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Abstract
Given a set of n (distinct) pointsA in a normed space, we consider the set of
Torricellian points, that is, the set of points which minimises the sum of distances to
the points inA. We introduce the Torricellian functional associated to a set of distinct
pointsA, which calculates the sum of distances of a point x to the points inA. The
Torricellian point is defined as the infimum (over all vectors) of this functional. We
discuss the existence of Torricellian points in reflexive normed spaces, non-expansive
subspaces and evidently, inner product spaces. A case for collinear points is given and
is utilised to characterise strict convexity. For a non-collinear case, it is shown that the
set of Torricellian points contains a unique point when the space is strictly convex.
However, we show that the uniqueness of Torricellian point of a non-collinear set
does not characterise strict convexity. We consider a particular example of the
Torricellian problem in a space endowed with the Taxicab geometry.
MSC: 46B20; 49J27

Keywords: Fermat point; Torricellian point; characterisation of strictly convex spaces;
Taxicab geometry

Introduction
In , Fermat raised the following problem []:

‘Given three distinct points in the plane, find the (unique) point having the minimal
sum of distances to these three points.’

This problemwas first solved by Torricelli, whose result was published by his pupil Viviani
in . This (unique) point is often referred to as the Fermat point, Fermat-Torricellian
point, or Torricellian point. In this text, we refer to it as the Torricellian point. The solution
is as follows: if all angles of the triangle are less than π

 , then the Torricellian point is the
interior point from which each side subtends an angle of π

 . If one of the angles is greater
than π

 , then the Torricellian point lies at the obtuse angled vertex.
A straightforward generalisation of this problem is as follows: given n points a, . . . ,an ∈

R
d (d ≥ ), find x ∈ R

d which minimises the sum of distances to all the n points. It is
a well-known result that when d =  (case of collinear points), the Torricellian point x
coincides with the centre point of the set {a, . . . ,an} when n is odd, i.e. x = ak , where
k = (n+)

 ; and x is any point lying between ak and ak+, where k = n
 when n is even (cf.

Dalla [] and Simons []). Given the large number of literature, we refer the reader to the
survey paper by Kupitz and Martini [] and Section II. of the book by Boltyanski et al.
[] for further reading on this topic.
Torricelli’s problem can be defined in any metric spaces, but if we wanted to have nice

properties in characterising Torricellian points, we would have to restrict ourselves to the
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case of normed linear spaces. The set of Torricellian points can be utilised to characterise
strictly convex spaces and inner product spaces. In Martini et al. [], a generalisation in
Minkowski spaces is considered. It is shown that the Torricellian point is unique if and
only if theMinkowski space is strictly convex. Dragomir et al. in [] considered and solved
Torricelli’s problem in a real inner product space of dimension greater than . A general-
isation to n arbitrary points in a real inner product space is considered in Dragomir and
Comǎnescu [].
The aim of this paper is to consider the generalisation of the Torricellian points in the

settings of normed spaces (cf. Section ). We introduce the Torricellian functional asso-
ciated to a set of distinct points A, which calculates the sum of distances of a point x
to the points in A. The Torricellian point is defined as the infimum (over all vectors) of
this functional. We discuss the existence of the Torricellian points in Section . We recall
some known results from the papers by Veselý [], in which the author discussed the Tor-
ricellian set in reflexive normed spaces; and also Papini and Puerto [] for some results
in Banach spaces. We also consider the existence of Torricellian point for a set of distinct
points which spans a non-expansive subspace; and as a corollary, we consider the existence
in inner product spaces which recaptures the results of Dragomir and Comǎnescu []. In
Section , we consider the case of collinear points in normed spaces; and in particular,
strictly convex spaces and inner product spaces. In Section  we show that for the case
of non-collinear points, the Torricellian point is unique in strictly convex spaces and in-
ner product spaces. However, the uniqueness of Torricellian points does not characterise
strict convexity. Finally, in Section , we consider an example of the Torricellian problem
in spaces endowed with the Taxicab geometry.

1 Definitions and notation
This section serves as a reference point for definitions and notation that are used in the
paper.

Definition . LetX be a (real) vector space, and letT be a functional onX. The left-sided
and right-sided Gâteaux derivatives of a functional T at x on direction x are defined as
follows:

(V–T)(x) · x := lim
t→–

T(x + tx) – T(x)
t

and

(V+T)(x) · x := lim
t→+

T(x + tx) – T(x)
t

.

When V–T = V+T , we say that T is Gâteaux differentiable and denote the derivative as
VT .

Definition . Let (X,‖ · ‖) be a (real) normed space. The (real-valued) mappings 〈·, ·〉i
and 〈·, ·〉s defined on X ×X given by:

〈x, y〉i = lim
t→–

‖y + tx‖ – ‖y‖
t

, 〈x, y〉s = lim
t→+

‖y + tx‖ – ‖y‖
t

are called the inferior and superior semi-inner products.
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Formore details connectedwith these normderivatives, we refer toDragomir []where
further references are given. For the sake of completeness, we list some usual properties
of these semi-inner products:

(i) 〈x,x〉p = ‖x‖ for all x ∈ X ;
(ii) 〈–x, y〉s = 〈x, –y〉s = –〈x, y〉i if x, y ∈ X ;
(iii) 〈αx,βy〉p = αβ〈x, y〉p for all x, y ∈ X and α,β ≥ ;
(iv) 〈αx + y,x〉p = α〈x,x〉p + 〈y,x〉p if x, y ∈ X , α ∈R;
(v) 〈x + y, z〉p ≤ ‖x‖‖z‖ + 〈y, z〉p for all x, y, z ∈ X ;
(vi) the space (X,‖ · ‖) is smooth, i.e. the norm ‖ · ‖ is Gâteaux differentiable on X\{}

iff 〈x, y〉i = 〈x, y〉s for all x, y ∈ X ; or iff 〈·, ·〉p is linear in the first variable;
where p = s or p = i.

2 Generalisation of Torricellian points
Let (X,‖ · ‖) be a real normed linear space, let n ≥  be a natural number and let A =
{a, . . . ,an} be a set of n distinct points inX. Throughout the paper, we denote ,n = , . . . ,n.
The functional

T = TA : X → [,∞), T(x) :=
n∑
i=

‖x – ai‖

will be called the Torricellian functional associated with A. The main properties of this
mapping can be summarised in the following proposition. We refer to Dragomir and
Comǎnescu [, Proposition ] for the proof.

Proposition . With the above assumptions, we have:
(i) T is nonlinear on X ;
(ii) T is continuous on X in the norm topology;
(iii) T is nonnegative and lim‖x‖→∞ T(x) = ∞;
(iv) T is convex on X .

Concerning the Gâteaux derivative of T , we have the following results.

Proposition . With the above assumption, we have

(V±T)(x) · x =
⎧⎨
⎩

∑n
i=

〈x,x–ai〉s(i)
‖x–ai‖ if x /∈A;∑n

i=
〈x,aj–ai〉s(i)

‖aj–ai‖ ± ‖x‖ if x = aj for j ∈ {, . . . ,n} ()

for all x ∈ X.

Proof Suppose that x /∈A. Then we have

(V±T)(x) · x :=
n∑
i=

lim
t→±

‖x – ai + tx‖ – ‖x – ai‖
t

=
n∑
i=

lim
t→±

[‖x – ai + tx‖ – ‖x – ai‖
t

· 
‖x – ai + tx‖ + ‖x – ai‖

]

=
n∑
i=

〈x,x – ai〉s(i)
‖x – ai‖
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for all x ∈ X. Let x = aj with a fixed j ∈ {, . . . ,n}. Then

(V±T)(x) · x :=
n∑
i=
i
=j

lim
t→±

‖aj – ai + tx‖ – ‖aj – ai‖
t

+ lim
t→±

|t|‖x‖
t

=
n∑
i=
i
=j

〈x,aj – ai〉s(i)
‖aj – ai‖ ± ‖x‖

and this completes the proof. �

Corollary . Let (X,‖ · ‖) be a smooth normed space and denote by [·, ·] := 〈·, ·〉s = 〈·, ·〉i
the semi-inner product which generates the norm ‖ · ‖. Then T is Gâteaux differentiable on
X\A and

(VT)(x) · x =
n∑
i=

[x,x – ai]
‖x – ai‖ if x /∈A

for all x ∈ X.

Remark . Corollary . also holds for any inner product space (X, 〈·, ·〉) as it is a smooth
space. This recaptures the results in Dragomir and Comǎnescu [, Proposition ].

Concerning the strict convexity property of T , we have the following proposition. We
refer to [, Proposition ] for the proof.

Proposition . Let (X,‖ · ‖) be a strictly convex normed linear space. If A = {a, . . . ,an}
with n≥  is a set of non-collinear points in X, then T is strictly convex on X .

Now, we formally define the Torricellian points for a given set of points.

Definition . Let (X,‖ · ‖) be a real normed linear space, let n ≥  be a natural number
and let {a, . . . ,an} be a set of distinct elements in X. The point x ∈ X will be called a
Torricellian point of the set {a, . . . ,an} if it minimises the Torricellian functional T , i.e.

T(x) = inf
x∈X T(x) ()

or, equivalently,

n∑
i=

‖x – ai‖ ≤
n∑
i=

‖x – ai‖ for all x ∈ X. ()

The set of all Torricellian points of {a, . . . ,an} will be denoted by TX{a, . . . ,an}.

We describe the main properties of TX{a, . . . ,an} for any {a, . . . ,an} ⊂ X in the next
proposition.

Proposition . For any {a, . . . ,an} ⊂ X, we have that TX{a, . . . ,an} is a convex, closed
and bounded subset of the normed linear space X.
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Proof Assume that TX{a, . . . ,an} is nonempty, as the proof is vacuous when the set is
empty. If x,x ∈ TX{a, . . . ,an} and λ ∈ [, ], then

T
(
λx + ( – λ)x

) ≤ λT(x) + ( – λ)T(x) ≤ λT(x) + ( – λ)T(x) = T(x)

for all x ∈ X, which shows that [x,x] ⊂ TX{a, . . . ,an}, i.e. the set TX{a, . . . ,an} is convex.
Now, let x ∈ TX{a, . . . ,an} and put α = T(x). Then TX{a, . . . ,an} = T–({α}) which is

a closed set as the mapping is continuous in the norm topology of X and {α} is closed in
R.
Let x ∈ TX{a, . . . ,an} and put α = T(x) = infx∈X T(x). Then

α = T(x) =
n∑
i=

‖x – ai‖ ≥
n∑
i=

∣∣‖x‖ – ‖ai‖
∣∣ ≥ n‖x‖ –

n∑
i=

‖ai‖,

which gives us

‖x‖ ≤ α +
∑n

i= ‖ai‖
n

and thus proves the boundedness of the set TX{a, . . . ,an}. �

We introduce the following definition.

Definition . The Torricellian point x ∈ TX{a, . . . ,an} is called segmentally inferior
relating to the set TX{a, . . . ,an} if there exist x,x ∈ TX{a, . . . ,an}, x 
= x, such that x ∈
(x,x).

Proposition . If the point x ∈ TX{a, . . . ,an} is segmentally inferior to TX{a, . . . ,an},
then there exist x,x ∈ TX{a, . . . ,an} such that T is Gâteaux differentiable on x in the
(x – x) direction and

(VT)(x) · (x – x) = .

Proof Let x be a segmentally inferior point of TX{a, . . . ,an}. Then there exist x,x,x 
=
x, so that x ∈ (x,x), i.e. x = sx + ( – s)x with s ∈ (, ). If x = sx + ( – s)x with
s ∈ (, ), then x + t(x – x) ∈ [x,x] if and only if t ∈ (,  – s). For t ∈ ( – s, s) we have
T(x + t(x – x)) = T(x) and hence

(VT)(x) · (x – x) = lim
t→

T(x + t(x – x)) – T(x)
t

= ,

which completes the proof. �

Corollary . The points aj with j = ,n cannot be segmentally inferior to the set
TX{a, . . . ,an}.

Proof Let us assume that aj is segmentally inferior to TX{a, . . . ,an}, j ∈ {, . . . ,n}. Then
there exist x,x ∈ TX{a, . . . ,an} such that aj 
= x,x and aj ∈ (x,x). By Proposition .
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we have

(V+T)(aj)(x – x) = (V–T)(aj)(x – x) = .

By Proposition . we have

 = (V+T)(aj)(x – x) =
n∑
i=
i
=j

〈x – x,aj – ai〉s
‖aj – ai‖ + ‖x – x‖

and

 = (V–T)(aj)(x – x) =
n∑
i=
i
=j

〈x – x,aj – ai〉i
‖aj – ai‖ – ‖x – x‖,

from which we get

n∑
i=
i
=j

〈x – x,aj – ai〉s
‖aj – ai‖ –

n∑
i=
i
=j

〈x – x,aj – ai〉i
‖aj – ai‖ = –‖x – x‖ < . ()

Since 〈x – x,aj – ai〉s ≥ 〈x – x,aj – ai〉i, we have
n∑
i=
i
=j

( 〈x – x,aj – ai〉s – 〈x – x,aj – ai〉i
‖aj – ai‖

)
≥ ,

which contradicts () and thus proves the corollary. �

Definition . Let X be a normed linear space and the subsets of distinct points A =
{a, . . . ,an} and B = {b, . . . ,bn}. The subsets A and B are isometrically equivalent if there
exists a distance preserving a bijective function F : X → X which satisfies F(A) = B.

Without loss of generality, we suppose that F(ai) = bi for all i ∈ {, . . . ,n}. With regards
to this definition, we have the following propositions. We omit the proofs.

Proposition . Let {a, . . . ,an} and {b, . . . ,bn} be two sets of distinct points in X which
are isometrically equivalent and let F be the mapping which establishes the equivalence.
Then the following statements are equivalent:

(i) x ∈ TX{a, . . . ,an};
(ii) F(x) ∈ TX{b, . . . ,bn},

where x ∈ X.

Proposition . Let {a, . . . ,an} be a set of distinct points in the normed linear space X.
Then the sets

{a, . . . ,an} and {a – ai, . . . ,ai– – ai, ,ai+ – ai, . . . ,an – ai}

for i = ,n are equivalent.

http://www.journalofinequalitiesandapplications.com/content/2013/1/258
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The proof follows by observing that the map Fi : X → X, Fi(x) = x – ai is isometric in X
for all i = ,n.

3 The existence of Torricellian points
We start with the following known result (cf. Papini and Puerto [, Proposition .]).

Proposition . If X is a dual space, in particular, if X is reflexive, then for all {a, . . . ,an}
a set of distinct points in X, the Torricellian set TX{a, . . . ,an} is nonempty in X.

Remark . Veselý [] proved that for any non-reflexive Banach space, there is an equiv-
alent norm such that for some sets of three points the Torricellian point does not exist.

Furthermore, Papini and Puerto [, Theorem .] proved the following result.

Proposition . If X = c, then for every set {a, . . . ,an}, the Torricellian set TX{a, . . . ,an}
is nonempty in X.

In what follows, we present a result for the existence for normed linear spaces which are
not necessarily reflexive. We start with the following theorem.

Theorem . Let (X,‖ · ‖) be a normed linear space and let A = {a, . . . ,an} be a set of
distinct points in X. IfA⊂ Y and Y ⊂ X is a non-expansive linear subspace in X, i.e. there
exists a mapping P : X → Y such that:

(i) P is the identity of Y , i.e. Px = x for all x ∈ Y ;
(ii) ‖Px – Py‖ ≤ ‖x – y‖ for all x, y ∈ X ,

then we have the inclusion

TY {a, . . . ,an} ⊆ TX{a, . . . ,an}. ()

Proof First of all, we observe that T(Px) ≤ T(x) for all x ∈ X, as

T(Px) =
n∑
i=

‖Px – ai‖ =
n∑
i=

‖Px – Pai‖ ≤
n∑
i=

‖x – ai‖ = T(x)

for all x ∈ X. By definition, if x ∈ TY {a, . . . ,an}, then T(x) ≤ T(x) for all x ∈ Y . Now, let
x ∈ X\Y . Then Px ∈ Y and thus T(x) ≤ T(Px). On the other hand, T(Px) ≤ T(x) which
gives us T(x) ≤ T(x) for all x ∈ X, i.e. x ∈ TX{a, . . . ,an}; this completes the proof. �

The following corollary contains a sufficient condition for the existence of the Torricel-
lian points.

Corollary . Let (X,‖ · ‖) be a normed linear space and let A = {a, . . . ,an} be a system
of distinct points in X. If the subspace Tn := span{a, . . . ,an} spanned by the set A is non-
expansive in X, then TX{a, . . . ,an} is nonempty.

Proof Since Tn is a finite dimensional space, it implies that Tn is reflexive. Thus, by
Proposition ., TTn{a, . . . ,an} 
= ∅; and from Theorem . it follows that TTn{a, . . . ,an} ⊆
TX{a, . . . ,an}, which proves the corollary. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/258


Dragomir et al. Journal of Inequalities and Applications 2013, 2013:258 Page 8 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/258

The following theorem contains an example of non-expansive linear subspaces in inner
product spaces.

Theorem . Let (X, 〈·, ·〉) be an inner product space. If G is a Čebyševian linear subspace
in X, i.e. every element x ∈ X has a unique best approximant in G, then G is non-expansive
in X.

Proof Let x ∈ X. If x ∈ G, then x = x +  with  ∈ G⊥. If x /∈ G, then there exists an
element x ∈G such that d(x,G) = d(x,x), i.e. infy∈G ‖x –y‖ = ‖x –x‖. Set x := x –x.
Then for all λ ∈R and y ∈G, we have

‖x + λy‖ = ‖x – x + λy‖ ≥ ‖x – x‖ = ‖x‖

for all λ ∈R and y ∈G, which implies that 〈x, y〉 =  for all y ∈G, i.e. x ∈ G⊥. Thus, for all
x ∈ X, there exist x ∈ G and x ∈G⊥ such that x = x +x.We note that this decomposition
is unique. If x = x +x, x = y +y with x, y ∈ G and x, y ∈G⊥, thenG � x –y = y –x ∈
G⊥ and sinceG∩G⊥ = {}, we get that x = y and x = y. Define the projection ofX onG,
i.e. themapping P : X →G given by P(x) = x, where x is the best approximation of x inG.
Then P is the identity on G, and for all x, y ∈ X we can write

‖x – y‖ = ‖x + x – y – y‖ =
∥∥(x – y) + (x – y)

∥∥.

Since (x – y) ⊥ (x – y), then by the Pythagorean identity we get

∥∥(x – y) + (x – y)
∥∥ = ‖x – y‖ + ‖x – y‖ ≥ ‖x – y‖ = ‖Px – Py‖

and thus we obtain the desired inequality ‖Px–Py‖ ≤ ‖x– y‖, and the theorem is proved.
�

The above theorem gives us the following result of existence for the Torricellian points
(cf. Dragomir and Comǎnescu []).

Proposition . Let (X, 〈·, ·〉) be an inner product space. Then, for all {a, . . . ,an}, a set of
distinct points in X, TX{a, . . . ,an} is nonempty.

Proof Consider the space Tn := span{a, . . . ,an} which is Čebyševian and non-expansive
on X (since X is an inner product space). Then TTn{a, . . . ,an} is nonempty and

TTn{a, . . . ,an} ⊆ TX{a, . . . ,an},

which proves the statement. �

4 The case of collinear points
In this section, we consider the Torricellian points for a set of collinear points in a normed
space.

http://www.journalofinequalitiesandapplications.com/content/2013/1/258
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Definition . The set of n distinct points {a, . . . ,an} are collinear in the real normed
space if there exist two distinct elements a,b ∈ X and λ, . . . ,λn ∈R such that

ai = λia + ( – λi)b, i = ,n.

Without loss of generality, we assume that λ < · · · < λn. The following proposition holds.

Proposition . Let (X,‖ · ‖) be a real normed space and let a, . . . ,ak+ be k +  be
collinear points. Then TX{a, . . . ,ak+} = {ak+}.

Proof We have successively

T(ak+) =
k+∑
i=

‖ak+ – ai‖ =
k+∑
i=

∥∥λk+a + ( – λk+)b – λia – ( – λi)b
∥∥

=
k+∑
i=

|λk+ – λi|‖a – b‖

=
k∑
i=

(λk+–i – λi)‖a – b‖ =
k∑
i=

‖ak+–i – ai‖.

Now, assume that x ∈ X\{ak+}. Then, for all i ∈ {, . . . ,k}, one has the inequality

‖x – ai‖ + ‖x – ak+–i‖ ≥ ‖ak+–i – ai‖.

Since ‖x – ak+‖ > , we get

T(x) =
k∑
i=

(‖x – ai‖ + ‖x – ak+–i‖
)
+ ‖x – ak+‖ >

k∑
i=

‖ak+–i – ai‖ = T(ak+).

Consequently, T(x) > T(ak+) for all x ∈ X\{ak+}, which shows that ak+ is the unique
Torricellian point associated with {a, . . . ,ak+}. �

The following proposition holds.

Proposition . Let (X,‖ · ‖) be a normed linear space and let {a, . . . ,ak} be a set of k
collinear distinct points in X. Then the interval [ak ,ak+] is a subset of TX{a, . . . ,ak}.

Proof Let x ∈ [ak ,ak+]. Then x = λa + ( – λ)b with λ ∈ [λk ,λk+]. A similar computation
to that of the proof of Proposition . shows that

T(x) =
k∑
i=

‖ak+–i – ai‖.

Now, suppose that y ∈ X. Then

T(y) =
k∑
i=

‖y – ai‖ =
k∑
i=

(‖y – ai‖ + ‖y – ak+–i‖
) ≥

k∑
i=

‖ai – ak+–i‖ = T(x),

which shows that [ak ,ak+] ⊂ TX{a, . . . ,ak}. �
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We use the following notation in the following characterisation theorem. Let a and b be
two distinct vectors in X, we define

dr(a,b) :=
{
λa + ( – λ)b|λ ∈R

}
.

Theorem . Let (X,‖ · ‖) be a real normed space. The following statements are equiva-
lent:
(i) (X,‖ · ‖) is strictly convex.
(ii) For every k ∈N and for every {ai, . . . ,ak}, k collinearly distinct point in X , we have

TX{a, . . . ,ak} = [ak ,ak+].

(iii) For every distinct points a and a in X , we have Tx{a,a} = [a,a].

Proof ‘(i) �⇒ (ii)’.
Let (X,‖ · ‖) be a strictly convex normed space and let {a, . . . ,ak} be a set of k

collinearly distinct points in X. By Proposition . we have that [ak ,ak+] ⊂ TX{a, . . . ,ak},
sowewant to show thatTX{a, . . . ,ak} ⊂ [ak ,ak+]. Let x ∈ TX{a, . . . ,ak} and suppose that
‖x – ak‖ + ‖x – ak+‖ > ‖ak – ak+‖. We have

T(x) =
k∑
i=

‖x – ai‖ =
k–∑
i=

(‖x – ai‖ + ‖x – ai+k+‖
)
+ ‖x – ak‖ + ‖x – ak+‖

>
k–∑
i=

(‖x – ai‖ + ‖x – ai+k+‖
)
+ ‖ak – ak+‖ = T(x),

where x ∈ [ak ,ak+] (see Proposition .), which contradicts the fact that xminimises the
Torricellian map T . Hence ‖x – ak‖ + ‖x – ak+‖ = ‖ak – ak+‖, and x – ak = θ (ak+ – x) for
some nonnegative θ . It follows that x = 

+θ
ak + θ

+θ
ak+ ∈ [ak ,ak+].

‘(ii) �⇒ (iii)’. The proof of this implication is trivial, so we omit the details.
‘(iii) �⇒ (i)’. Suppose that (X,‖ · ‖) is not strictly convex, i.e. there exist two elements

x, y ∈ X, x 
= y, such that ‖x + y‖ = ‖x‖ + ‖y‖ and x, y are linearly independent. Because of
the linear independence, x 
= –y and if we apply statement (ii) for a = x and a = –y, we
can write

TX{x, –y} = [x, –y].

Now,  /∈ [x, –y] as if we assume that  ∈ [x, –y], then there exists λ ∈ [, ] such that

λx + ( – λ)(–y) = ,

i.e. the system of vectors {x, y} is linearly dependent, which contradicts the above assump-
tion. Since TX{x, –y} = [x, –y] and  /∈ [x, –y], then we can state

T() > T(x), ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/258
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where x ∈ [x, –y]. However,

T() = ‖x‖ + ‖y‖

and

T(x) =
∥∥x – (

λx + ( – λ)(–y)
)∥∥ +

∥∥–y – (
λx + ( – λ)(–y)

)∥∥
= ( – λ)‖x + y‖ + λ‖x + y‖ = ‖x + y‖,

where λ ∈ [, ]. Let us observe that by the inequality () we deduce ‖x‖ + ‖y‖ > ‖x + y‖,
which contradicts the hypothesis ‖x‖ + ‖y‖ = ‖x + y‖, hence (X,‖ · ‖) is strictly convex.

�

Corollary . Let (X, 〈·, ·〉) be an inner product space and let {a, . . . ,ak} be k collinearly
distinct points in X. Then TX{a, . . . ,ak} = [ak ,ak+].

5 The uniqueness of Torricellian points for non-collinear sets
In this section, we recall and present results concerning uniqueness of the set of Torricel-
lian points.

Proposition . Let (X,‖ · ‖) be a normed linear space and letA = {a, . . . ,an} ⊂ X (n≥ )
be a set of non-collinear points in X. If the space is strictly convex, then TX{a, . . . ,an} con-
tains at most one element.

Proof Suppose that there exist two distinct elements x,x ∈ TX{a, . . . ,an}. Then T(x) =
T(x) = infx∈X T(x). Let λ ∈ (, ) and put xλ := λx + ( – λ)x. As T is a strictly convex
mapping on X (see Proposition .), we have that

T(xλ) < λT(x) + ( – λ)T(x) = inf
x∈X T(x),

which produces a contradiction and the theorem is thus proved. �

We remark that Proposition . is also proved by Papini and Puerto [] in their Re-
mark ..
The following corollary recaptures the result in Dragomir and Comănescu [, Theo-

rem ].

Corollary . Let (X; (·, ·)) be an inner product space and let A = {a, . . . ,an} ⊂ X (n ≥ )
be a set of non-collinear points in X. Then TX{a, . . . ,an} contains a unique point.

Proof The existence follows byTheorem.,while the uniqueness follows byTheorem.,
taking into account that every inner product space is a strictly convex space. �

Martini et al. [] showed that the uniqueness of theTorricellian point characterises strict
convexity in Minkowski spaces. In the next proposition, we show that there exists a non-
collinear set, for which the Torricellian point is unique, but the normed space is not strictly
convex, thus showing that the uniqueness property does not characterise strict convexity.

http://www.journalofinequalitiesandapplications.com/content/2013/1/258
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We note that the definition of collinear in [] is metric dependent. Thus, Proposition .
only generalises their result when the metric agrees with our definition of collinearity (cf.
Definition .).

Proposition . Let (X,‖ · ‖) be a normed space which is not strictly convex. There exists a
setA = {a,a,a} of non-collinear distinct points in X such that TX{a,a,a} has at most
one element.

Proof Since X is not strictly convex, by the proof of Theorem . (‘(iii) ⇒ (i)’), there exist
a, a distinct points such that TX{a,a} \ [a,a] 
= ∅. Let a ∈ TX{a,a}\[a,a]. We
observe that a /∈ dr(a,a), which implies that a, a, a are non-collinear distinct points.
WehaveTA(a) = ‖a–a‖+‖a–a‖ = ‖a –a‖. If x 
= a, then ‖x–a‖ >  and ‖x–a‖+
‖x – a‖ ≥ ‖a – a‖ and consequently, TA(x) > TA(a). Hence, TX{a,a,a} = {a}. �

Open problems
Supposewe define the propertyP to be the following: For all the sets {a,a,a} of distinct
points, the set TX{a,a,a} has at most one element. We then ask the following question:
If the property P holds true in a normed space X, can we affirm that X is strictly convex?
The answer is no, and is verified by Corollary . of Section . Furthermore, we ask the
question: If we generalise the property P to Pn, where n≥ , for what values of n can we
affirm that X is strictly convex? In the next example, we show that when Pn holds true in
a normed space X and n is an odd number, X is not necessarily strictly convex.

Example . If we consider the space (Rd,‖ · ‖) (which is not strictly convex), then for all
sets {a, . . . ,an} (where n is an odd number) of distinct points, TX{a, . . . ,an} has at most
one element (cf. Section ).

It remains as an open problem at this point for the case of n ≥ , where n is an even
number.

6 The Torricellian points in the Taxicab geometry
In this section we study the Torricellian points of the set A in the Taxicab geometry. We
consider the real vector spaceRd . The Taxicab norm (orManhattan norm) ‖ · ‖ gives rise
to the Taxicab metric. The Taxicab norm is defined by

∥∥(x, . . . ,xd)∥∥ =
d∑
i=

|xi|. ()

Let be a = (a, . . . ,ad ), . . . ,an = (an, . . . ,adn).We note byA = {a, . . . ,an} ⊂R
d .We introduce

the following notation:

Ai =
(
ai, . . . ,a

i
n
) ∈R

n for all i ∈ {, . . . ,d}.

If B = (b, . . . ,bn) ∈R
n, then

midd(B) =

⎧⎨
⎩

{bσ (k+)}, n = k + ,

[bσ (k),bσ (k+)], n = k,
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where σ : {, . . . ,n} → {, . . . ,n} is a permutation which satisfies the property P : bσ () ≤
bσ () ≤ · · · ≤ bσ (n). We note that the set midd(B) does not depend on the permutation σ

with the property P .

6.1 The case d = 1
We consider themore general Torricelli problem, i.e. to minimise the functional TA :R →
R,

TA(x) =
n∑
i=

∣∣x – ai
∣∣,

where A = (a, . . . ,an) ∈R
n in which the points a, . . . ,an are not necessary distinct. Using

similar arguments to those in Proposition ., Proposition . andTheorem., we obtain
the following result.

Theorem . The set of Torricellian points of A is

TR(A) =midd(A).

Remark .
(i) We have a unique Torricellian point if and only if midd(A) has a unique point;
(ii) If n is odd, then the set of Torricellian points has a unique element.

6.2 The general case d > 1
The Torricellian functional has the form

T(x, . . . ,xd) =
d∑
i=

n∑
j=

∣∣xi – aji
∣∣ =

d∑
i=

TAi (xi).

By Theorem . we have the following.

Theorem . The set of Torricellian points of A is

T
Rd {a, . . . ,an} =midd

(
A) ×midd

(
A) × · · · ×midd

(
Ad).

Corollary .
(i) If n is odd, then T

Rd {a, . . . ,an} has a unique point;
(ii) If n is even, then T

Rd {a, . . . ,an} has a unique point if and only if all the sets midd(Ai)
have a unique element.

We present two sets of Torricellian points in the space (R,‖ · ‖): the first has one ele-
ment and the second has an infinite number of elements.

Example . The set of Torricellian points of AI = {(, ), (–, ), (, ), (,–)} ⊂R
 is

TAI =
{
(, )

}
.
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Example . The set of Torricellian points of AII = {(, ), (–, ), (–,–), (, –)} ⊂R
 is

TAII = [–, ]× [–, ].

Conclusions
We consider the Torricelli problem in the settings of normed spaces. We recall some
known results such as the existence of Torricellian point(s) in reflexive spaces. Our re-
sult shows that when the setA spans a non-expansive linear subspace of a normed space,
the Torricellian point(s) exists. This implies that the Torricellian point of a set A always
exists in inner product spaces.
Furthermore, we show that in any normed space, if all points in the setA = {a, . . . ,ak+}

lie in a single straight line (collinear), then the Torricellian set is the singleton {ak+}.When
all the points in the set A = {a, . . . ,ak} are collinear, the Torricellian set contains the
segment [ak ,ak+]. This result can be used to characterise strictly convex spaces. When
the Torricellian set of the collinear set {a, . . . ,ak} is equal to the segment [ak ,ak+], then
the spacemust be a strictly convex space and vice versa. This implies that when the space is
an inner product space, the Torricellian set of the collinear set {a, . . . ,ak} is the segment
[ak ,ak+].
We discuss the uniqueness of the Torricellian points for non-collinear sets. We show

that the Torricellian point is unique when the space is strictly convex. However, we show
the uniqueness does not characterise strict convexity. Lastly, we consider some examples
of the Torricellian points in a normed space endowed with the Taxicab geometry.
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