S* is upper semi-Fredholm, $S \in \Phi_+$, if and only if S_q is injective, if and only if S_q is bounded below;
- (ii) *S* is lower semi-Fredholm, $S \in \Phi_{-}$, if and only if S_q is surjective;
- (iii) *S* is Fredholm, $S \in \Phi$, if and only if S_q is invertible.

Lemma 3.1 For every $S \in B(\mathcal{X})$, $\sigma_e(S) = \sigma(S_q)$, $\sigma_{SF_+}(S) = \sigma_a(S_q)$ and $\sigma_{SF_-}(S) = \sigma_s(S_q)$.

Proof The following implications hold:

The following theorem is essentially known [7] we provide here an alternative proof, using quasi-nilpotent equivalence and the construction above. Let Σ_0 denote either of σ_e , σ_{SF_+} , σ_{SF_-} , σ_w , σ_{aw} , σ_{sw} , σ_b , σ_{ab} and σ_{sb} .

Theorem 3.2 Let $S, R \in B(\mathcal{X})$. If R is a Riesz operator which commutes with S, then $\sigma_x(S + R) = \sigma_x(S)$, where $\sigma_x \in \Sigma_0$.

Proof It is clear from the definition of a Riesz operator $R \in B(\mathcal{X})$ that $R - \mu$ is Browder (*i.e.*, $\mu \notin \sigma_b(R)$), and *a*-Browder and *s*-Browder, for all non-zero $\mu \in \sigma(R)$ (see, for example, [1, Theorem 3.111]). Hence $\sigma(R_q) = \{0\}$, *i.e.*, $R_q \in B(\mathcal{X}_q)$ is quasi-nilpotent. Let $t \in [0, 1]$; then *S* commutes with tR and $(S + tR)_q = S_q + tR_q$. It follows that

$$\lim_{n \to \infty} \left\| \delta_{(S+tR)qSq}^n(I_q) \right\|^{\frac{1}{n}} = \lim_{n \to \infty} \left\| \delta_{Sq(S+tR)q}^n(I_q) \right\|^{\frac{1}{n}} = 0,$$

i.e., S_q and $S_q + tR_q$ are quasi-nilpotent equivalent operators for all $t \in [0,1]$. Thus $\sigma_x((S + R)_q) = \sigma_x(S_q)$, where $\sigma_x = \sigma$ or σ_a or σ_s . Hence

$$\sigma_x(S+R) = \sigma_x(S); \quad \sigma_x = \sigma_e \text{ or } \sigma_{ae} \text{ or } \sigma_{se}.$$

The semi-Fredholm index being a continuous function, we also have from the above that

$$\sigma_x(S+R) = \sigma_x(S); \quad \sigma_x = \sigma_w \text{ or } \sigma_{aw} \text{ or } \sigma_{sw}.$$

To complete the proof, we prove next that $\sigma_b(S + R) = \sigma_b(S)$; the proof for σ_{ab} and σ_{sb} is similar, and left to the reader. It would suffice to prove that $0 \in \sigma_b(S) \iff 0 \in \sigma_b(S + R)$. Suppose that $0 \notin \sigma_b(S)$. Then $S \in \Phi$ (and $\operatorname{asc}(S) = \operatorname{dsc}(S) < \infty$), hence $S + tR \in \Phi$ for all $t \in [0,1]$. For an operator T, let $\overline{\mathcal{N}^{\infty}(T)}$ and $T^{\infty}(\mathcal{X})$ denote, respectively, the closure of the hyper kernel and the hyper range of T. Then $\overline{\mathcal{N}^{\infty}(S + tR)} \cap (S + tR)^{\infty}(\mathcal{X})$ is constant on [0,1], and so, since $\overline{\mathcal{N}^{\infty}(S)} \cap S^{\infty}(\mathcal{X}) = \mathcal{N}^{\infty}(S) \cap S^{\infty}(\mathcal{X}) = \{0\}$. Consequently, S + R has SVEP at 0 [1, Corollary 2.26]. But then since $S + R \in \Phi$, S + R is Browder. Considering S = (S + R) - R proves $0 \notin \sigma_b(S + R) \Longrightarrow 0 \notin \sigma_b(S)$.

The following lemma appears in [8, Lemma 2.3]. Let $\Pi_{0f}(S) = \{\lambda \in iso \sigma(S) : \alpha(S - \lambda) < \infty\}$. Clearly, $\Pi_0(S) \subseteq \Pi_{0f}(S)$.

Lemma 3.3 If $S, R \in B(\mathcal{X})$, and R is a Riesz operator which commutes with S, then $\Pi_{0f}(S + R) \cap \sigma(S) \subseteq iso \sigma(S)$.

Let $\Sigma = \Sigma_0 \cup \sigma \cup \sigma_a \cup \sigma_s$.

Theorem 3.4 If $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$, then $\sigma_x(M_C) = \sigma_x(M_0)$, where $\sigma_x \in \Sigma$.

Proof A straightforward calculation shows that

$$\delta^n_{M_CM_0}(I) = -\delta^n_{M_0M_C}(I) = \begin{pmatrix} 0 & \delta^{n-1}_{AB}(C) \\ 0 & 0 \end{pmatrix}.$$

Hence

$$\lim_{n \to \infty} \left\| \delta_{M_C M_0}^n(I) \right\|^{\frac{1}{n}} = \lim_{n \to \infty} \left\| \delta_{M_0 M_C}^n(I) \right\|^{\frac{1}{n}} \le \lim_{n \to \infty} \left\| \delta_{AB}^{n-1}(C) \right\|^{\frac{1}{n}} = 0,$$

i.e., M_C and M_0 are quasi-nilpotent equivalent. Similarly, writing $M_{C(q)}$ for $(M_C)_q$ and $M_{0(q)}$ for $(M_0)_q$,

$$\begin{split} \lim_{n \to \infty} \left\| \delta_{M_{C(q)}M_{0(q)}}^{n}(I_{q}) \right\|^{\frac{1}{n}} &= \lim_{n \to \infty} \left\| \delta_{M_{0(q)}M_{C(q)}}^{n}(I_{q}) \right\|^{\frac{1}{n}} \\ &\leq \lim_{n \to \infty} \left\| \delta_{A_{q}B_{q}}^{n-1}(C_{q}) \right\|^{\frac{1}{n}} \\ &= \lim_{n \to \infty} \left\| \delta_{AB}^{n-1}(C) \right\|^{\frac{1}{n}} = 0, \end{split}$$

i.e., $M_{C(q)}$ and $M_{0(q)}$ are quasi-nilpotent equivalent (in $B((\mathcal{X} \oplus \mathcal{X})_q))$). Hence $\sigma_x(M_C) = \sigma_x(M_0)$, where $\sigma_x = \sigma$ or σ_a or σ_s or σ_e or σ_{SF_+} or σ_{SF_-} . Since

$$M_0 = \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$$

and

$$M_C = \begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix},$$

where $\begin{pmatrix} I & C \\ 0 & I \end{pmatrix}$ is invertible, and since $\lambda \notin \sigma_e(M_C) \iff \lambda \notin \sigma_e(M_0) \Longrightarrow A - \lambda, B - \lambda \in \Phi$ (similarly, $\lambda \notin \sigma_{SF_+}(M_C) \Longrightarrow A - \lambda, B - \lambda \in \Phi_+$ and $\lambda \notin \sigma_{SF_-}(M_C) \Longrightarrow A - \lambda, B - \lambda \in \Phi_-$), ind $(M_C - \lambda) = \operatorname{ind}(A - \lambda) + \operatorname{ind}(B - \lambda) = \operatorname{ind}(M_0 - \lambda)$. Hence $\sigma_x(M_C) = \sigma_x(M_0)$, where $\sigma_x = \sigma_w$ or σ_{aw} or σ_{sw} . Observe that

$$\sigma_b(M_C) = \left\{ \lambda \in \sigma(M_C) : \lambda \in \sigma_w(M_C) \text{ or } \lambda \notin \text{ iso } \sigma(M_C) \right\}$$
$$= \left\{ \lambda \in \sigma(M_0) : \lambda \in \sigma_w(M_0) \text{ or } \lambda \notin \text{ iso } \sigma(M_0) \right\},$$
$$\sigma_{ab}(M_C) = \left\{ \lambda \in \sigma_a(M_C) : \lambda \in \sigma_{aw}(M_C) \text{ or } \lambda \notin \text{ iso } \sigma_a(M_C) \right\}$$
$$= \left\{ \lambda \in \sigma_a(M_0) : \lambda \in \sigma_{aw}(M_0) \text{ or } \lambda \notin \text{ iso } \sigma_a(M_0) \right\}$$

and

$$\sigma_{sb}(M_C) = \left\{ \lambda \in \sigma_s(M_C) : \lambda \in \sigma_{sw}(M_C) \text{ or } \lambda \notin \text{ iso } \sigma_s(M_C) \right\}$$
$$= \left\{ \lambda \in \sigma_s(M_0) : \lambda \in \sigma_{sw}(M_0) \text{ or } \lambda \notin \text{ iso } \sigma_s(M_0) \right\}$$

[1, Corollary 3.23, Theorem 3.23 and Theorem 3.27]. Hence $\sigma_x(M_C) = \sigma_x(M_0)$, where $\sigma_x = \sigma_b$ or σ_{ab} or σ_{sb} .

Remark 3.5 If $M \in B(\mathcal{X} \oplus \mathcal{X})$ is the operator $M = \begin{pmatrix} A & C \\ D & B \end{pmatrix}$ such that the entries A, B, C and D mutually commute, then $\sigma_x(M) = \{\lambda \in \mathbb{C} : 0 \in \sigma_x((A - \lambda)(B - \lambda) - CD)\}$ [9, Theorem 2.3], where $\sigma_x = \sigma$ or σ_e . Dispensing with the mutual commutativity hypothesis and assuming instead that CD = DC = 0, C commutes with A and B, and $\lim_{n\to\infty} \|\delta_{AB}^n(D)\|^{\frac{1}{n}} = 0$, an argument similar to that used to prove Theorem 3.4 shows that $\sigma_x(M) = \sigma_x(M_C)$, where $\sigma_x = \sigma$ or σ_a or σ_s or σ_e or σ_{SF+} .

Theorem 3.6 Suppose that $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$. Then:

- (a) M_C satisfies Bt if and only if M_0 satisfies Bt.
- (b) Let $R_i \in B(\mathcal{X})$, i = 1, 2, be Riesz operators such that $R = R_1 \oplus R_2$ commutes with M_C . Then M_0 satisfies $Bt \iff M_C + R$ satisfies $Bt \iff M_0 + R$ satisfies $Bt \iff M_C$ satisfies Bt.

Proof The hypothesis *R* commutes with M_C implies *R* commutes with M_0 , $R_1C = CR_2$ and $\delta^n_{(M_C+R)(M_0+R)}(I) = \delta^n_{M_CM}(I)$.

(a) Recall that an operator *S* satisfies Bt if and only if $\sigma_w(S) = \sigma_b(S)$. Hence the following implications hold:

$$M_0$$
 satisfies Bt $\iff \sigma_w(M_0) = \sigma_b(M_0)$
 $\iff \sigma_w(M_c) = \sigma_b(M_c)$ (Theorem 3.4)
 $\iff M_C$ satisfies Bt.

(b) The hypothesis $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$ implies that $M_C + R$ and $M_0 + R$ are quasinilpotent equivalent (\Longrightarrow by Theorem 3.4 that $\sigma_x(M_C + R) = \sigma_x(M_0 + R)$, where $\sigma_x \in \Sigma$). The operator R being Riesz, Theorem 3.2 implies $\sigma_x(T + R) = \sigma_x(T)$, where $T = M_C$ or M_0 and $\sigma_x = \sigma_w$ or σ_b . The (two way) implications

$$M_0 \text{ satisfies Bt} \iff \sigma_w(M_0) = \sigma_b(M_0) \iff \sigma_w(M_0 + R) = \sigma_b(M_0 + R)$$
$$(\iff M_0 + R \text{ satisfies Bt})$$
$$\iff \sigma_w(M_C + R) = \sigma_b(M_C + R) \iff M_C + R \text{ satisfies Bt}$$
$$\iff \sigma_w(M_C) = \sigma_b(M_C) \iff M_C \text{ satisfies Bt}$$

now complete the proof.

Remark 3.7 (i) $S \in B(\mathcal{X})$ satisfies *a*-Browder's theorem, *a*-Bt, if and only if $\sigma_{aw}(S) = \sigma_{ab}(S)$ (equivalently, if and only if $\sigma_a(S) \setminus \sigma_{aw}(S) = p_0^a(S) = \{\lambda \in \text{iso } \sigma_a(S) : S - \lambda \in \Phi_+\} = \{\lambda \in \sigma_a(S) : S - \lambda \in \Phi_+\}$

 $S - \lambda \in \Phi_+$, $\operatorname{asc}(S - \lambda) < \infty$ [2, Theorem 3.3]). Theorem 3.6 holds with Bt replaced by *a*-Bt. (Thus, if either M_0 or M_C satisfies *a*-Bt, then M_0 , M_C , $M_0 + R$ and $M_C + R$ all satisfy *a*-Bt.) Furthermore, since *S* satisfies generalized Browder's theorem, gBt, if and only if it satisfies Bt and *S* satisfies generalized *a*-Browder's theorem, *a*-gBt, if and only if it satisfies *a*-Bt [10], Bt may be replaced by gBt or *a*-gBt in Theorem 3.6. Here, we refer the interested reader to consult [2, 10] for information about gBt and *a*-gBt.

(ii) The equivalence *S* satisfies Bt $\iff S^*$ satisfies Bt is well known. This does not hold for *a*-Bt: *S* satisfies *a*-Bt does not imply S^* satisfies *a*-Bt (or *vice versa*). We say that *S* satisfies *s*-Bt if S^* satisfies *a*-Bt (equivalently, if $\sigma_{sb}(S) = \sigma_{sw}(S)$). It is easily seen, we leave the verification to the reader, if either M_0 or M_C satisfies *s*-Bt, then (in Theorem 3.6) M_0 , M_C , $M_0 + R$ and $M_C + R$ all satisfy *s*-Bt.

We consider next a sufficient condition for the equivalence of Weyl's theorem for operators M_0 and M_C such that $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$. We say in the following that an operator S is finitely polaroid on a subset $F \subseteq iso \sigma(S)$ if every $\lambda \in F$ is a finite rank pole of S. Evidently, M_0 is finitely polaroid if and only if A and B are finitely polaroid.

Theorem 3.8 Suppose that $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$.

- (a) If A is polaroid, then M_C satisfies Wt if and only if M_0 satisfies Wt.
- (b) Let R_i ∈ B(X), i = 1, 2, be Riesz operators such that R = R₁ ⊕ R₂ commutes with M_C. A sufficient condition for the equivalence M_C + R satisfies Wt ⇐⇒ M₀ + R satisfies Wt is that M₀ is finitely polaroid.

Proof (a) If *M_C* satisfies Wt, then $\sigma(M_C) \setminus \sigma_w(M_C) = p_0(M_C) = \Pi_0(M_C)$. Since $\sigma(M_0) = \sigma(M_C)$ and $\sigma_w(M_C) = \sigma_w(M_0)$ (Theorem 3.4) and since Wt implies Bt, Theorem 3.6(a) implies $\sigma(M_0) \setminus \sigma_w(M_0) = p_0(M_0) \subseteq \Pi_0(M_0)$. Consequently, $\Pi_0(M_C) \subseteq \Pi_0(M_0)$. Let $\lambda \in \Pi_0(M_0)$. Then $\lambda \in iso \sigma(M_C)$, $\alpha(A - \lambda) < \infty$ and $\alpha(B - \lambda) < \infty$. Hence, since $\alpha(A - \lambda) \leq \alpha(M_C - \lambda) \leq \alpha(A - \lambda) + \alpha(B - \lambda)$, $\alpha(M_C - \lambda) < \infty$. Evidently, $\lambda \in iso \sigma(A) \cup \rho(A)$. If $\lambda \in iso \sigma(A)$, then *A* polaroid implies $0 < \alpha(A - \lambda)$, and hence $0 < \alpha(M_C - \lambda)$. If instead $\lambda \in \rho(A)$, then $-(A - \lambda)^{-1}Cx \oplus x \in (M_C - \lambda)^{-1}(0)$ for every $x \in (B - \lambda)^{-1}(0)$; once again, $0 < \alpha(M_C - \lambda)$. Consequently, $\lambda \in \Pi_0(M_C - \lambda) = p_0(M_C - \lambda) = p_0(M_0 - \lambda)$ and hence $\Pi_0(M_0) = p_0(M_0) \Longrightarrow M_0$ satisfies Wt. Conversely, if M_0 satisfies Wt, then $\sigma(M_C) \setminus \sigma_w(M_C) = p_0(M_C) = p_0(M_0) = \Pi_0(M_0) = \sigma(M_0) \setminus \sigma_w(M_0)$ and $\Pi_0(M_0) \subseteq \Pi_0(M_C)$. Since *A* is polaroid (hence polar on $\Pi_0(M_C)$) and $\sigma(M_0) = \sigma(M_C)$, Lemma 2.4 implies $\Pi_0(M_0) = \Pi_0(M_C)$. Thus M_C satisfies Wt.

(b) Start by observing that $\sigma(M_0) = \sigma(M_C)$, and hence M_C is finitely polaroid if and only if M_0 is finitely polaroid (Lemma 2.3). Suppose $M_0 + R$ satisfies Wt. Then the implication Wt \Longrightarrow Bt combined with Theorem 3.6(b) implies that both $M_0 + R$ and $M_C + R$ satisfy Bt. As noted in the proof of Theorem 3.6(b), $\sigma_w(T + R) = \sigma_w(T)$, $T = M_0$ or M_C . Furthermore, since $M_0 + R$ and $M_C + R$ are quasi-nilpotent equivalent, $\sigma_x(M_0 + R) = \sigma_x(M_C + R)$, $\sigma_x = \sigma$ or σ_w (Theorem 3.4). Hence

$$\Pi_0(M_0 + R) = \sigma(M_0 + R) \setminus \sigma_w(M_0 + R) = \sigma(M_C + R) \setminus \sigma_w(M_C + R)$$
$$= p_0(M_C + R) \subseteq \Pi_0(M_C + R).$$

If $\lambda \in \Pi_0(M_C + R)$ and $\lambda \notin \sigma(M_C)$, then $(M_C - \lambda)$ is invertible and so $M_C - \lambda \in \Phi \Longrightarrow$ $M_C + R - \lambda \in \Phi$. Hence, since $\lambda \in iso \sigma(M_C + R)$, $\lambda \in p_0(M_C + R)$. If, instead, $\lambda \in \sigma(M_C)$, then $\lambda \in iso \sigma(M_C)$ (Lemma 3.3) $\Longrightarrow \lambda \in iso \sigma(M_0) \Longrightarrow \lambda \in p_0(M_0)$ (since M_0 is finitely polaroid) $\Longrightarrow \lambda \in p_0(M_C)$ (Lemma 2.3) $\Longrightarrow M_C - \lambda \in \Phi$, and this as above implies $\lambda \in p_0(M_c + R)$. Hence $\Pi_0(M_C + R) = p_0(M_C + R)$, and $M_C + R$ satisfies Wt. The converse, $M_C + R$ satisfies Wt $\Longrightarrow M_0 + R$ satisfies Wt follows from a similar argument (recall that M_C is finitely polaroid follows from the hypothesis that M_0 is finitely polaroid).

Remark 3.9 The equivalence of Theorem 3.8(b) extends to

 M_0 satisfies Bt $\iff M_0 + R$ satisfies Wt $\iff M_C + R$ satisfies Wt $\iff M_C$ satisfies Bt.

This is seen as follows. The implication $M_0 + R$ satisfies $Wt \Longrightarrow M_0$ satisfies Bt and $M_C + R$ satisfies $Wt \Longrightarrow M_C$ satisfies Bt are clear from Theorem 3.6(b). If M_0 satisfies Bt, then the hypothesis M_0 is finitely polaroid implies M_0 satisfies Wt. By Theorem 3.6(b), $M_0 + R$ satisfies Bt, *i.e.*, $\sigma(M_0 + R) \setminus \sigma_w(M_0 + R) = p_0(M_0 + R) \subseteq \Pi_0(M_0 + R)$. Let $\lambda \in \Pi_0(M_0 + R)$. If $\lambda \notin \sigma(M_0)$, then $(M_0 - \lambda \in \Phi \Longrightarrow) M_0 + R - \lambda \in \Phi \Longrightarrow \lambda \in p_0(M_0 + R)$ (since $\lambda \in iso \sigma(M_0 + R)$); if $\lambda \in \sigma(M_0)$, then $\lambda \in iso \sigma(M_0)$ (by Lemma 3.3) and so (since M_0 is finitely polaroid) $\lambda \in p_0(M_0) \Longrightarrow M_0 - \lambda \in \Phi \Longrightarrow M_0 + R - \lambda \in \Phi \Longrightarrow \lambda \in p_0(M_0 + R)$. Thus, in either case, $\Pi_0(M_0 + R) \subseteq p_0(M_0 + R)$, and hence $M_0 + R$ satisfies Wt. The proof for M_C satisfies Bt $\Longrightarrow M_C + R$ satisfies Wt is similar: recall from Lemma 2.3 that M_0 finitely polaroid implies M_C finitely polaroid.

a-Wt. $T \in B(\mathcal{X})$ satisfies *a*-Weyl's theorem, *a*-Wt for short, if *T* satisfies *a*-Bt and $p_0^a(T) = \Pi_0^a(T)$ (equivalently, if $\sigma_a(T) \setminus \sigma_{aw}(T) = p_0^a(T) = \Pi_0^a(T)$), where $\Pi_0^a(T) = \{\lambda \in iso \sigma_a(T) : 0 < \alpha(T - \lambda) < \infty\}$ [1]. We say in the following that *T* is *a*-polaroid if *T* is polar at every $\lambda \in iso \sigma_a(T)$. Trivially, *a*-polaroid implies polaroid (indeed, $p_0^a(T) = p_0(T)$ in such a case), but the converse is not true in general. Theorem 3.8 has an *a*-Wt analogue, which we prove below. We note, however, that the perturbation of an operator by a commuting Riesz operator preserves neither its spectrum nor its approximate point spectrum: this will, *per se*, force us into making an assumption on the approximate point spectrum of M_0 and $M_0 + R$ in the analogue of Theorem 3.8(b).

Theorem 3.10 Suppose that $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0.$

- (a) If M_0 is a-polaroid, then M_C satisfies a-Wt if and only if M_0 satisfies a-Wt.
- (b) Let R_i ∈ B(X), i = 1, 2, be Riesz operators such that R = R₁ ⊕ R₂ commutes with M_C. If σ_a(M₀) = σ_a(M₀ + R), then a sufficient condition for the equivalence M_C + R satisfies a-Wt ⇔ M₀ + R satisfies a-Wt is that M₀ is finitely a-polaroid.

Proof (a) We prove $\Pi_0^a(M_0) = \Pi_0^a(M_C)$: the proof of (a) would then follow from the fact that if M_0 satisfies *a*-Wt ($\Longrightarrow M_0$ satisfies *a*-Bt $\iff M_C$ satisfies *a*-Bt), then

$$\Pi_0^a(M_0) = \sigma_a(M_0) \setminus \sigma_{aw}(M_0) = \sigma_a(M_C) \setminus \sigma_{aw}(M_C) = p_0^a(M_C) \subseteq \Pi_0^a(M_C)$$

and if M_C satisfies *a*-Wt, then

$$\Pi_0^a(M_C) = \sigma_a(M_C) \setminus \sigma_{aw}(M_C) = \sigma_a(M_0) \setminus \sigma_{aw}(M_0) = p_0^a(M_0) \subseteq \Pi_0^a(M_0).$$

If $\lambda \in \Pi_0^a(M_0)$, then

$$\begin{split} \lambda &\in \mathrm{iso}\,\sigma_a(M_0), \quad 0 < \alpha(M_0 - \lambda) < \infty \\ &\iff \lambda \in p_0(M_0) \quad (\mathrm{since}\,M_0 \ \mathrm{is}\ a \mathrm{-polaroid}) \\ &\iff \lambda \in \left(p_0(A) \cup p_0(B)\right) \cup \left(p_0(A) \cup \rho(B)\right) \cup \left(\rho(A) \cup p_0(B)\right) \\ &\implies \alpha(M_C - \lambda) \le \alpha(A - \lambda) + \alpha(B - \lambda) < \infty, \\ &\qquad \mathrm{asc}(M_C - \lambda) \le \mathrm{asc}(A - \lambda) + \mathrm{asc}(B - \lambda) < \infty, \\ &\qquad \mathrm{dsc}(M_C - \lambda) \le \mathrm{dsc}(A - \lambda) + \mathrm{dsc}(B - \lambda) < \infty \\ &\implies \mathrm{asc}(M_C - \lambda) = \mathrm{dsc}(M_C - \lambda) < \infty, \quad 0 < \alpha(M_C - \lambda) < \infty \\ &\implies \lambda \in p_0(M_C) \subseteq \Pi_0(M_C) \subseteq \Pi_0^a(M_C); \end{split}$$

if instead $\lambda \in \prod_{i=1}^{a} (M_{C})$, then

$$\begin{split} \lambda &\in \mathrm{iso}\,\sigma_a(M_C), \quad 0 < \alpha(M_C - \lambda) < \infty \\ &\iff \lambda \in \mathrm{iso}\,\sigma_a(M_0), \quad 0 < \alpha(M_C - \lambda) < \infty \\ &\implies \lambda \in p(M_0), \quad 0 < \alpha(M_C - \lambda) < \infty \\ &\iff \lambda \in p_0(M_c) \quad (\mathrm{Lemma}\ 2.4) \\ &\iff \lambda \in p_0(M_0) \quad (\mathrm{Lemma}\ 2.1) \\ &\implies \lambda \in \Pi_0(M_0) \subseteq \Pi_0^a(M_C). \end{split}$$

(b) If $\sigma_a(M_0 + R) = \sigma_a(M_0)$, then it follows from Lemma 2.4 and Theorem 3.4 that

$$\sigma_x(M_0) = \sigma_x(M_0 + R) = \sigma_x(M_C + R) = \sigma_x(M_C); \quad \sigma_x = \sigma_a \text{ or } \sigma_{aw}.$$

Recall from Remark 3.7 that if either of $M_0 + R$ or $M_C + R$ satisfies *a*-Bt, then M_0 , $M_0 + R$, M_C and $M_C + R$ all satisfy *a*-Bt. Hence, in view of the spectral equalities above,

$$p_0^a(M_0) = p_0^a(M_C) = p_0^a(M_C + R) = p_0^a(M_0 + R),$$

whenever either of M_0 , $M_0 + R$, M_C and $M_C + R$ satisfies *a*-Bt. Observe that the hypothesis M_0 is finitely *a*-polaroid implies $p_0^a(M_0) = p_0(M_0) = p_0(M_C) = p_0^a(M_0 + R)$; hence (since $p_0^a(M_0) = p_0^a(M_C) = p_0^a(M_C + R) = p_0^a(M_0 + R)$) $p_0^a(S) = p_0^a(T)$ for every choice of $S, T = M_0$ or M_C or $M_0 + R$ or $M_C + R$. We prove now that if either of $M_0 + R$ and $M_C + R$ satisfies *a*-Wt, then $\Pi_0^a(M_0 + R) = \Pi_0^a(M_C + R)$: this would then imply that if one satisfies *a*-Wt, then so does the other.

Suppose $M_0 + R$ satisfies *a*-Wt. Then $p_0(M_0 + R) = p_0^a(M_0 + R) = \prod_0^a(M_0 + R)$ (\Longrightarrow $\prod_0^a(M_0 + R) = \prod_0(M_0 + R)$) and $\prod_0^a(M_0 + R) \subseteq \prod_0^a(M_C + R)$. Let $\lambda \in \prod_0^a(M_c + R)$; then $\lambda \in \operatorname{iso} \sigma_a(M_C + R) = \operatorname{iso} \sigma_a(M_0)$ implies $\lambda \in p_0(M_0) = p_0^a(M_C + R)$. Thus $\prod_0^a(M_C + R) \subseteq p_0^a(M_C + R) = p_0^a(M_0 + R) = \prod_0^a(M_0 + R)$. Consequently, $\prod_0^a(M_0 + R) = \prod_0^a(M_C + R)$ in this case. Suppose next that $M_C + R$ satisfies *a*-Wt. Then $p_0(M_C + R) = p_0^a(M_C + R) = \prod_0^a(M_C + R)$ and $\Pi_0^a(M_C + R) \subseteq \Pi_0^a(M_0 + R)$. Let $\lambda \in \Pi_0^a(M_0 + R)$; then $\lambda \in \text{iso } \sigma_a(M_0)$ implies $\lambda \in p_0^a(M_0) = p_0^a(M_C + R)$. As above, this implies $\Pi_0^a(M_0 + R) = \Pi_0^a(M_C + R)$.

The following corollary is immediate from Theorem 3.10(b).

Corollary 3.11 Suppose that $\lim_{n\to\infty} \|\delta_{AB}^n(C)\|^{\frac{1}{n}} = 0$. If $R_i \in B(\mathcal{X})$, i = 1, 2, are quasinilpotent operators such that $R = R_1 \oplus R_2$ commutes with M_C , then a sufficient condition for the equivalence $M_C + R$ satisfies a-Wt $\iff M_0 + R$ satisfies a-Wt is that M_0 is finitely a-polaroid.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally.

Author details

¹8 Redwood Grove, Northfield Avenue, Ealing, London, W5 4SZ, United Kingdom. ²Department of Mathematics Education, Seoul National University of Education, Seoul, 137-742, Korea. ³Department of Mathematics, Incheon National University, Incheon, 406-772, Korea.

Authors' information

Work carried out together whilst the first author was visiting Korea.

Acknowledgements

This work was supported by the Incheon National University Research Grant in 2012.

Received: 8 February 2013 Accepted: 7 May 2013 Published: 29 May 2013

References

- 1. Aiena, P: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer Academic, Dordrecht (2004)
- 2. Duggal, BP: SVEP, Browder and Weyl theorems. In: Jiménez, PMA, Bustamante, GJ, Djordjević, SV (eds.) Tópicas de Theoría de la Approximación. Textos Científicos BUAP Puebla, vol. III, pp. 107-146 (2009).
- http://www.fcfm.buap.mx/CA/analysis-mat/pdf/LIBRO_TOP_T_APPROX.pdf
- Duggal, BP: Browder and Weyl spectra of upper triangular operator matrices. Filomat 24(2), 111-130 (2010). doi:10.2298/FIL1002111D
- 4. Laursen, KB, Neumann, MN: Introduction to Local Spectral Theory. Clarendon, Oxford (2000)
- 5. Taylor, AE, Lay, DC: Introduction to Functional Analysis. Wiley, New York (1980)
- Müller, V: Spectral Theory of Linear Operators. Operator Theory Advances and Applications, vol. 139. Birkhäuser, Basel (2003)
- 7. Rakočević, V: Semi-Browder operators and perturbations. Stud. Math. 122, 131-137 (1997)
- 8. Oudghiri, M: Weyl's theorem and perturbations. Integral Equ. Oper. Theory 53, 535-545 (2005)
- 9. Harte, RE: Invertibility and singularity of operator matrices. Proc. R. Ir. Acad. A 88(2), 103-118 (1988)
- Amouch, M, Zguitti, H: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48, 179-185 (2006)

doi:10.1186/1029-242X-2013-268

Cite this article as: Duggal et al.: Upper triangular operator matrices, asymptotic intertwining and Browder, Weyl theorems. *Journal of Inequalities and Applications* 2013 2013:268.