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Abstract
In this paper, we present a semi-local convergence analysis of Halley’s method for
approximating a locally unique solution of a nonlinear equation in a Banach space
setting, where we assume that the second Fréchet-derivative is bounded. Numerical
examples are used to show that the new convergence criteria can provide better
information than those provided by the convergence criteria developed earlier.
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1 Introduction
In this paper, we are concerned with the problem of approximating a locally unique solu-
tion x� of the nonlinear equation

F(x) = , (.)

where F is twice Fréchet-differentiable operator defined on a nonempty open and convex
subset of a Banach space X with values in a Banach space Y .
Many problems from computational sciences and other disciplines can be brought in a

form similar to equation (.) using mathematical modeling [–]. The solutions of these
equations can rarely be found in a closed form. That is why most solution methods for
these equations are iterative. The study about convergence matter of iterative procedures
is usually based on two types: semi-local and local convergence analysis. The semi-local
convergencematter is, based on the information around an initial point, to give conditions
ensuring the convergence of the iterative procedure; while the local one is, based on the
information around a solution, to find estimates of the radii of convergence balls.
In this paper, we provide a semi-local convergence analysis for Halley’s method defined

by [–]

xn+ = xn – �F (xn)F ′(xn)–F(xn) (.)

for each n≥ , where

�F (x) =
(
I – LF (x)

)–, LF (x) =


F ′(x)–F ′′(x)F ′(x)–F(x).
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The convergence of Halley’s method has a long history and has been studied by many
authors (cf. [, , –] and the references therein). The most popular conditions for the
semi-local convergence of Halley’s method are given as follows.
(C) There exists x ∈ D such that F ′(x)– ∈ L(Y ,X), the space of bounded linear oper-

ator from Y into X;
(C) ‖F ′(x)–F(x)‖ ≤ η for any η > ;
(C) ‖F ′(x)–F ′′(x)‖ ≤ M for each x in D andM > ;
(C) ‖F ′(x)–[F ′′(x) – F ′′(y)]‖ ≤ K‖x – y‖ for each x, y ∈D and K > .
The corresponding sufficient convergence condition [, ] is given by

η ≤ K +M –M
√
M + K

K(M +
√
M + K)

. (.)

There are simple examples to show that (C) is not satisfied. As an example, let X = Y =R,
D = [,+∞) and define F(x) on D by

F(x) =



x

 + x + x + .

Then we have

∣∣F ′′(x) – F ′′(y)
∣∣ = |√x –

√
y| = |x – y|√

x +√y
.

Therefore, there is no constant K satisfying (C). Other examples where (C) is not satis-
fied can be found in [].
Using the recurrent relations, Equerro and Hernández [] expanded the applicability of

Halley’s method by dropping condition (C) and replacing (.) by

Mη <
 –

√



. (.)

In the present study, we show how to expand even further the applicability of Halley’s
method using (C), (C), (C) and the center-Lipschitz condition:
(C) ‖F ′(x)–[F ′(x) – F ′(x)]‖ ≤ L‖x – x‖ for each x ∈D and L > .
We have that

L ≤ M (.)

holds in general and M
L can be arbitrarily large [, ]. The semi-local convergence analysis

of Halley’s method requires obtaining upper bounds on the norms ‖F ′(x)–F ′(x)‖. In the
literature, (C) is used to obtain

∥∥F ′(x)–F ′(x)
∥∥ ≤ 

 –M‖x – x‖ (.)

for each x ∈ D. However, if we use (C) less expensive and tighter if L <M (see (.)), the
estimate

∥∥F ′(x)–F ′(x)
∥∥ ≤ 

 – L‖x – x‖ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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for each x ∈D is obtained. Thismodification can lead to a tighter convergence analysis and
weaker sufficient convergence conditions or error bounds or the location of the solution
for Halley’s method (see numerical examples). The new approach has already led to such
advantages in the case of Newton-type methods [, , –].
We use a different approach than recurrent relations in our semi-local convergence anal-

ysis. The paper is organized as follows. Section  contains the semi-local convergence of
Halley’smethod, whereas the numerical examples are presented in the concluding section.

2 Semi-local convergence
We present the semi-local convergence analysis of Halley’s method. We shall use an addi-
tional condition.
Define

a =
Mη


, η =

η

 – a
.

(C) Suppose that
(
L +

M


)
η < , (.)

and there exists

b ∈ (,  – Lη), (.)

which is the minimal positive zero of a function g on (,  – Lη) given by

g(t) =

a
– Lη

–t
+ a

–a

( – Lη
–t )( –

a
(–a)(– Lη

–t )
( a
– Lη

–t
+ a

–a ))
– t. (.)

Then we have

b =

a
– Lη

–b
+ a

–a

( – Lη
–b )( –

a
(–a)(– Lη

–b )

( a
– Lη

–b
+ a

–a ))
. (.)

Define

R =
η

 – b
, α = LR.

Then we have

a ∈ (, ), α ∈ (, ),

a
( – a)( – α)

(
a

 – α
+

a
 – a

)
=

Mη

( – α)

(
η

 – α
+ η

)
< .

(.)

We can rewrite (.) as

b =
M
 (

η

–α
+ η)

( – α)( – Mη
(–α) (

η

–α
+ η))

.

Let us introduce another condition needed in our main theorem.

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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(C) Suppose that

d =
M

(–α)η + M
 η

( – α)( – M
(–α) η)

< .

We refer to (C), (C), (C), (C), (C) and (C) as the (C) conditions. LetU(x,R),U(x,R)
stand, respectively, for the open and closed balls in X with center x and radius R > . Then
we can show the following semi-local convergence result for Halley’s method.

Theorem . Let F :D ⊂ X → Y be continuously twice Fréchet differentiable, where X, Y
are Banach spaces andD is open and convex. Suppose the (C) conditions andU(x,R) ⊂D.
Then the Halley sequence {xn} generated by (.) is well defined, remains in U(x,R) for all
n≥  and converges to a unique solution x� ∈U(x,R) of the equation F(x) = .Moreover,
the following error estimate holds: for each n≥ ,

‖xn+ – xn+‖ ≤ b‖xn+ – xn‖. (.)

Furthermore, if there exists R� ≥ R such that

U
(
x,R�

) ⊆D (.)

and

L

(
R + R�

)
< , (.)

then x� is the only solution of equation F(x) in U(x,R�).

Proof We have, using (C)-(C), that

∥∥I – (
I – LF (x)

)∥∥ =
∥∥LF (x)∥∥ =



∥∥F ′(x)–F ′′(x)F ′(x)–F(x)

∥∥

≤ 

∥∥F ′(x)–F ′′(x)

∥∥∥∥F ′(x)–F(x)
∥∥

≤ 

Mη = a < . (.)

It follows from (.) and the Banach lemma on invertible operators [, ] that (I –LF (x))–

exists and

∥∥(
I – LF (x)

)–∥∥ ≤ 
 – ‖LF (x)‖ ≤ 

 – a
.

Then, by (C), (.) and the above estimate, we get

‖x – x‖ =
∥∥(
I – LF (x)

)–F ′(x)–F(x)
∥∥

≤ ∥∥(
I – LF (x)

)–∥∥∥∥F ′(x)–F(x)
∥∥

≤ η

 – a
= η < R.
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We have, by (C),

∥∥I – F ′(x)–F ′(x)
∥∥ ≤ L‖x – x‖ ≤ Lη < LR = α < .

Hence F ′(x)– exists and

∥∥F ′(x)–F ′(x)
∥∥ <


 – α

.

In view of Halley’s iteration, we can write

[
I – LF (x)

]
(x – x) + F ′(x)–F(x) = 

or

F(x) + F ′(x)(x – x) =


F ′′(x)F ′(x)–F(x)(x – x)

or

F ′(x)–F(x)

= F ′(x)–
[
F(x) – F(x) – F ′(x)(x – x) + F(x) + F ′(x)(x – x)

]

=


F ′(x)–F ′′(x)F ′(x)–F(x)(x – x)

+
∫ 


F ′(x)–F ′′(x + θ (x – x)

)
( – θ )dθ (x – x).

Hence we get

∥∥F ′(x)–F(x)
∥∥ ≤ 


Mη‖x – x‖ + 


M‖x – x‖

≤ M
( – α)

η‖x – x‖ + 

M‖x – x‖

≤ M


(
η

 – α
+ η

)
‖x – x‖.

Moreover, we have

∥∥LF (x)∥∥ =


∥∥F ′(x)–F ′(x)F ′(x)–F ′′(x)F ′(x)–F ′(x)F ′(x)–F(x)

∥∥

≤ 

∥∥F ′(x)–F ′(x)

∥∥∥∥F ′(x)–F ′′(x)
∥∥∥∥F ′(x)–F(x)

∥∥

≤ M
( – α)

(
M

( – α)
η‖x – x‖ + 


M‖x – x‖

)

≤ M( η

–α
+ η)‖x – x‖

( – α)

≤ Mη

( – α)

(
η

 – α
+ η

)
< .

http://www.journalofinequalitiesandapplications.com/content/2013/1/260


Argyros et al. Journal of Inequalities and Applications 2013, 2013:260 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/260

Then (I – LF (x))– exists and

∥∥(
I – LF (x)

)–∥∥ ≤ 
 – ‖LF (x)‖ ≤ 

 – M
(–α) (

M
(–α)η‖x – x‖ + 

M‖x – x‖)

≤ 
 – Mη

(–α) (
η

–α
+ η)

.

So, x is well defined and, using (.), we get

‖x – x‖ ≤ ‖F ′(x)–F ′(x)‖‖F ′(x)–F(x)‖
 – ‖LF (x)‖

≤
M

(–α)η‖x – x‖ + 
M‖x – x‖

( – α)( – M
(–α) [

M
(–α)η‖x – x‖ + 

M‖x – x‖])

≤
M
 (

η

–α
+ η)

( – α)( – Mη
(–α) (

η

–α
+ η))

‖x – x‖ = b‖x – x‖.

Therefore, we have

‖x – x‖ ≤ ‖x – x‖ + ‖x – x‖
≤ b‖x – x‖ + ‖x – x‖ = ( + b)‖x – x‖

=
 – b

 – b
‖x – x‖ < ‖x – x‖

 – b
≤ η

 – b
= R.

Hence we have x ∈U(x,R).
The above shows the following items are true for n = :
(a) F ′(xn+)– exists and

∥∥F ′(xn+)–F ′(x)
∥∥ <


 – α

;

(b)

∥∥F ′(x)–F(xn+)
∥∥ ≤ dn+;

(c)

dn+ ≤ ddn ≤ dn+d;

(d) (I – LF (xn+))– exists and

∥∥(
I – LF (xn+)

)–∥∥ ≤ 
 – M

(–α) dn+
;

(e) xn+ is well defined and

‖xn+ – xn+‖ ≤ dn+
( – α)( – M

(–α) dn+)
≤ b‖xn+ – xn‖ ≤ bn+‖x – x‖;

(f ) ‖xn+ – x‖ < R.

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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Here, the sequence {dn} is defined by

d = η,

dn+ =
M

( – α)
dn‖xn+ – xn‖ + M


‖xn+ – xn‖

for each n≥ . The rest will be shown by induction.
Assume that (a)-(f ) are true for all natural integers n ≤ k, where k ≥  is a fixed integer.

Then F ′(xk+) exists since xk+ ∈U(x,R) and

∥∥I – F ′(x)–F ′(xk+)
∥∥ ≤ L‖xk+ – x‖ < LR = α < .

Hence F ′(xk+)– exists and

∥∥F ′(xk+)–F ′(x)
∥∥ ≤ 

 – L‖xk+ – x‖ <


 – α
.

Next, we estimate ‖F ′(x)–F(xk+)‖. It follows from Halley’s method that

F(xk+) = F(xk+) – F(xk+) – F ′(xk+)(xk+ – xk+)

+


F ′′(xk+)F ′(xk+)–F(xk+)(xk+ – xk+)

or

F ′(x)–F(xk+) =


F ′(x)–F ′′(xk+)F ′(xk+)–F ′(x)F ′(x)–F(xk+)(xk+ – xk+)

+
∫ 


F ′(x)–F ′′(xk+ + θ (xk+ – xk+)

)
( – θ )dθ (xk+ – xk+).

Hence we get

∥∥F ′(x)–F(xk+)
∥∥ ≤ M

( – α)
dk+‖xk+ – xk+‖ + M


‖xk+ – xk+‖ = dk+

=
M


(
dk+
 – α

+ ‖xk+ – xk+‖
)

‖xk+ – xk+‖

≤ M


(
dk+η

 – α
+ bk+‖x – x‖

)
‖xk+ – xk+‖

≤ M


(
dη

 – α
+ bη

)
‖xk+ – xk+‖

≤ M


(
dη

 – α
+ bη

)
bk+‖x – x‖

≤ M


(
dη

 – α
+ bη

)
bη, (.)

dk+ ≤ M


(
dη

 – α
+ bη

)
‖xk+ – xk+‖

≤ M


(
dη

 – α
+ bη

)
dk+

( – α)( – M
(–α) d

k+η)

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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≤ M


(
dη

 – α
+ bη

)
dk+

( – α)( – M
(–α) dη)

≤ M


(
η

 – α
+ η

)
dk+

( – α)( – M
(–α) η)

= ddk+ ≤ dk+d

and

∥∥LF (xk+)∥∥ ≤ 

∥∥F ′(xk+)–F ′(x)

∥∥∥∥F ′(x)–F(xk+)
∥∥∥∥F ′(x)–F ′′(xk+)

∥∥

≤ M
( – α)

dk+ ≤ M

( – α)

(
η

 – α
+ η

)
η < .

Thus (I – LF (xk+))– exists and

∥∥(
I – LF (xk+)

)–∥∥ ≤ 
 – M

(–α) dk+
≤ 

 – M

(–α) (
η

–α
+ η)η

.

Therefore, xk+ is well defined. Moreover, we obtain

‖xk+ – xk+‖ ≤ ∥∥(
I – LF (xk+)

)–∥∥∥∥F ′(xk+)–F ′(x)
∥∥∥∥F ′(x)–F(xk+)

∥∥
≤ dk+

( – α)( – M
(–α) dk+)

≤
M
 (

η

–α
+ η)‖xk+ – xk+‖

( – α)( – M

(–α) (
η

–α
+ η)η)

= b‖xk+ – xk+‖ ≤ bk+‖x – x‖.

Furthermore, we have

‖xk+ – x‖ ≤ ‖xk+ – xk+‖ + ‖xk+ – xk+‖ + · · · + ‖x – x‖
≤ (

bk+ + bk+ + · · · + 
)‖x – x‖

=
 – bk+

 – b
‖x – x‖ < η

 – b
= R.

Hence we deduce that xk+ ∈U(x,R), which completes the induction for (a)-(f ).
Let m be a natural integer. Then we have

‖xk+m – xk‖ ≤ ‖xk+m – xk+m–‖ + ‖xk+m– – xk+m–‖ + · · · + ‖xk+ – xk‖
≤ (

bm– + · · · + b + 
)‖xk+ – xk‖

≤  – bm

 – b
bk‖x – x‖.

It follows that {xk} is a complete sequence in a Banach space X and as such it converges to
some x� ∈ U(x,R) (since U(x,R) is a closed set). By letting k → ∞ in (.), we obtain
F(x�) = . We also have

∥∥x� – xk
∥∥ ≤ bk

 – b
‖x – x‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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To show the uniqueness part, let y� be a solution of the equation F(x) =  in U(x,R�).
Let T =

∫ 
 F

′(x)–F ′(x� + θ (y� – x�))dθ . Using (C), we have in turn that

‖I – T‖ =
∥∥∥∥
∫ 


F ′(x)–

[
F ′(x� + θ

(
y� – x�

))
– F ′(x)

]
dθ

∥∥∥∥
≤ L

∫ 



[
( – θ )

∥∥x� – x
∥∥ + θ

∥∥y� – x
∥∥]

dθ

≤ L

(
R + R�

)
< .

It follows from the Banach lemma on invertible operators [–] that T– ∈ L(Y ,X). Using
the identity

 = F ′(x)–
(
F
(
y�

)
– F

(
x�

))
= F ′(x)–T

(
y� – x�

)
,

we deduce y� = x�. This completes the proof. �

3 Numerical examples
In this section, we give some examples to show the application of our theorem.

Example . Let us define a scalar function F(x) = x –. onD = (, ) with initial point
x = .. Then we have that

F ′(x) = x, F ′′(x) = x. (.)

So, F(x) = –., F ′(x) = . and η = .. Moreover, we have, for any
x ∈D,

∣∣F ′(x)–F ′′(x)
∣∣ = |x|

x
≤ 

x
= . (.)

and

∣∣F ′(x)–
[
F ′(x) – F ′(x)

]∣∣ = |x + x|
x

|x – x| ≤ .|x – x|. (.)

That is, we can choose M = . and L = . in conditions (C) and
(C), respectively. Hence, we obtain a = ., η = . and  – Lη =
.. Furthermore, it is easy to get b = . by using iterative meth-
ods such as the secant method. Then we have R = ., α = . and
d = .. So, conditions (C) and (C) are satisfied. It is clear that

U(x,R) = [., .]⊂ D.

Now, all the conditions in Theorem . are true and Theorem . applies.We can compare
our results to the ones in []. Using (.), we get

α =Mη = . <
 –

√



.

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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So, the conditions of [] are also satisfied. The uniqueness ball is U(x, rη), where

r =
 – α

( – α + α
)

= ..

Then we get R = rη = . > R. That is, we provide better information on the
location of the solution. Moreover, by (.) and (.), we can set R� = ., which extends
the uniqueness ball from U(x,R) to U(x,R�).

Example . In this example, we provide an application of our results to a special non-
linear Hammerstein integral equation of the second kind. Consider the integral equation

x(s) =  +



∫ 


G(s, t)x(t) dt (.)

for any s ∈ [, ], where G is the Green kernel on [, ]× [, ] defined by

G(s, t) =

⎧⎨
⎩
t( – s), t ≤ s;

s( – t), s ≤ t.
(.)

Let X = Y = C[, ] and D be a suitable open convex subset of X := {x ∈ X : x(s) > , s ∈
[, ]}, which is given below. Define a mapping F :D→ Y by

[
F(x)

]
(s) = x(s) –  –




∫ 


G(s, t)x(t) dt (.)

for any s ∈ [, ]. The first and second derivatives of F are given by

[
F ′(x)y

]
(s) = y(s) –




∫ 


G(s, t)x(t)y(t)dt (.)

for any s ∈ [, ] and

[
F ′′(x)yz

]
(s) = –




∫ 


G(s, t)x(t)y(t)z(t)dt (.)

for any s ∈ [, ], respectively.
We use the max-norm. Let x(s) =  for all s ∈ [, ]. Then, for any y ∈D, we have

[(
I – F ′(x)

)
y
]
(s) =




∫ 


G(s, t)y(t)dt (.)

for any s ∈ [, ], which means

∥∥I – F ′(x)
∥∥ ≤ 


max
s∈[,]

∫ 


G(s, t)dt =


× 

=



< . (.)

It follows from the Banach theorem that F ′(x)– exists and

∥∥F ′(x)–
∥∥ ≤ 

 – 


=


. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/260
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On the other hand, it follows from (.) that ‖F(x)‖ = 
 maxs∈[,]

∫ 
 G(s, t)dt =


 . Then

we get η = 
 .

Note that F ′′(x) is not bounded in X or its subset X. Take into account that a solution
x� of equation (.) with F given by (.) must satisfy

∥∥x�
∥∥ –  –




∥∥x�
∥∥ ≤ , (.)

i.e., ‖x�‖ ≤ ρ = . and ‖x�‖ ≥ ρ = ., where ρ and ρ are the pos-
itive roots of the real equation z –  – 

z
 = . Consequently, if we look for a solution

such that x� < ρ ∈ X, we can consider D = {x : x ∈ X and ‖x‖ < r}, with r ∈ (ρ,ρ), as a
nonempty open convex subset of X. For example, choose r = ..
Using (.) and (.), we have, for any x, y, z ∈D,

∣∣[(F ′(x) – F ′(x)
)
y
]
(s)

∣∣ = 


∣∣∣∣
∫ 


G(s, t)

(
x(t) – x(t)

)
y(t)dt

∣∣∣∣
≤ 



∫ 


G(s, t)

∣∣x(t) + x(t)
∣∣∣∣x(t) – x(t)

∣∣y(t)dt

≤ 


∫ 


G(s, t)(r + )

∣∣x(t) – x(t)
∣∣y(t)dt, s ∈ [, ] (.)

and

∣∣[F ′′(x)yz
]
(s)

∣∣ = 


∫ 


G(s, t)x(t)y(t)z(t)dt, s ∈ [, ]. (.)

Then we get

∥∥F ′(x) – F ′(x)
∥∥ ≤ 


× 


(r + )‖x – x‖ = 


‖x – x‖ (.)

and

∥∥F ′′(x)
∥∥ ≤ 


× r


=



. (.)

Now, we can choose constants in Theorem . as follows:

M =



, L =



, a =



, η =



,
(
L +

M


)
η =




,  – Lη =



,

b = ., R = .,

α = ., d = ..

(.)

We also have

U(x,R) ⊂D. (.)
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So, all the conditions in Theorem . are satisfied and Theorem . applies. Consequently,
the sequence {xn} generated by Halley’s method (.) with initial point x converges to the
unique solution x� of equation (.) on U(x,R). Moreover, by (.) and (.), we can set
R� = ., which extends the uniqueness ball from U(x,R) to U(x,R�).
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