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Abstract
In this paper, we study a new iterative method for finding a common element of the
set of solutions of a new general system of variational inequalities for two different
relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in real 2-uniformly smooth and uniformly convex Banach spaces. We prove the strong
convergence of the proposed iterative method without the condition of weakly
sequentially continuous duality mapping. Our result improves and extends the
corresponding results announced by many others.
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1 Introduction
Let X be a real Banach space and X∗ be its dual space. Let C be a subset of X and let T
be a self-mapping of C. We use F(T) to denote the set of fixed points of T . The duality
mapping J : X → X∗ is defined by J(x) = {x∗ ∈ X∗|〈x,x∗〉 = ‖x‖,‖x∗‖ = ‖x‖}, ∀x ∈ X. If X
is a Hilbert space, then J = I , where I is the identity mapping. It is well-known that if X is
smooth, then J is single-valued, which is denoted by j.
Recall that a mapping f : C → C is a contraction on C, if there exists a constant α ∈ (, )

such that ‖f (x) – f (y)‖ ≤ α‖x – y‖, ∀x, y ∈ C. We use �C to denote the collection of all
contractions on C. This is �C = {f |f : C → C a contraction}. A mapping T : C → C is said
to be nonexpansive if ‖T(x) – T(y)‖ ≤ ‖x – y‖, ∀x, y ∈ C. Let A : C → X be a nonlinear
mapping. Then A is called

(i) L-Lipschitz continuous (or Lipschitzian) if there exists a constant L ≥  such that

‖Ax –Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C;

(ii) accretive if there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ , ∀x, y ∈ C;

(iii) α-inverse strongly accretive if there exist j(x – y) ∈ J(x – y) and α >  such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C;
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(iv) relaxed (c,d)-cocoercive if there exist j(x – y) ∈ J(x – y) and two constants c,d ≥ 
such that

〈
Ax –Ay, j(x – y)

〉 ≥ (–c)‖Ax –Ay‖ + d‖x – y‖, ∀x, y ∈ C.

Let C be a nonempty closed convex subset of a real Hilbert space H . Recall that the
classical variational inequality is to find x∗ ∈ C such that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈ C, (.)

where A : C →H is a nonlinear mapping. Variational inequality theory has emerged as an
important tool in studying a wide class of obstacle, unilateral, free, moving, equilibrium
problems arising in several branches of pure and applied sciences in a unified and gen-
eral framework. The variational inequality problem has been extensively studied in the
literature; see [–] and the references cited therein.
In , Aoyama et al. [] first considered the following generalized variational inequal-

ity problem in Banach spaces. Let A : C → X be an accretive operator. Find a point x∗ ∈ C
such that

〈
Ax∗, j

(
x – x∗)〉 ≥ , ∀x ∈ C. (.)

Problem (.) is very interesting as it is connected with the fixed point problem for a non-
linear mapping and the problem of finding a zero point of an accretive operator in Banach
spaces; see [–] and the references cited therein.
In , Yao et al. [] introduced the following system of general variational inequalities

in Banach spaces. For given two operators A,B : C → X, they considered the problem of
finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈Ay∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,

〈Bx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

which is called the system of general variational inequalities in a real Banach space and
the set of solutions of problem (.) denoted by �. Yao et al. proved the following strong
convergence theorem.

Theorem YNNLY Let C be a nonempty closed convex subset of a uniformly convex and
-uniformly smooth Banach space X which admits a weakly sequentially continuous dual-
ity mapping. Let QC be the sunny nonexpansive retraction from X onto C. Let the mappings
A,B : C → X be α-inverse-strongly accretive with α ≥ K and β-inverse-strongly accretive
with β ≥ K, respectively,with� �= ∅. For a given x ∈ C, let the sequence {xn} be generated
iteratively by

⎧⎨
⎩
yn =QC(xn – Bxn),

xn+ = αnu + βnxn + γnQC(yn –Ayn), n≥ ,

where {αn}, {βn} and {γn} are three sequences in (, ). Suppose that the sequences {αn}, {βn}
and {γn} satisfy the following conditions:
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(i) αn + βn + γn = , ∀n≥ ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn ≤ .
Then {xn} converges strongly to Q′u where Q′ is the sunny nonexpansive retraction of C
onto �.

In , Katchang and Kumam [] introduced the following system of general varia-
tional inequalities in Banach spaces. For given two operators A,B : C → X, they consid-
ered the problem of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈λAy∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

which is called the system of general variational inequalities in a real Banach space and
the set of solutions of problem (.) denoted by �. Katchang and Kumam proved the
following strong convergence theorem.

Theorem KK Let C be a nonempty closed convex subset of a uniformly convex and
-uniformly smooth Banach space X which admits a weakly sequentially continuous dual-
ity mapping. Let S : C → C be a nonexpansive mapping and QC be a sunny nonexpansive
retraction from X onto C. Let the mappings A,B : C → X be β-inverse-strongly accretive
with β ≥ λK and γ -inverse-strongly accretive with γ ≥ μK, respectively, and let K be
the -uniformly smooth constant of X. Let f be a contraction of C into itself with coefficient
α ∈ [, ). Suppose that F := � ∩ F(S) �= ∅. For a given x = x ∈ C, let the sequence {xn} be
generated iteratively by

⎧⎨
⎩
yn =QC(xn –μBxn),

xn+ = αnf (xn) + βnxn + γnSQC(yn – λAyn), n≥ ,

where {αn}, {βn} and {γn} are three sequences in (, ). Suppose that the sequences {αn}, {βn}
and {γn} satisfy the following conditions:

(i) αn + βn + γn = , ∀n≥ ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to x̄ = QFf (x̄) and (x̄, ȳ) is a solution of problem (.), where
ȳ =QC(x̄ –μBx̄) and QF is the sunny nonexpansive retraction of C onto F .

The problem of finding solutions of (.) by using iterative methods has been studied by
many others; see [–] and the references cited therein.
In this paper, we focus on the problem of finding (x∗, y∗, z∗) ∈ C ×C ×C such that

⎧⎪⎪⎨
⎪⎪⎩

〈λAy∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,

〈λAz∗ + y∗ – z∗, j(x – y∗)〉 ≥ , ∀x ∈ C,

〈λAx∗ + z∗ – x∗, j(x – z∗)〉 ≥ , ∀x ∈ C,

(.)

which is called a new general system of variational inequalities in Banach spaces, where
Ai : C → X are three mappings, λi >  for all i = , , . In particular, if A =  and z∗ = x∗,
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then problem (.) reduces to problem (.). If we add up the requirement that λi =  for
i = , , then problem (.) reduces to problem (.).
In this paper, motivated and inspired by the idea of Katchang and Kumam [] and Yao

et al. [], we introduce a new iterative method for finding a common element of the set of
solutions of a new general system of variational inequalities in Banach spaces for two dif-
ferent relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in real -uniformly smooth and uniformly convex Banach spaces. We prove the strong
convergence of the proposed iterative algorithm without the condition of weakly sequen-
tially continuous duality mapping. Our result improves and extends the corresponding
results announced by many others.

2 Preliminaries
In this section, we recall the well-known results and give some useful lemmas that are used
in the next section.
Let X be a Banach space and let U = {x ∈ X : ‖x‖ = } be a unit sphere of X. X is said

to be uniformly convex if for each ε ∈ (, ], there exists a constant δ >  such that for any
x, y ∈U ,

‖x – y‖ ≥ ε implies
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.

The norm on X is said to be Gâteaux differentiable if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈U and in this case X is said to be smooth. X is said to have a uniformly
Frechet differentiable norm if the limit (.) is attained uniformly for x, y ∈ U and in this
case X is said to be uniformly smooth. We define a function ρ : [,∞)→ [,∞), called the
modulus of smoothness of X, as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.

It is known that X is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed
real number with  < q ≤ . Then a Banach space X is said to be q-uniformly smooth if
there exists a constant c >  such that ρ(τ ) ≤ cτ q for all τ > . For q > , the generalized
duality mapping Jq : X → X∗ is defined by

Jq(x) =
{
f ∈ X∗ : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–}, ∀x ∈ X.

In particular, if q = , the mapping J is called the normalized duality mapping (or duality
mapping), and usually we write J = J . If X is a Hilbert space, then J = I . Further, we have
the following properties of the generalized duality mapping Jq.
() Jq(x) = ‖x‖q–J(x) for all x ∈ X with x �= .
() Jq(tx) = tq–Jq(x) for all x ∈ X and t ∈ [,∞).
() Jq(–x) = –Jq(x) for all x ∈ X .
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It is known that if X is smooth, then J is a single-valued function, which is denoted by j.
Recall that the duality mapping j is said to be weakly sequentially continuous if for each
{xn} ⊂ X with xn → x, we have j(xn) → j(x) weakly-∗. We know that if X admits a weakly
sequentially continuous duality mapping, then X is smooth. For details, see [].

Lemma . [] Let X be a q-uniformly smooth Banach space with  ≤ q ≤ . Then

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ ‖Ky‖q

for all x, y ∈ X, where K is the q-uniformly smooth constant of X.

Lemma . [] In a Banach space X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ X,

where j(x + y) ∈ J(x + y).

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ an = .

Let C be a nonempty closed convex subset of a smooth Banach space X and let D be a
nonempty subset of C. A mapping Q : C →D is said to be sunny if

Q
(
Qx + t(x –Qx)

)
=Qx,

whenever Qx + t(x–Qx) ∈ C for x ∈ C and t ≥ . A mapping Q : C →D is called a retrac-
tion ifQx = x for all x ∈D. Furthermore,Q is a sunny nonexpansive retraction from C onto
D if Q is a retraction from C onto D, which is also sunny and nonexpansive. A subset D
of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D.
It is well known that if X is a Hilbert space, then a sunny nonexpansive retraction QC is

coincident with the metric projection from X onto C.

Lemma . [] Let C be a closed convex subset of a smooth Banach space X. Let D be a
nonempty subset of C and Q : C →D be a retraction. Then the following are equivalent:
(a) Q is sunny and nonexpansive.
(b) ‖Qx –Qy‖ ≤ 〈x – y, j(Qx –Qy)〉, ∀x, y ∈ C.
(c) 〈x –Qx, j(y –Qx)〉 ≤ , ∀x ∈ C, y ∈D.

Lemma . [] If X is strictly convex and uniformly smooth and if T : C → C is a non-
expansive mapping having a nonempty fixed point set F(T), then the set F(T) is a sunny
nonexpansive retraction of C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/249
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Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space X and let
{bn} be a sequence in [, ] with  < lim infn→∞ bn ≤ lim supn→∞ bn < . Suppose that xn+ =
( – bn)yn + bnxn for all integers n ≥  and lim supn→∞(‖yn+ – yn‖– ‖xn+ – xn‖) ≤ . Then
limn→∞ ‖yn – xn‖ = .

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space X. Let
T and T be two nonexpansive mappings from C into itself with F(T)∩ F(T) �= ∅. Define
a mapping S by

Sx = λTx + ( – λ)Tx, ∀x ∈ C,

where λ is a constant in (, ). Then S is nonexpansive and F(S) = F(T)∩ F(T).

Lemma . [] Let X be a real smooth and uniformly convex Banach space and let r > .
Then there exists a strictly increasing, continuous and convex function g : [, r]→R such
that g() =  and g(‖x – y‖) ≤ ‖x‖ – 〈x, j(y)〉 + ‖y‖ for all x, y ∈ Br .

Lemma. [] Let X be a uniformly smooth Banach space, let C be a closed convex subset
of X, let T : C → C be a nonexpansive mapping with F(T) �= ∅ and let f ∈ �C . Then the
sequence {xt} defined by xt = tf (xt)+(– t)Txt converges strongly to a point in F(T) as t → .
If we define a mapping Q : �C → F(T) by Q(f ) := limt→ xt , ∀f ∈ �C , then Q(f ) solves the
following variational inequality:

〈
(I – f )Q(f ), j

(
Q(f ) – p

)〉 ≤ , ∀f ∈ �C ,p ∈ F(T).

Lemma . [] Let C be a nonempty closed convex subset of a real -uniformly
smooth Banach space X. Let the mapping A : C → X be relaxed (c,d)-cocoercive and LA-
Lipschitzian. Then we have

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + 

(
λcLA – λd +KλLA

)‖x – y‖,

where λ >  and K is the -uniformly smooth constant of X. In particular, if  < λ ≤ d–cLA
KLA

,
then I – λA is a nonexpansive mapping.

In order to prove our main result, the next lemma is crucial for proving the main theo-
rem.

Lemma . Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space X with the -uniformly smooth constant K . Let QC be the sunny nonex-
pansive retraction from X onto C and let Ai : C → X be a relaxed (ci,di)-cocoercive and
Li-Lipschitzian mapping for i = , , . Let G : C → C be a mapping defined by

G(x) =QC
[
QC

(
QC(x – λAx) – λAQC(x – λAx)

)
– λAQC

(
QC(x – λAx) – λAQC(x – λAx)

)]
, ∀x ∈ C.

If  < λi ≤ di–ciLi
KLi

for all i = , , , then G : C → C is nonexpansive.

http://www.journalofinequalitiesandapplications.com/content/2013/1/249
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Proof For all x, y ∈ C, by Lemma ., we have

∥∥G(x) –G(y)
∥∥ =

∥∥QC
[
QC

(
QC(I – λA)x – λAQC(I – λA)x

)
– λAQC

(
QC(I – λA)x – λAQC(I – λA)x

)]
–QC

[
QC

(
QC(I – λA)y – λAQC(I – λA)y

)
– λAQC

(
QC(I – λA)y – λAQC(I – λA)y

)]∥∥
≤ ∥∥QC

(
QC(I – λA)x – λAQC(I – λA)x

)
– λAQC

(
QC(I – λA)x – λAQC(I – λA)x

)
–

[
QC

(
QC(I – λA)y – λAQC(I – λA)y

)
– λAQC

(
QC(I – λA)y – λAQC(I – λA)y

)]∥∥
=

∥∥(I – λA)QC(I – λA)QC(I – λA)x

– (I – λA)QC(I – λA)QC(I – λA)y
∥∥

≤ ‖x – y‖,

which implies that G is nonexpansive. �

Lemma . [] Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let QC be the sunny nonexpansive retraction from X onto C. Let Ai : C → X be
three possibly nonlinear mappings. For given x∗, y∗, z∗ ∈ C, (x∗, y∗, z∗) is a solution of prob-
lem (.) if and only if x∗ ∈ F(G), y∗ =QC(z∗ – λAz∗) and z∗ =QC(x∗ – λAx∗), where G
is the mapping defined as in Lemma ..

3 Main results
We are now in a position to state and prove our main result.

Theorem . Let X be a uniformly convex and -uniformly smooth Banach space with
the -uniformly smooth constant K , let C be a nonempty closed convex subset of X and
QC be a sunny nonexpansive retraction from X onto C. Let the mappings Ai : C → X be
relaxed (ci,di)-cocoercive and Li-Lipschitzian with  < λi < di–ciLi

KLi
for all i = , , . Let f

be a contractive mapping with the constant α ∈ (, ) and let S : C → C be a nonexpansive
mapping such that � = F(S)∩ F(G) �= ∅, where G is the mapping defined as in Lemma ..
For a given x ∈ C, let {xn}, {yn} and {zn} be the sequences generated by

⎧⎪⎪⎨
⎪⎪⎩
zn =QC(xn – λAxn),

yn =QC(zn – λAzn),

xn+ = anf (xn) + bnxn + ( – an – bn)SQC(yn – λAyn), n ≥ ,

(.)

where {an} and {bn} are two sequences in (, ) such that
(C) limn→∞ an =  and

∑∞
n= an = ∞;

(C)  < lim infn→∞ bn ≤ lim supn→∞ bn < .
Then {xn} converges strongly to q ∈ �, which solves the following variational inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀f ∈ �C ,p ∈ �.

http://www.journalofinequalitiesandapplications.com/content/2013/1/249
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Proof Step .We show that {xn} is bounded.
Let x∗ ∈ � and tn =QC(yn – λAyn). It follows from Lemma . that

x∗ =QC
[
QC

(
QC

(
x∗ – λAx∗) – λAQC

(
x∗ – λAx∗))

– λAQC
(
QC

(
x∗ – λAx∗) – λAQC

(
x∗ – λAx∗))].

Put y∗ =QC(z∗ – λAz∗) and z∗ =QC(x∗ – λAx∗). Then x∗ =QC(y∗ – λAy∗) and

xn+ = anf (xn) + bnxn + ( – an – bn)Stn.

From Lemma ., we have I – λiAi (i = , , ) is nonexpansive. Therefore

∥∥tn – x∗∥∥ =
∥∥QC(yn – λAyn) –QC

(
y∗ – λAy∗)∥∥ ≤ ∥∥yn – y∗∥∥

=
∥∥QC(zn – λAzn) –QC

(
z∗ – λAz∗)∥∥ ≤ ∥∥zn – z∗∥∥

=
∥∥QC(xn – λAxn) –QC

(
x∗ – λAx∗)∥∥ ≤ ∥∥xn – x∗∥∥ (.)

and ‖Stn – x∗‖ ≤ ‖tn – x∗‖. It follows from (.) that

∥∥xn+ – x∗∥∥ =
∥∥anf (xn) + bnxn + ( – an – bn)Stn – x∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ + bn

∥∥xn – x∗∥∥ + ( – an – bn)
∥∥tn – x∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ + ( – an)

∥∥xn – x∗∥∥
≤ anα

∥∥xn – x∗∥∥ + an
∥∥f (x∗) – x∗∥∥ + ( – an)

∥∥xn – x∗∥∥
= an

∥∥f (x∗) – x∗∥∥ +
(
 – an( – α)

)∥∥xn – x∗∥∥.

By induction, we have

∥∥xn+ – x∗∥∥ ≤ max

{‖f (x∗) – x∗‖
 – α

,
∥∥x – x∗∥∥}

.

Therefore, {xn} is bounded. Hence {yn}, {zn}, {tn}, {Ayn}, {Azn}, {Stn}, {f (xn)} and {Axn}
are also bounded.
Step .We show that limn→∞ ‖xn+ – xn‖ = .
By nonexpansiveness of QC and I – λiAi (i = , , ), we have

‖tn+ – tn‖ =
∥∥QC(yn+ – λAyn+) –QC(yn – λAyn)

∥∥
≤ ‖yn+ – yn‖
=

∥∥QC(zn+ – λAzn+) –QC(zn – λAzn)
∥∥

≤ ‖zn+ – zn‖
=

∥∥QC(xn+ – λAxn+) –QC(xn – λAxn)
∥∥

≤ ‖xn+ – xn‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/249
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Let wn = xn+–bnxn
–bn , n ∈N. Then xn+ = bnxn + ( – bn)wn for all n ∈N and

wn+ –wn =
xn+ – bn+xn+

 – bn+
–
xn+ – bnxn

 – bn

=
an+f (xn+) + ( – an+ – bn+)Stn+

 – bn+
–
anf (xn) + ( – an – bn)Stn

 – bn

=
an+

 – bn+

(
f (xn+) – Stn+

)
+

an
 – bn

(
Stn – f (xn)

)
+ Stn+ – Stn. (.)

By (.), (.) and nonexpansiveness of S, we have

‖wn+ –wn‖ – ‖xn+ – xn‖ ≤ an+
 – bn+

∥∥f (xn+) – Stn+
∥∥ +

an
 – bn

∥∥Stn – f (xn)
∥∥.

By this together with (C) and (C), we obtain that

lim sup
n→∞

‖wn+ –wn‖ – ‖xn+ – xn‖ ≤ .

Hence, by Lemma ., we get ‖xn –wn‖ →  as n→ ∞. Consequently,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – bn)‖wn – xn‖ = . (.)

Step .We show that limn→∞ ‖Sxn – xn‖ = .
Since

xn+ – xn = an
(
f (xn) – xn

)
+ ( – an – bn)(Stn – xn),

therefore

‖Stn – xn‖ →  as n→ ∞. (.)

Next, we prove that limn→∞ ‖xn – tn‖ = . From Lemma . and nonexpansiveness of QC ,
we have

∥∥zn – z∗∥∥ =
∥∥QC(xn – λAxn) –QC

(
x∗ – λAx∗)∥∥

≤ ∥∥xn – x∗ – λ
(
Axn –Ax∗)∥∥

≤ ∥∥xn – x∗∥∥ – λ
〈
Axn –Ax∗, j

(
xn – x∗)〉

+ Kλ

∥∥Axn –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ – λ
(
–c

∥∥Axn –Ax∗∥∥ + d
∥∥xn – x∗∥∥)

+ Kλ

∥∥Axn –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ + λc
∥∥Axn –Ax∗∥∥ –

λd
L

∥∥Axn –Ax∗∥∥

+ Kλ

∥∥Axn –Ax∗∥∥

=
∥∥xn – x∗∥∥ – λ

(
d
L

– c –Kλ

)∥∥Axn –Ax∗∥∥ (.)
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and
∥∥yn – y∗∥∥ =

∥∥QC(zn – λAzn) –QC
(
z∗ – λAz∗)∥∥

≤ ∥∥zn – z∗ – λ
(
Azn –Az∗)∥∥

≤ ∥∥zn – z∗∥∥ – λ
〈
Azn –Az∗, j

(
zn – z∗)〉

+ Kλ

∥∥Azn –Az∗∥∥

≤ ∥∥zn – z∗∥∥ – λ
(
–c

∥∥Azn –Az∗∥∥ + d
∥∥zn – z∗∥∥)

+ Kλ

∥∥Azn –Az∗∥∥

≤ ∥∥zn – z∗∥∥ + λc
∥∥Azn –Az∗∥∥ –

λd
L

∥∥Azn –Az∗∥∥

+ Kλ

∥∥Azn –Az∗∥∥

=
∥∥zn – z∗∥∥ – λ

(
d
L

– c –Kλ

)∥∥Azn –Az∗∥∥. (.)

Similarly, we have
∥∥tn – x∗∥∥ =

∥∥QC(yn – λAyn) –QC
(
y∗ – λAy∗)∥∥

≤ ∥∥yn – y∗ – λ
(
Ayn –Ay∗)∥∥

≤ ∥∥yn – y∗∥∥ – λ
〈
Ayn –Ay∗, j

(
yn – y∗)〉

+ Kλ

∥∥Ayn –Ay∗∥∥

≤ ∥∥yn – y∗∥∥ – λ
(
–c

∥∥Ayn –Ay∗∥∥ + d
∥∥yn – y∗∥∥)

+ Kλ

∥∥Ayn –Ay∗∥∥

≤ ∥∥yn – y∗∥∥ + λc
∥∥Ayn –Ay∗∥∥ –

λd
L

∥∥Ayn –Ay∗∥∥

+ Kλ

∥∥Ayn –Ay∗∥∥

=
∥∥yn – y∗∥∥ – λ

(
d
L

– c –Kλ

)∥∥Ayn –Ay∗∥∥. (.)

Substituting (.) and (.) into (.), we have

∥∥tn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – λ

(
d
L

– c –Kλ

)∥∥Axn –Ax∗∥∥

– λ

(
d
L

– c –Kλ

)∥∥Azn –Az∗∥∥

– λ

(
d
L

– c –Kλ

)∥∥Ayn –Ay∗∥∥. (.)

By the convexity of ‖ · ‖, we obtain
∥∥xn+ – x∗∥∥ =

∥∥anf (xn) + bnxn + ( – an – bn)Stn – x∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ + bn

∥∥xn – x∗∥∥ + ( – an – bn)
∥∥Stn – x∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ + bn

∥∥xn – x∗∥∥ + ( – an – bn)
∥∥tn – x∗∥∥. (.)
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Substituting (.) into (.), we have

∥∥xn+ – x∗∥∥ ≤ an
∥∥f (xn) – x∗∥∥ + bn

∥∥xn – x∗∥∥

+ ( – an – bn)
(∥∥xn – x∗∥∥ – λ

(
d
L

– c –Kλ

)∥∥Axn –Ax∗∥∥

– λ

(
d
L

– c –Kλ

)∥∥Azn –Az∗∥∥

– λ

(
d
L

– c –Kλ

)∥∥Ayn –Ay∗∥∥
)

= an
∥∥f (xn) – x∗∥∥ + ( – an)

∥∥xn – x∗∥∥

– ( – an – bn)λ

(
d
L

– c –Kλ

)∥∥Axn –Ax∗∥∥

– ( – an – bn)λ

(
d
L

– c –Kλ

)∥∥Azn –Az∗∥∥

– ( – an – bn)λ

(
d
L

– c –Kλ

)∥∥Ayn –Ay∗∥∥,

which implies

( – an – bn)λ

(
d
L

– c –Kλ

)∥∥Axn –Ax∗∥∥

+ ( – an – bn)λ

(
d
L

– c –Kλ

)∥∥Azn –Az∗∥∥

+ ( – an – bn)λ

(
d
L

– c –Kλ

)∥∥Ayn –Ay∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ + ‖xn – xn+‖

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)

.

By the conditions (C), (C), (.) and  < λi < di–ciLi
KLi

for each i = , , , we obtain

lim
n→∞

∥∥Axn –Ax∗∥∥ = , lim
n→∞

∥∥Azn –Az∗∥∥ =  and

lim
n→∞

∥∥Ayn –Ay∗∥∥ = .
(.)

Let r = supn≥{‖xn – x∗‖,‖zn – z∗‖,‖yn – y∗‖,‖tn – x∗‖}. By Lemma .(b) and Lemma .,
we obtain

∥∥tn – x∗∥∥ =
∥∥QC(yn – λAyn) –QC

(
y∗ – λAy∗)∥∥

≤ 〈
yn – λAyn –

(
y∗ – λAy∗), j(tn – x∗)〉

=
〈
yn – y∗, j

(
tn – x∗)〉 – λ

〈
Ayn –Ay∗, j

(
tn – x∗)〉

≤ 

[∥∥yn – y∗∥∥ +

∥∥tn – x∗∥∥ – g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)]

+ λ
〈
Ay∗ –Ayn, j

(
tn – x∗)〉,
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which implies

∥∥tn – x∗∥∥ ≤ ∥∥yn – y∗∥∥ – g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)

+ λ
〈
Ay∗ –Ayn, j

(
tn – x∗)〉

≤ ∥∥yn – y∗∥∥ – g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)

+ λ
∥∥Ay∗ –Ayn

∥∥∥∥tn – x∗∥∥. (.)

And

∥∥yn – y∗∥∥ =
∥∥QC(zn – λAzn) –QC

(
z∗ – λAz∗)∥∥

≤ 〈
zn – λAzn –

(
z∗ – λAz∗), j(yn – y∗)〉

=
〈
zn – z∗, j

(
yn – y∗)〉 – λ

〈
Azn –Az∗, j

(
yn – y∗)〉

≤ 

[∥∥zn – z∗∥∥ +

∥∥yn – y∗∥∥ – g
(∥∥zn – z∗ –

(
yn – y∗)∥∥)]

+ λ
〈
Az∗ –Azn, j

(
yn – y∗)〉,

which implies

∥∥yn – y∗∥∥ ≤ ∥∥zn – z∗∥∥ – g
(∥∥zn – z∗ –

(
yn – y∗)∥∥)

+ λ
〈
Az∗ –Azn, j

(
yn – y∗)〉

≤ ∥∥zn – z∗∥∥ – g
(∥∥zn – z∗ –

(
yn – y∗)∥∥)

+ λ
∥∥Az∗ –Azn

∥∥∥∥yn – y∗∥∥. (.)

Similarly, we have

∥∥zn – z∗∥∥ =
∥∥QC(xn – λAxn) –QC

(
x∗ – λAx∗)∥∥

≤ 〈
xn – λAxn –

(
x∗ – λAx∗), j(zn – z∗)〉

=
〈
xn – x∗, j

(
zn – z∗)〉 – λ

〈
Axn –Ax∗, j

(
zn – z∗)〉

≤ 

[∥∥xn – x∗∥∥ +

∥∥zn – z∗∥∥ – g
(∥∥xn – x∗ –

(
zn – z∗)∥∥)]

+ λ
〈
Ax∗ –Axn, j

(
zn – z∗)〉,

which implies

∥∥zn – z∗∥∥ ≤ ∥∥xn – x∗∥∥ – g
(∥∥xn – x∗ –

(
zn – z∗)∥∥)

+ λ
〈
Ax∗ –Axn, j

(
zn – z∗)〉

≤ ∥∥xn – x∗∥∥ – g
(∥∥xn – x∗ –

(
zn – z∗)∥∥)

+ λ
∥∥Ax∗ –Axn

∥∥∥∥zn – z∗∥∥. (.)
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From (.), (.), (.) and (.), we have

∥∥xn+ – x∗∥∥ ≤ an
∥∥f (xn) – x∗∥∥ + bn

∥∥xn – x∗∥∥ + ( – an – bn)
∥∥tn – x∗∥∥

≤ an
∥∥f (xn) – x∗∥∥ + bn

∥∥xn – x∗∥∥

+ ( – an – bn)
[∥∥yn – y∗∥∥ – g

(∥∥yn – y∗ –
(
tn – x∗)∥∥)

+ λ
∥∥Ay∗ –Ayn

∥∥∥∥tn – x∗∥∥]
≤ an

∥∥f (xn) – x∗∥∥ + bn
∥∥xn – x∗∥∥

+ ( – an – bn)
[∥∥zn – z∗∥∥ – g

(∥∥zn – z∗ –
(
yn – y∗)∥∥)

+ λ
∥∥Az∗ –Azn

∥∥∥∥yn – y∗∥∥ – g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)

+ λ
∥∥Ay∗ –Ayn

∥∥∥∥tn – x∗∥∥]
≤ an

∥∥f (xn) – x∗∥∥ + bn
∥∥xn – x∗∥∥

+ ( – an – bn)
[∥∥xn – x∗∥∥ – g

(∥∥xn – x∗ –
(
zn – z∗)∥∥)

+ λ
∥∥Ax∗ –Axn

∥∥∥∥zn – z∗∥∥ – g
(∥∥zn – z∗ –

(
yn – y∗)∥∥)

+ λ
∥∥Az∗ –Azn

∥∥∥∥yn – y∗∥∥ – g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)

+ λ
∥∥Ay∗ –Ayn

∥∥∥∥tn – x∗∥∥]
= an

∥∥f (xn) – x∗∥∥ + ( – an)
∥∥xn – x∗∥∥

+ ( – an – bn)
(
λ

∥∥Ay∗ –Ayn
∥∥∥∥tn – x∗∥∥)

+ ( – an – bn)
(
λ

∥∥Az∗ –Azn
∥∥∥∥yn – y∗∥∥)

+ ( – an – bn)
(
λ

∥∥Ax∗ –Axn
∥∥∥∥zn – z∗∥∥)

– ( – an – bn)g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)

– ( – an – bn)g
(∥∥zn – z∗ –

(
yn – y∗)∥∥)

– ( – an – bn)g
(∥∥xn – x∗ –

(
zn – z∗)∥∥)

,

which implies

( – an – bn)g
(∥∥yn – y∗ –

(
tn – x∗)∥∥)

+ ( – an – bn)g
(∥∥zn – z∗ –

(
yn – y∗)∥∥)

+ ( – an – bn)g
(∥∥xn – x∗ –

(
zn – z∗)∥∥)

≤ an
∥∥f (xn) – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

+ ( – an – bn)
(
λ

∥∥Ay∗ –Ayn
∥∥∥∥tn – x∗∥∥)

+ ( – an – bn)
(
λ

∥∥Az∗ –Azn
∥∥∥∥yn – y∗∥∥)

+ ( – an – bn)
(
λ

∥∥Ax∗ –Axn
∥∥∥∥zn – z∗∥∥)

≤ an
∥∥f (xn) – x∗∥∥ + ‖xn – xn+‖

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)

+ ( – an – bn)
(
λ

∥∥Ay∗ –Ayn
∥∥∥∥tn – x∗∥∥)

+ ( – an – bn)
(
λ

∥∥Az∗ –Azn
∥∥∥∥yn – y∗∥∥)

+ ( – an – bn)
(
λ

∥∥Ax∗ –Axn
∥∥∥∥zn – z∗∥∥)

.
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By the conditions (C), (C), (.) and (.), we obtain

lim
n→∞ g

(∥∥yn – y∗ –
(
tn – x∗)∥∥)

= , lim
n→∞ g

(∥∥zn – z∗ –
(
yn – y∗)∥∥)

=  and

lim
n→∞ g

(∥∥xn – x∗ –
(
zn – z∗)∥∥)

= .

It follows from the properties of g that

lim
n→∞

∥∥yn – y∗ –
(
tn – x∗)∥∥ = , lim

n→∞
∥∥zn – z∗ –

(
yn – y∗)∥∥ =  and

lim
n→∞

∥∥xn – x∗ –
(
zn – z∗)∥∥ = .

Therefore

‖xn – tn‖ ≤ ∥∥xn – zn –
(
x∗ – z∗)∥∥ +

∥∥zn – yn –
(
z∗ – y∗)∥∥

+
∥∥yn – tn –

(
y∗ – x∗)∥∥ →  as n→ ∞. (.)

By (.) and (.), we have

‖Sxn – xn‖ ≤ ‖Sxn – Stn‖ + ‖Stn – xn‖
≤ ‖xn – tn‖ + ‖Stn – xn‖ →  as n→ ∞. (.)

Define a mappingW : C → C as

Wx = ηSx + ( – η)Gx, ∀x ∈ C,

where η is a constant in (, ). Then it follows from Lemma . that F(W ) = F(G) ∩ F(S)
andW is nonexpansive. From (.) and (.), we have

‖xn –Wxn‖ =
∥∥xn – (

ηSxn + ( – η)Gxn
)∥∥

=
∥∥η(xn – Sxn) + ( – η)(xn –Gxn)

∥∥
≤ η‖xn – Sxn‖ + ( – η)‖xn –Gxn‖
= η‖xn – Sxn‖ + ( – η)‖xn – tn‖ →  as n→ ∞. (.)

Step .We claim that

lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉 ≤ , (.)

where q = limt→ xt with xt being the fixed point of the contraction

x �→ tf (x) + ( – t)Wx.

From Lemma ., we have q ∈ F(W ) = F(G)∩ F(S) = � and

〈
(I – f )q, j(q – p)

〉 ≤ , ∀f ∈ �C ,p ∈ �.
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Since xt = tf (xt) + ( – t)Wxt , we have

‖xt – xn‖ =
∥∥tf (xt) + ( – t)Wxt – xn

∥∥
=

∥∥( – t)(Wxt – xn) + t
(
f (xt) – xn

)∥∥.
It follows from (.) and Lemma . that

‖xt – xn‖ =
∥∥( – t)(Wxt – xn) + t

(
f (xt) – xn

)∥∥

≤ ( – t)‖Wxt – xn‖ + t
〈
f (xt) – xn, j(xt – xn)

〉
≤ ( – t)

(‖Wxt –Wxn‖ + ‖Wxn – xn‖
)

+ t
〈
f (xt) – xn, j(xt – xn)

〉
= ( – t)

(‖Wxt –Wxn‖ + ‖Wxt –Wxn‖‖Wxn – xn‖ + ‖Wxn – xn‖
)

+ t
〈
f (xt) – xt , j(xt – xn)

〉
+ t

〈
xt – xn, j(xt – xn)

〉
≤ (

 – t + t
)‖xt – xn‖ + ( – t)

(
‖xt – xn‖‖Wxn – xn‖ + ‖Wxn – xn‖

)
+ t

〈
f (xt) – xt , j(xt – xn)

〉
+ t‖xt – xn‖

=
(
 + t

)‖xt – xn‖ + fn(t) + t
〈
f (xt) – xt , j(xt – xn)

〉
, (.)

where fn(t) = ( – t)(‖xt – xn‖ + ‖Wxn – xn‖)‖Wxn – xn‖ →  as n → ∞. It follows from
(.) that

〈
xt – f (xt), j(xt – xn)

〉 ≤ t

‖xt – xn‖ + fn(t)

t
. (.)

Let n→ ∞ in (.), we obtain that

lim sup
n→∞

〈
xt – f (xt), j(xt – xn)

〉 ≤ t

M, (.)

where M >  is a constant such that M ≥ ‖xt – xn‖ for all t ∈ (, ) and n ≥ . Let t → 
in (.), we obtain

lim sup
t→

lim sup
n→∞

〈
xt – f (xt), j(xt – xn)

〉 ≤ . (.)

On the other hand, we have

〈
f (q) – q, j(xn – q)

〉
=

〈
f (q) – q, j(xn – q)

〉
–

〈
f (q) – q, j(xn – xt)

〉
+

〈
f (q) – q, j(xn – xt)

〉
–

〈
f (q) – xt , j(xn – xt)

〉
+

〈
f (q) – xt , j(xn – xt)

〉
–

〈
f (xt) – xt , j(xn – xt)

〉
+

〈
f (xt) – xt , j(xn – xt)

〉
=

〈
f (q) – q, j(xn – q) – j(xn – xt)

〉
+

〈
xt – q, j(xn – xt)

〉
+

〈
f (q) – f (xt), j(xn – xt)

〉
+

〈
f (xt) – xt , j(xn – xt)

〉
.
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It follows that

lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉 ≤ lim sup
n→∞

〈
f (q) – q, j(xn – q) – j(xn – xt)

〉

+ ‖xt – q‖ lim sup
n→∞

‖xn – xt‖ + α‖xt – q‖ lim sup
n→∞

‖xn – xt‖

+ lim sup
n→∞

〈
f (xt) – xt , j(xn – xt)

〉
.

Noticing that j is norm-to-normuniformly continuous on a bounded subset ofC, it follows
from (.) and limt→ xt = q that

lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉
= lim sup

t→
lim sup
n→∞

〈
f (q) – q, j(xn – q)

〉 ≤ .

Hence (.) holds.
Step . Finally, we show that xn → q as n→ ∞.
From (.), we have

‖xn+ – q‖ = 〈
xn+ – q, j(xn+ – q)

〉
=

〈
an

(
f (xn) – q

)
+ bn(xn – q) + ( – an – bn)(Stn – q), j(xn+ – q)

〉
= an

〈
f (xn) – f (q), j(xn+ – q)

〉
+ bn

〈
xn – q, j(xn+ – q)

〉
+ ( – an – bn)

〈
Stn – q, j(xn+ – q)

〉
+ an

〈
f (q) – q, j(xn+ – q)

〉
≤ anα‖xn – q‖‖xn+ – q‖ + bn‖xn – q‖‖xn+ – q‖

+ ( – an – bn)‖Stn – q‖‖xn+ – q‖ + an
〈
f (q) – q, j(xn+ – q)

〉
≤ anα‖xn – q‖‖xn+ – q‖ + bn‖xn – q‖‖xn+ – q‖

+ ( – an – bn)‖xn – q‖‖xn+ – q‖ + an
〈
f (q) – q, j(xn+ – q)

〉
=

(
 – an( – α)

)‖xn – q‖‖xn+ – q‖ + an
〈
f (q) – q, j(xn+ – q)

〉

≤  – an( – α)


(‖xn – q‖ + ‖xn+ – q‖) + an
〈
f (q) – q, j(xn+ – q)

〉

≤  – an( – α)


‖xn – q‖ + 

‖xn+ – q‖ + an

〈
f (q) – q, j(xn+ – q)

〉
,

which implies

‖xn+ – q‖ ≤ (
 – an( – α)

)‖xn – q‖ + an( – α)
〈f (q) – q, j(xn+ – q)〉

 – α
.

It follows from Lemma ., (.) and condition (C) that {xn} converges strongly to q.
This completes the proof. �

Example . Let X = R and C = [, ]. Define the mappings S, f : C → C and A,A,A :
C → X as follows:

S(x) =
x

, f (x) =

x

+ , A(x) = x, A(x) = x and A(x) = x.
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Then it is obvious that S is nonexpansive, f is contractive with a constant α = 
 ,

A is relaxed (  , )-cocoercive and -Lipschitzian, A is relaxed (  , )-cocoercive and
-Lipschitzian and A is relaxed (  , )-cocoercive and -Lipschitzian. In this case, we
have � = F(S) ∩ F(G) = {}. In the terms of Theorem ., we choose the parameters λ,
λ, λ. Then the sequence {xn} generated by (.) converges to q =  ∈ �, which solves the
following variational inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀p ∈ �.

Let A =  in Theorem ., we obtain the following result.

Corollary . Let X be a uniformly convex and -uniformly smooth Banach space with
the -uniformly smooth constant K , let C be a nonempty closed convex subset of X and QC

a sunny nonexpansive retraction from X onto C. Let the mappings Ai : C → X be relaxed
(ci,di)-cocoercive and Li-Lipschitzian with  < λi <

di–ciLi
KLi

, for all i = , . Let f be a contrac-
tive mapping with the constant α ∈ (, ) and let S : C → C be a nonexpansive mapping
such that F = F(S) ∩ � �= ∅, where � is the set of solutions of problem (.). For a given
x ∈ C, let {xn} and {yn} be the sequences generated by

⎧⎨
⎩
yn =QC(xn – λAxn),

xn+ = anf (xn) + bnxn + ( – an – bn)SQC(yn – λAyn), n ≥ ,

where {an} and {bn} are two sequences in (, ) such that
(C) limn→∞ an =  and

∑∞
n= an = ∞;

(C)  < lim infn→∞ bn ≤ lim supn→∞ bn < .
Then {xn} converges strongly to q ∈ F , which solves the following variational inequality:

〈
q – f (q), j(q – p)

〉 ≤ , ∀f ∈ �C ,p ∈ F .

Remark . (i) Since Lp for all p≥  is uniformly convex and -uniformly smooth, we see
that Theorem . is applicable to Lp for all p≥ .
(ii) The problem of finding solutions for a finite number of variational inequalities can

use the same idea of a new general system of variational inequalities in Banach spaces.
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