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1 Introduction
In order to extend convergence of sequences, the notion of statistical convergence was
introduced by Fast [1] and Steinhaus [2] and several generalizations and applications of
this concept have been investigated by various authors [3, 4]. This notion was studied
in normed spaces by Kolk [5], in locally convex Hausdorff topological spaces by Maddox
[6], in topological Hausdorft groups by Cakalli [7] and in probabilistic normed space by
Karakus [8]. Recently, Alotaibi and Alroqi [9] extended this notion in paranormed spaces.
In this article, we study the concept of statistical convergence from difference sequence

spaces which are defined over paranormed space.

2 Preliminaries and definitions
Let K be a subset of the set of natural numbers N. Then the asymptotic density of K de-
noted by §(K) = lim,, %|{k < n:k € K}|, where the vertical bars denote the cardinality of
the enclosed set in [10].

A number sequence x = (xy) is said to be statistically convergent to the number L if for

each € > 0, the set K(¢) = {k <n: |xx — L| > €} has asymptotic density zero, i.e.,
1
11m—|{k§ n:lxe—L| ZSH =0.
non

In this case we write st-limx = L. This concept was studied by [11, 12].

Byalacunary 6 = (k,); 7 =0,1,2,..., where ko = 0, we shall mean an increasing sequence
of non-negative integers with k, — k,_; — 0o as r — oco. The intervals determined by 6 will
be denoted by I, = (k,_1, k] and A, = k. — k,_1. The ratio k’:jl will be denoted by g,.

The notion of difference sequence space X(A) was introduced by Kizmaz [13] as follows:

X(A) = {x = (xx) : (Axy) € X}

for X = I, ¢, cg, where Axy = x; — x4 for all k € N.
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The notion of difference sequence spaces was further generalized by Et and Colak [14]
as follows:

X(A™) = {x = (%) e w: (A1) € X}
for X = I, c and cg, where m € N, A"x; = A" xp — A" Ly q, A% = xy.

The sequence x is said to be A™-statistically convergent to the number L provided that
for each ¢ > 0,

1
lim=|{k<n:|A"x -L|>¢}|=0.
non
The set of all A" -statistically convergent sequences was denoted by S(A™) in [15].

Furthermore, this notion was studied in [16, 17].

A paranorm is a function g : X — R defined on a linear space X such that for all

x,9,z€X,
(i) glx)=0ifx=06;
(ii) g(-«) = g(x);
(iii) g(x+y) <gx) +g();
)

(iv) If («,) is a sequence of scalars with «,, — a9 (n —> 00) and x,,,a € X withx, — a
(n — 00) in the sense that g(x,, — a) — 0 (1 —> 00), then a,,x,, — apa
(n — 00), in the sense that g(a,x, — ¢pa) — 0 (n — 00).
A paranorm g for which g(x) = 0 implies x = 0 is called a total paranorm on X and the
pair (X, g) is called a total paranormed space.
Note that each seminorm (norm) p on X is a paranorm (total) but converse need not be
true.
The concept of paranorm is a generalization of absolute value [18].
A modulus function f is a function from [0, 00) to [0, 00) such that
(i) f(x) =0 ifand only if x = 0;
(il) flx+y) <fx)+f(y) forallx,y > 0;
(ili) f increasing;
(iv) f is continuous from at the right zero.
Since |f(x) —f(y)] <f(|x—y|), it follows from condition (iv) that f is continuous on [0, 00).
Furthermore, we have f(nx) < nf(x) for all n € N from condition (ii) and so

£ f(nx%) < nf(;—‘)

Hence, forall m € N,

L) sf(g).

n

A modulus may be bounded or unbounded. For example, f(x) = x” for 0 < p <1is un-
bounded, but f(x) = 7 is bounded. Ruckle [19] used the idea of a modulus function f to
construct a class of FK spaces

L) = {x = () Y f () < o0
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In [9], the notion of statistical convergence was defined in a paranormed space.

Definition 2.1 A sequence x = (x) is said to be statistically convergent to the number L
in (X, g) if for each ¢ > 0,

lim%HkSn:g(xk—L)st:O.

In this case, we write g(st)-limx = L. We denote the set of all g(st)-convergent sequences
by S, [9].

Definition 2.2 A sequence x = (xy) is said to be strongly p-Cesaro summable (0 < p < 00)
to the limit L in (X, g) if

1 n
lim ~ > (g -1)" =0,
j=1

and we write it as xx — L([C1,g],). In this case, L is called the [C, g],-lim it of x [9].

In this article, we shall study the concept of A™-lacunary statistical convergence,
A" -lacunary strong convergence and A”-lacunary strong convergence with respect to
a modulus function in a paranormed space.

3 Generalized difference statistical convergence in a paranormed space
Definition 3.1 A sequence x = (xy) is said to be A™-statistically convergent to the number
Lin (X,g) if for each ¢ > 0,

1 ,
h;n;kan:g(A xk—L)28}|=O.

In this case, we write S,(A”™)-limx = L. We denote the set of all A”-statistically conver-
gent sequences in (X, g) by S;(A™).

Definition 3.2 Let6 be alacunary sequence. A sequence x = (x) is said to be A”-lacunary
statistically convergent to the number L in (X, g) if for each ¢ > 0,

1imhiy{ke1,:g(Amxk—L) >e}|=0.

In this case, we write SZ (A™)-limx = L. We denote the set of all A”-lacunary statistically
convergent sequences in (X, g) by Sg(Am).

Definition 3.3 A sequence x = (x¢) is said to be strongly A™-Cesaro summable to the
limit L in (X, g) if

lim % Z(g(A"‘xk -L)) =0,
k=1

and we write it as xy —> L(|o1/4(A"™)). In this case L is called the |o1]g(A™)-lim of x.
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Definition 3.4 A sequence x = (xy) is said to be strongly A™-lacunary strongly summable
to the limit L in (X, g) if

hm Z "Xy — =0,

" kel,
and we write it as x —> L(N;(A”’)). In this case L is called the Ng(A’”)—lim of x.

Theorem 3.1 Let 0 be a lacunary sequence and (X,g) be a paranormed space. Then
i) If xg — L(Ng(A”‘)), then xy — L(SZ(A’”)) and the inclusion is strict;
(ii) If xis a A™-bounded sequence and xx —» L(Sf,(A’”)), then x, —> L(Ng(A'”));
(iif) Zg°(A™) N Sg(M) =l(Aamn Ng(Am).

Proof (i) If ¢ > 0 and x — L(Ng(Am)), we can write

Zg "xk—L Z g(A"x —L) > e|{k €L, : g(A"x — L) > €},
kely kely
g(AMxp—L)>¢
which yields the result.

In order to prove that the inclusion NQ(A”‘) - SQ(A’”) is proper, let  be given and
X =Nj(A, hl ) ={x=(x): |h de Axk|hr — 0,7 — oo} with the paranorm g(x) = |x;| +
sup, |h_r Zke]r Axy| hr. Define x = (x;) to be 2/,1" at the first term in I, for every r > 1,

X = h(1" = 2" — ... — (k = 1)) between the second term and ([+/%,] + 1)th term in I,
K = (U =20 — oo ([VRy])") at the ([/7,] + 2)th term in I, and x; = 0 otherwise.
We see that

A, 2% k[, at the first [/B,] integers in I,

Axy =
0, otherwise.
and
L2,...,[vh], atthe first [/A,] integers in I,,
g(Axy) =

0, otherwise.

Note that x is not A-bounded in (X, g). We have, for every ¢ > 0,

[vh]
—
h

r

1
Ll setom) > ) -

asr — o0, i.e., X —> O(Sg(A)). On the other hand,

1 WVEIWR]+D 1
—k%;g(Axk n ) _>§?/0»

hence x; = O(NgQ(A)).
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(i) Suppose that x; — L(Sg(A’")) and say g(A"x; — L) < M for all k. Given ¢ > 0, we get

1 1 1
h_r Zg(A’"xk - L) = h_r Z g(A”’xk - L) + h_r Z g(A”’xk - L)
kel, kel kel
- g(A'”xi—L)zs g(A'”:k—Lks
< |k el g(am~ 1) z €]+,
;

from which the result follows.

(iii) This is an immediate consequence of (i) and (ii). a

Corollary 3.1 If xx — L(|o1lg(A™)), then xi — L(Sg(A™)). If x € [&°(A™) and if xi —
L(Sg(A™)), then xi — L(|o1]g(A™)).

Theorem 3.2 Let 0 be a lacunary sequence and (X,g) be a paranormed space, then
Sg(A’”) = §,(A™) ifand only if 1 < liminf, g, <limsup, g, < co.
Proof Suppose thatliminfg, > 1, then there existsa § > 0 such that ¢, > 1+ 6 for sufficiently

large r, which implies that

| =

ro 8
146

>

If xx — L(Sg(A™)), then for every e > 0 and sufficiently large r, we have

kl‘{kfk,:g(A”’xk—L) zeH > %er],:g(A”’xk—L) zeH

’

51 B
> mh—erely.g(A xk—L) 28}

which proves the S;(A™) C SZ(A”‘).

Conversely, suppose that liminfg, = 1. Since 6 is lacunary, we can select a subse-
i ky
J

quence (k) of 6 satistying Bt <1+ } and "r(j_l)

-1

> j, where r; > rj; + 2 and X =

1
Ng(A, hlr) = {x=(x): |hir ZkeI, Axi|"r — 0,r — oo} with the paranorm g(x) = |x1| +

1
1 1
sup, |h—r E kel, Axklhr .
Now define a sequence by

Ay = h, +k, ke],(j),jz L2,...,
0, otherwise.

We can see that

1, kel..,j=12,...,
g(Axy) = 0/
0, otherwise.

and hence x is A-bounded in (X, g).
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We can see that x ¢ N;(A"’), but x € UgI(A”’). Theorem 3.1(ii) implies that x ¢ SE(A”’),
but it follows from Corollary 3.1 that x € S;(A™). Hence S,(A™) ¢ Sg(A’”) and Sg(A™) C
Sy(A™) implies that liminfg, > 1.

To show for any lacunary sequence 6, SZ (A™) C S(A™) implies lim sup g, < 0o, the same
technique of Lemma 3 of [20] can be used. Now suppose that lim sup ¢, = co. Consider the
same space defined above and the sequence defined by

hy+i, ko <i<2k,1,j=12,...,

Ax; =
0, otherwise.
Then we get
2(Ax) = L kya<i<2k;1,j=12,...,

0, otherwise.

Then x € Ng(A”‘), but x ¢ O'gl(Am). By Theorem 3.1(i) we conclude that x € Sg(Am),
but by Corollary 3.1 that x ¢ Sg(A™). Hence, SZ(A”’) ¢ Sg(A™). This completes the proof.
d

Definition 3.5 Let f be a modulus function. Then a sequence x = (x;) is lacunary strongly
p-Cesaro summable to L with respect to f in (X, g) if

hm Z "Xk — ))]pk=0.

ke],

In this case, we write x; — L(Ng (f, A™, p)). If we take pi =1 for all k € N, we say x; —
LINY(f, A™).

Lemma 3.1 Let f be a modulus function and let 0 < § < 1. Then for each x > § we have

fx) =2f(1)s 7 x [21].

Theorem 3.3 Let f be a modulus function and (X,g) be a paranormed space. Then
NJ(A™) C Ny (f, A™).

Proof Letx e Ng(A”’). Then we have 1, = hir > ker, 8(A"x — L) — 0 asr — oo for some L.
Let ¢ > 0 and choose § with 0 < § <1 such that f(u) < ¢ for u with 0 < u < §. Then we

can write
1
e ) = Y fle(ams- 1)
keIV kel,

g(AMxp—L)<6
1

+ h—r Z f xk— ))

kel

g(AMxp—L)>8
1

-1
h (h,8) + h—2f(1)8 h,t,

from Lemma 3.1. Therefore x € Ng (f, A™). O
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Theorem 3.4 Let 0 < infy pi < pr < supy px < 00. Then Sg(A”‘) = Ng (f, A™, p) if and only
iff is bounded.

Proof Following the technique applied for establishing Theorem 3.16 of [22], we can prove
the theorem. d
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