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Abstract
In this work, we prove the boundedness of the Faber operators that transform the
Hardy-Orlicz class HM(D) into the Smirnov-Orlicz class EM(G).
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1 Introduction andmain results
Let a bounded simply connected domain G with the boundary � in the complex plane be
given, such that the complement of the closed domainG∪� is a simply connected domain
G–, i.e., G := int� and G– = ext�. Without loss of generality, we may assume  ∈ G. Let
T = {w ∈C : |w| = }, D = intT and D– = extT.
By the Riemann theorem on a conformal mapping, there exists a unique function w =

�(z) meromorphic in G– which maps the domain G– conformally and univalently onto
the domain D– and satisfies the conditions

�(∞) = ∞ and lim
z→∞

�(z)
z

= γ > . ()

Let the function z = �(w) be the inverse function for w = �(z). This function maps the
domain D– conformally and univalently onto the domain G–.
Condition () implies that the function w = �(z), being analytic in the domain G– with-

out the point z = ∞, has a simple pole at the point z = ∞. Therefore its Laurent expansion
in some neighborhood of the point ∞ has the form

�(z) = γ z + γ +
γ

z
+ · · · + γk

zk
+ · · · .

For a non-negative integer n, we can write

�n(z) = Fn(z) + En(z), z ∈ G–,

where Fn(z) is a polynomial of order n and En(z) is the sum of the infinite number of terms
with negative powers.
The polynomial Fn(z) is called the Faber polynomial of order n for the domain G.
Let h be a continuous function on [, π ]. Its modulus of continuity is defined by

w(t,h) := sup
{∣∣h(t) – h(t)

∣∣ : t, t ∈ [, π ], |t – t| ≤ t
}
, t ≥ .
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The function h is called Dini-continuous if
∫ π


t–w(t,h)dt < ∞.

The curve � is called Dini-smooth if it has a parametrization

� : ϕ(τ ),  ≤ τ ≤ π

such that ϕ′
(τ ) is Dini-continuous and 	=  [].

If � is Dini-smooth, then

 < c ≤ ∣∣�′(z)
∣∣ ≤ c < ∞, z ∈ �

for some constants c and c independent of z.
A continuous and convex function M : [,∞) → [,∞) which satisfies the conditions

M() = ,M(x) >  for x > ,

lim
x→

M(x)
x

= , lim
x→∞

M(x)
x

= ∞

is called an N-function.
The complementary N-function toM is defined by

N(y) :=max
x≥

(
xy –M(x)

)
, y≥ .

LetM be an N-function and N be its complementary function. By LM(�) we denote the
linear space of Lebesgue measurable functions f : � →C satisfying the condition, for some
α > ,

∫
�

M
[
α
∣∣f (z)∣∣]|dz| < ∞.

The space LM(�) becomes a Banach space with the norm

‖f ‖LM(�) := sup

{∫
�

∣∣f (z)g(z)∣∣|dz| : g ∈ LN (�),ρ(g;N)≤ 
}
,

where ρ(g;N) :=
∫
�
N[|g(z)|]|dz|.

The norm ‖ · ‖LM(�) is called Orlicz norm and the Banach space LM(�) is called Orlicz
space. Every function in LM(�) is integrable on � (see [, p.]), i.e., LM(�) ⊂ L(�).
Let D be a unit disk and �r be the image of the circle {w ∈ C : |w| = r,  < r < } under

some conformal mapping of D onto G, and letM be an N-function.
The class of functions which are analytic in G and satisfy the condition

∫
�r

M
[∣∣f (z)∣∣]|dz| <∞

uniformly in r is called the Smirnov-Orlicz class and denoted by EM(G).
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The Smirnov-Orlicz class is a generalization of the familiar Smirnov class Ep(G). In par-
ticular, if M(x) := xp,  < p < ∞, then Smirnov-Orlicz class EM(G) determined by M coin-
cides with the Smirnov class Ep(G).
Since (see []) EM(G) ⊂ E(G), every function in the class EM(G) has the nontangen-

tial boundary values a.e. on � and the boundary value function belongs to LM(�). Hence
EM(G) norm can be defined as

‖f ‖EM(G) := ‖f ‖LM(�), f ∈ EM(G).

Let M : [,∞) → [,∞) be an N-function. The class of functions which are analytic in
D and satisfy the condition

∫ π


M

[∣∣f (reit)∣∣]dt < ∞

uniformly in r is called the Hardy-Orlicz class and denoted by HM(D).
Since HM(D) ⊂ H(D), every function in the class HM(D) has the nontangential bound-

ary values a.e. on T and the boundary value function belongs to LM(T). Hence HM(D)
norm can be defined as

‖f ‖HM(D) := ‖f ‖LM(T), f ∈HM(D).

The spaces HM(D) and EM(G) are Banach spaces respectively with the norm ‖f ‖LM(T) and
‖f ‖LM(�).
Hölder’s inequality

∫
�

∣∣f (z)g(z)∣∣|dz| ≤ ‖f ‖LM(�)‖g‖LN (�)

holds for every f ∈ LM(�) and g ∈ LN (�) [, p.].
Let � be a Dini-smooth curve, G be a finite domain bounded by � and ϕ ∈HM(D).
The Cauchy-type integral

(Fϕ)(z) =


π i

∫
�

ϕ(�(ζ ))
ζ – z

dζ , z ∈G,

is called Faber operator for the domain G from HM(D) into EM(G).
The inverse Faber operator from EM(G) into HM(D) is defined as

(Ff )(w) =


π i

∫
|t|=

f [�(t)]
t –w

dt, |w| < .

Let � be a Dini-smooth curve andG be a finite domain bounded by �. Then the bound-
edness of the Faber operators from Hp(D) into Ep(G) (p≥ ) was proved in [, p.].
In this paper, we obtain the following results about the boundedness of the Faber op-

erator from HM(D) into EM(G) and about the boundedness of the inverse Faber operator
from EM(G) into HM(D).
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Theorem  Let G be a finite domain bounded by a Dini-smooth curve �. Then the Faber
operator F :HM(D) → EM(G) has a finite norm and

∥∥(Fϕ)∥∥EM(G) ≤ ‖F‖‖ϕ‖HM(D).

Theorem  Let G be a finite domain bounded by a Dini-smooth curve �. Then the inverse
Faber operator F : EM(G) →HM has a finite norm and

∥∥(Ff )∥∥HM(D) ≤ ‖F‖‖f ‖EM(G).

Corollary  Let G be a finite domain bounded by a Dini-smooth curve � and Pn be the
image of the polynomial ϕn defined in the unit disk under the Faber operator. Then

∥∥(Fϕ) – Pn
∥∥
EM(G) ≤ ‖F‖‖ϕ – ϕn‖HM(D).

Corollary  Let G be a finite domain bounded by a Dini-smooth curve � and ϕn be the
image of the polynomial Pn defined in G under the inverse Faber operator. Then

∥∥(Ff ) – ϕn
∥∥
HM(D) ≤ ‖F‖‖f – Pn‖EM(G).

With the help of these two corollaries, one can carry over the direct and inverse theo-
rems on the order of the best approximations in mean, from the unit disk to the case of a
domain with a sufficiently smooth boundary.

2 Proof of themain results
Proof of Theorem  For the Faber operator (Fϕ)(z), the equality

(Fϕ)(z) = ϕ
(
�(z)

)
+


π i

∫
|t|=

ϕ(t)F
(
t,�(z)

)
dt ()

holds [, p.], where

F(t,w) =
� ′(t)

�(t) –�(w)
–


t –w

, |t| ≥ , |w| ≥ .

From () we obtain
∫

�

∣∣(Fϕ)(z)g(z)∣∣|dz|

≤
∫

�

∣∣ϕ(
�(z)

)
g(z)

∣∣|dz| + 
π i

∫
�

[∫
|t|=

∣∣ϕ(t)∣∣∣∣g(z)∣∣∣∣F(
t,�(z)

)∣∣|dt|
]
|dz|. ()

Using the definition of the Orlicz norm, Hölder’s inequality and (), we get

∥∥(Fϕ)∥∥EM(G) ≤
(
m(�) +m(�)

)‖ϕ‖HM(D),

where

m(�) = sup
|w|=

∣∣� ′(w)
∣∣, m(�) =


π i

∫
�

∣∣g(z)∣∣‖F‖HN (D)|dz|.
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Therefore we obtain that

∥∥(Fϕ)∥∥ ≤ (
m(�) +m(�)

)
and

∥∥(Fϕ)∥∥EM(G) ≤ ‖F‖‖ϕ‖HM(D). �

Proof of Theorem  For the inverse Faber operator (Ff )(w), the equality

(Ff )(w) = f
(
�(z)

)
–


π i

∫
|t|=

f
(
�(t)

)
F(t,w)dt

holds [, p.].With the help of this equality, Theorem  is proved by the similar method
of the proof of Theorem . �
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