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Abstract
Let Tj,1 and Tj,2 be singular integrals with non-smooth kernels, which are associated
with an approximation of identity or ±I (I is the identity operator). Denote the
Toeplitz-type operator by Tb =

∑N
j=1 Tj,1MbTj,2, whereMbf (x) = b(x)f (x). In this paper, the

estimates of the Toeplitz operator Tb(f ) related to singular integral operators with
non-smooth kernels and b ∈ BMO(Rn) in weighted Morrey spaces is established.
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1 Introduction
The classical Morrey spaces were introduced by Morrey in [] to investigate the local be-
havior of solutions to second-order elliptic partial differential equations. The bounded-
ness of the Hardy-Littlewood maximal operator, the singular integral operator, the frac-
tional integral operator and the commutator of these operators in Morrey spaces have
been studied by many authors; see [–] and the references therein. In [], Komori and
Shirai studied the boundedness of these operators in weighted spaces.
It is well known that the commutator [b,T] is defined by [b,T](f ) = T(bf )–bT(f ), where

T is a Calderón-Zygmund operator and b ∈ BMO. The commutator generated by the
Calderón-Zygmund operators and a locally integrable function b can be regarded as a spe-
cial case of the Toeplitz operatorTb =

∑N
j=Tj,MbTj,, whereTj, andTj, are theCalderón-

Zygmund operators or ±I (I is the identity operator),Mbf (x) = b(x)f (x). When b ∈ BMO,
Krantz and Li discussed the Lp boundedness of Tb on the homogeneous space, see [,
]. In [], the authors studied the boundedness of Tb in Morrey spaces. In this paper, we
study the boundedness of Toeplitz-type operators related to singular integral operators
with non-smooth kernels in weighted Morrey spaces.
The singular integral operators with non-smooth kernels previously appeared in [].

We say that T is a singular integral operator with non-smooth kernel if it satisfies the
following conditions.

(i) There exists a class of operators At with kernels at(x, y), which satisfy the condition
(.) in Section , so that the kernels kt(x, y) of the operators (T –AtT) satisfy the
condition

∣∣kt(x, y)∣∣ ≤ c
tγ /m

|x – y|n+γ
, (.)

when |x – y| ≥ ct/m for some γ ,m > .
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(ii) There exists a class of operators Bt with kernels bt(x, y), which satisfy the condition
(.), such that (T – TBt) have associated kernels Kt(x, y) and there exist positive
constants c, c such that∫

|x–y|≥ct/m

∣∣Kt(x, y)
∣∣dx ≤ c for all y ∈ R

n. (.)

Note that the classes of operators At and Bt play the role of a generalized approximation
to the identity. It is not difficult to check that conditions (.) and (.) are consequences
of the standard Calderón-Zygmund operator. See Proposition  in [].
The paper is organized as follows. In Section , we recall some important estimates on

BMO functions, maximal functions and sharp maximal functions. In Section , we prove
the main result.

2 Definitions and preliminary results
Let  ≤ p <∞,  < κ <  and w be a weight. The weighted Morrey space is defined by

Lp,κ (w) :=
{
f ∈ Lploc(w) : ‖f ‖Lp,κ (w) < ∞}

,

where

‖f ‖Lp,κ (w) = sup
B

(


w(B)κ

∫
B
|f |pwdx

)/p

,

and the supremum is taken over all balls B in R
n. If w =  and κ = λ/n with  < λ < n, then

Lp,κ (w) = Lp,λ(Rn), the classical Morrey spaces.
The standard Hardy-Littlewood maximal functionMrf ,  ≤ r <∞, is defined by

Mrf (x) = sup
B:x∈B

(


|B|
∫
B

∣∣f (y)∣∣r dy)/r

,

where the sup is taken over all balls containing x. If r = ,Mf will be denoted byMf . The
Fefferman-Stein sharp maximal function of f , f �(x), is defined by

f �(x) = sup
B:x∈B


|B|

∫
B

∣∣f (y) – fB
∣∣dy,

where fB = 
|B|

∫
B f dx. We will say f ∈ BMO(Rn) if f ∈ Lloc(R

n) and f �(x) ∈ L∞. If f ∈ BMO,
the BMO semi-norm of f is given by

‖f ‖∗ = sup
x

f �(x) = sup
x

sup
x∈B


|B|

∫
B

∣∣f (y) – fB
∣∣dy.

A weight w is a non-negative locally integrable function.We say that w ∈ Ap(Rn),  < p <
∞, if there exists a constant C such that for every ball B⊂R

n,

(


|B|
∫
B
wdx

)(


|B|
∫
B
w–p′

dx
)p–

≤ C,
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where 
p + 

p′ = . For p = , we say that w ∈ A(Rn) if there is a constant C such that for
every ball B ⊂R

n,


|B|

∫
B
wdy≤ Cw(x) for a.e. x ∈ B,

or, equivalently, M(w) ≤ Cw a.e. We denote A∞(Rn) =
⋃

≤p<∞ Ap(Rn). For the above def-
inition, see [].
A family of operators At , t > , is said to be a ‘generalized approximation to the identity’

if, for every t > ,At can be represented by kernels at(x, y) in the following sense: For every
function f ∈ Lp(Rn), p ≥ , Atf (x) =

∫
Rn at(x, y)f (y)dy, and the following condition holds:

∣∣at(x, y)∣∣ ≤ ht(x, y) = t–n/ms
(|x – y|mt–), (.)

in whichm is a positive constant and s is a positive, bounded, decreasing function satisfy-
ing

lim
r→∞ rn+N+εs

(
rm

)
=  (.)

for some ε > .
Note that (.) implies that

∣∣at(x, y)∣∣ ≤ t–n/m ×
(
 +

|x – y|
t/m

)–(n+ε)

.

In [], the sharp maximal function M�

Af associated with a ‘generalized approximation
to the identity’ {At , t > } is defined by

M�

Af (x) = sup
x∈B


|B|

∫
B

∣∣f (y) –AtBf (y)
∣∣dy, (.)

where tB = rmB , and f ∈ Lp(Rn) for some p ≥ .
The following results are proved in the context of spaces of homogeneous type in [,

] and [].

Lemma .
(i) For every p ∈ [,∞), there exists a constant C such that for every f ∈ Lp(Rn),

Atf (x) ≤ CMf (x);

(ii) Assume that b ∈ BMO andM > . Then, for every ball B(x; r), we have

|bB – bMB| ≤ C‖b‖∗ logM;

(iii) (John-Nirenberg lemma) Let  ≤ p <∞ and B⊂R
n, then b ∈ BMO if and only if


|B|

∫
B
|b – bB|p dx≤ ‖b‖p∗.
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Lemma . For  < p < ∞,  < κ <  and w ∈ Ap, we have ‖Mf ‖Lp,κ (w) ≤ C‖f ‖Lp,κ (w).

For the proof of this lemma, see [, Theorem .].

Lemma . Let {At , t > } be a ‘generalized approximation to the identity’ and let b ∈
BMO. Then, for every function f ∈ Lp(Rn), p > , x ∈R

n and  < r <∞, we have

sup
x∈B


|B|

∫
B

∣∣AtB (b – bB)f (y)
∣∣dy≤ C‖b‖∗Mrf (x), (.)

where tB = rmB .

For the proof of this lemma, see Lemma . in [].
Now,we have the following analogy of the classical Fefferman-Stein inequality [, Chap-

ter IV] for the sharp maximal functionM�

Af . For the proof, see Proposition . in [].

Lemma . Take λ > , w ∈ A∞(Rn), f ∈ Lloc and a ball B such that there exists x ∈ B

with Mf (x) < λ. Then, for every  < η < , there exist r,γ >  (independent of λ, B, f , x)
and Cw which only depend on w such that

w
{
x ∈ B :Mf (x) >Dλ,M�

Af (x)≤ γ λ
} ≤ Cwηrw(B),

where D >  is a fixed constant which depends only on the ‘generalized approximation to
the identity’ {At , t > }.

3 Themain results
In this section, we consider the Toeplitz operator related to a singular integral with non-
smooth kernel Tb =

∑M
j=Tj,MbTj,, where Tj, and Tj, are singular integrals with non-

smooth kernels, which are associated with an approximation of identity or ±I . For i =
, . . . ,M, j = , , we assume that if Ti,j �= ±I , then:

(a) Ti,j are bounded operators on L(Rn).
(b) There exist ‘generalized approximations of the identity’ {Bij

t , t > } such that
(Ti,j – Ti,jB

ij
t ) have associated kernels Kij

t (x, y) and there exist positive constants C,
C such that

∫
|x–y|>Ct/m

∣∣Kij
t (x, y)

∣∣dx ≤ C for all y ∈R
n.

(c) There exists a ‘generalized approximation to the identity’ {At , t > } such that the
kernels kijt (x, y) of the operators (Ti,j –AtTi,j) satisfy

∣∣kijt ∣∣ ≤ C
tα/m

|x – y|n+α

tα/m

d(x, y)α
, (.)

when |x – y| ≥ Ct/m for some C,C,α > .
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It is proved in [] that if T is an operator satisfying (a) and (b) above, then T is of weak
(, ) and of strong type (p,p) for  < p ≤ . In addition, if (c) is also satisfied, the operator
T is bounded on Lp(Rn) for all  < p < ∞. Moreover, if w ∈ Ap, then T is bounded on Lp(w)
(see []).
In order to study the boundedness of Tb in weighted Morrey spaces, we need the fol-

lowing result.

Lemma. Let w ∈ A∞,  < κ <  and  < p <∞.Then, for every f ∈ Lloc withMf ∈ Lp,κ (w),
there exists a constant Cw, which only depends on w, such that

‖Mf ‖Lp,κ (w) ≤ Cw
∥∥M�

Af
∥∥
Lp,κ (w). (.)

Proof Let B be a ball in R
n. Set Eλ = {x ∈ B : Mf (x) > λ}. Then from the Whitney de-

composition theorem, we know that there exist mutually disjoint cubes Qk such that
Eλ =

⋃
k Qk and Qk ∩ B \ Eλ �= ∅. Denote Bk to be the ball with the same center as Qk

and rBk =

 diameter Qk . Let B̃k = Bk . Then there exists an xk ∈ B̃k ∩ B \ Eλ, that is,

Mf (xk) ≤ λ. Let us use Lemma .. There are Cw; r >  and D >  such that, if  < η <  (to
be chosen later), we can find γ >  in such a way that

w
{
x ∈ B̃k :Mf (x) >Dλ,M�

Af (x)≤ γ λ
} ≤ Cwηrw(̃Bk).

Set Uλ = {x ∈ B :Mf (x) >Dλ,M�

Af (x) ≤ γ λ} and so Uλ ⊂ Eλ =
⋃

k Qk ⊂ ⋃
k B̃k since D > .

Then

w(Uλ) ≤
∑
k

w
{
x ∈ B̃k :Mf (x) >Dλ,M�

Af (x)≤ γ λ
}

≤ Cwηr
∑
k

w(̃Bk)

≤ Cηr
∑
k

w(Qk) = Cηrw(Eλ)

= Cηrw
{
x ∈ B :Mf (x) > λ

}
,

where we used the fact that A∞ weights are doubling measures and C is a constant that
only depends on the weight. One can prove that

∫
B
|Mf |pwdx = Dp

∫ ∞


pλp–w

{
x ∈ B :Mf (x) >Dλ

}
dλ

≤ Dp
∫ ∞


pλp–(w(Uλ) +w

{
x ∈ B :M�

Af (x) > γ λ
})

dλ

≤ CDpηr
∫
B
|Mf |pwdx +

Dp

γ p

∫
B

∣∣M�

Af
∣∣pwdx.

Let us choose η such that CDpηr = /. The former inequality turns out to be

∫
B
|Mf |pwdx ≤ 

Dp

γ p

∫
B

∣∣M�

Af
∣∣pwdx.

http://www.journalofinequalitiesandapplications.com/content/2013/1/253


Xie and Cao Journal of Inequalities and Applications 2013, 2013:253 Page 6 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/253

This implies that

‖Mf ‖Lp,κ (w) ≤ C
∥∥M�

Af
∥∥
Lp,κ (w).

The proof of this lemma is completed. �

The aim of this section is to prove the following theorem.

Theorem . Let Ti,j be operators satisfying the above conditions (a), (b) and (c) or±I . Let
 < p < ∞,  < κ <  and w ∈ Ap. Suppose that T(f ) =  when f ∈ Lp,κ (w). If b ∈ BMO(Rn),
then there exists a constant C such that

∥∥Tb(f )
∥∥
Lp,κ (w) ≤ C

( M∑
j=

‖Tj,‖L(Rn)

)( M∑
j=

‖Tj,‖L(Rn)

)
‖b‖∗‖f ‖Lp,κ (w) (.)

for all f ∈ Lp,κ (w).

Proof Without loss of generality, we may assume that

‖Tj,i‖L(Rn) ≤  for all  ≤ j ≤ M, i = , .

For w ∈ Ap, it is well known that there exists t >  such that w ∈ Ap/t . Then we can choose
two real numbers r and s larger than  such that  < rs < p < ∞ and w ∈ Ap/(rs). We will
prove that there exists a constant C such that

M�

A(Tbf )(x)≤
M∑
j=

C‖b‖∗Mrs(Tj,f )(x) (.)

for all x ∈R
n.

We now prove (.). For an arbitrary fixed x ∈R
n, choose a ball B(x; r) = {y ∈R

n : |x –
y| < r} which contains x. We have that T(f ) = , and so TbB (f ) = bBT(f ) = . Thus

Tb(f ) = T(b–bB)χB (f ) + T(b–bB)χ(B)c (f )

and

AtB (Tbf ) = AtB (T(b–bB)χB f ) +AtB (T(b–bB)χ(B)c f ),

where tB = rmB . Then


|B|

∫
B

∣∣Tb(f )(y) –AtB (Tbf )(y)
∣∣dy

≤ 
|B|

∫
B

∣∣T(b–bB)χB (f )(y)
∣∣dy + 

|B|
∫
B

∣∣AtB (T(b–bB)χB f )(y)
∣∣dy

+


|B|
∫
B

∣∣T(b–bB)χ(B)c (f )(y) –AtB (T(b–bB)χ(B)c f )(y)
∣∣dy

=: I + II + III.

http://www.journalofinequalitiesandapplications.com/content/2013/1/253
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Let r′ be the dual of r such that /r + /r′ = . By Lemma . and the boundedness of Tj,,
we have

I ≤
(


|B|

∫
Rn

∣∣T(b–bB)χB (f )(y)
∣∣s dy)/s

≤
M∑
j=

C
(


|B|

∫
B

∣∣(b(y) – bB
)
Tj,(f )(y)

∣∣s dy)/s

≤
M∑
j=

C
(


|B|

∫
B

∣∣b(y) – bB
∣∣sr′ dy)/(sr′)( 

|B|
∫
B

∣∣Tj,(f )(y)
∣∣sr dy)/(sr)

≤
M∑
j=

C‖b‖∗Mrs(Tj,f )(x).

Similarly, by Lemma . and the boundedness of Tj,, we obtain

II ≤ 
|B|

∫
B

∣∣M(T(b–bB)χB f )(y)
∣∣dy≤

(


|B|
∫
Rn

∣∣M(T(b–bB)χB f )(y)
∣∣s dy)/s

≤
(


|B|

∫
Rn

∣∣T(b–bB)χB (f )(y)
∣∣s dy)/s

≤
M∑
j=

C‖b‖∗Mrs(Tj,f )(x).

We now consider the term III . There are two cases:
() Suppose that Tj, �= ±I (j = , . . . ,M), then using the assumption (c), we have

III ≤
M∑
j=


|B|

∫
B

∫
(B)c

∣∣kj,tB (y, z)∣∣∣∣(b(z) – bB
)
Tj,(f )(z)

∣∣dzdy
≤ C

M∑
j=

∞∑
k=

∫
krB≤|x–z|<k+rB

rαB
|x – z|n+α

∣∣(b(z) – bB
)
Tj,(f )(z)

∣∣dz
≤ C

M∑
j=

∞∑
k=

–kα


|B(x; krB)|
∫

|x–z|<k+rB

∣∣(b(z) – bB
)
Tj,(f )(z)

∣∣dz
≤ C

M∑
j=

∞∑
k=

–kα


|B(x; krB)|
∫

|x–z|<k+rB

∣∣b(z) – bk+B
∣∣∣∣Tj,(f )(z)

∣∣dz
+C

M∑
j=

∞∑
k=

–kα
∣∣bk+B – bB

∣∣ 
|B(x; krB)|

∫
|x–z|<k+rB

∣∣Tj,(f )(z)
∣∣dz

≤ C‖b‖∗
M∑
j=

∞∑
k=

–kαMrs(Tj,f )(x) +C‖b‖∗
M∑
j=

∞∑
k=

–kα(k + )M(Tj,f )(x)

≤ C‖b‖∗
M∑
j=

Mrs(Tj,f )(x).
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() Suppose that there are i identity or –I operators in {Tj,}. Without loss of generality,
we assume that T,, . . . ,Ti, are identity operators, then

III ≤
i∑
j=


|B|

∫
B

∣∣(b(z) – bB
)
χ(B)cTj,(f )(z)

∣∣dz
+

i∑
j=


|B|

∫
B

∣∣AtB
(
(b – bB)χ(B)cTj,(f )

)
(z)

∣∣dz
+

M∑
j=i+


|B|

∫
B

∣∣Tj,M(b–bB)χ(B)c Tj,(f )(z) –AtB
(
Tj,M(b–bB)χ(B)c Tj,(f )

)
(z)

∣∣dz
= III + III + III.

It is obvious that III = .
By (.) and Lemma ., we obtain

III ≤
i∑
j=


|B|

∫
B

∫
(B)c

∣∣htB (z, y)(b(y) – bB
)
Tj,(f )(y)

∣∣dydz
=

i∑
j=

∞∑
k=


|B|

∫
B

∫
(k+B)\(kB)

∣∣htB (z, y)(b(y) – bB
)
Tj,(f )(y)

∣∣dydz
≤ C

i∑
j=

∞∑
k=

kns
(
(k–)m

)∫
k+B

∣∣(b(y) – bB
)
Tj,(f )(y)

∣∣dydz
≤ C‖b‖∗

i∑
j=

∞∑
k=

(k + )kns
(
(k–)m

)
Mrs(Tj,f )(x)

≤ C‖b‖∗
i∑
j=

Mrs(Tj,f )(x).

Moreover, from case () it follows that

III ≤ C‖b‖∗
M∑

j=i+

Mrs(Tj,f )(x).

So, III ≤ C‖b‖∗
∑M

j=Mrs(Tj,f )(x).
Combining the above estimates of I , II and III , we obtain (.).
From (.), we know that if T is an operator satisfying (a), (b) and (c), then there exists

 < s < p such that w ∈ Ap/s and

M�

A(Tf )(x)≤ CMsf (x). (.)

For the proof of (.), one can also see [, Proposition .]. Then combining (.), Lem-
mas . and ., we have

‖Tf ‖Lp,κ (w) ≤ C
∥∥M�

A(Tf )
∥∥
Lp,κ (w) ≤ ‖Msf ‖Lp,κ (w) ≤ ‖f ‖Lp,κ (w).

http://www.journalofinequalitiesandapplications.com/content/2013/1/253
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Combining this, (.), Lemmas . and ., we have

‖Tbf ‖Lp,κ (w) ≤ C
∥∥M�

A(Tbf )
∥∥
Lp,κ (w) ≤

M∑
j=

C‖b‖∗
∥∥Mrs(Tj,f )

∥∥
Lp,κ (w) ≤ C‖b‖∗‖f ‖Lp,κ (w)

for all f ∈ Lp,κ (w). The proof of this theorem is completed. �

Corollary . Let T be operators satisfying the above conditions (a), (b)and (c).Let w ∈ Ap,
 < p < ∞. If b ∈ BMO(Rn), then there exists a constant C such that

∥∥[b,T]f ∥∥Lp,κ (w) ≤ C‖b‖∗‖f ‖Lp,κ (w) (.)

for all f ∈ Lp,κ (w).
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