Imnang Journal of Inequalities and Applications 2013, 2013:249 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2013/1/249 a SpringerOpen Journal

RESEARCH Open Access

Viscosity iterative method for a new general
system of variational inequalities in Banach

spaces

Suwicha Imnang’

“Correspondence:
suwicha.n@hotmail.com
Department of Mathematics and
Statistics, Faculty of Science, Thaksin
University, Phatthalung Campus,
Phatthalung, 93110, Thailand
Centre of Excellence in
Mathematics, CHE, Si Ayutthaya
Road, Bangkok, 10400, Thailand

@ Springer

Abstract

In this paper, we study a new iterative method for finding a common element of the
set of solutions of a new general system of variational inequalities for two different
relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in real 2-uniformly smooth and uniformly convex Banach spaces. We prove the strong
convergence of the proposed iterative method without the condition of weakly
sequentially continuous duality mapping. Our result improves and extends the
corresponding results announced by many others.
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1 Introduction

Let X be a real Banach space and X* be its dual space. Let C be a subset of X and let T
be a self-mapping of C. We use F(T) to denote the set of fixed points of T. The duality
mapping / : X — 2X" is defined by J(x) = {x* € X*|(x,x*) = ||lx||%, [|*]| = x]|}, ¥x € X. If X
is a Hilbert space, then J = I, where [ is the identity mapping. It is well-known that if X is
smooth, then ] is single-valued, which is denoted by .

Recall that a mapping f : C — C is a contraction on C, if there exists a constant & € (0,1)
such that |f(x) — W) < aflx -y, Vx,y € C. We use Il¢ to denote the collection of all
contractions on C. This is I1¢ = {f|f : C — C a contraction}. A mapping T : C — C is said
to be nonexpansive if | T(x) — T(y)|| < |lx — y|l, Vx,y € C. Let A : C — X be a nonlinear
mapping. Then A is called

(i) L-Lipschitz continuous (or Lipschitzian) if there exists a constant L > 0 such that

Ax - Ayll < Lllx-yll, Vx,yeC;

(ii) accretive if there exists j(x — y) € J(x — y) such that
(Ax — Ay, j(x —y)) >0, VxyeC;

(iii) «-inverse strongly accretive if there exist j(x — y) € J(x — y) and @ > 0 such that
(Ax - Ay,j(x - y)) > allAx - Ay|*>, VYx,y€C;
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(iv) relaxed (c,d)-cocoercive if there exist j(x — y) € J(x — y) and two constants ¢,d > 0
such that

(Ax - Ay, j(x - y)) = (=0)|Ax - Ay|)* + dlx - y|*, Vx,yeC.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the
classical variational inequality is to find x* € C such that

(Ax*,x-x*)>0, VxeC, (11)

where A : C — H is a nonlinear mapping. Variational inequality theory has emerged as an
important tool in studying a wide class of obstacle, unilateral, free, moving, equilibrium
problems arising in several branches of pure and applied sciences in a unified and gen-
eral framework. The variational inequality problem has been extensively studied in the
literature; see [1-8] and the references cited therein.

In 2006, Aoyama et al. [9] first considered the following generalized variational inequal-
ity problem in Banach spaces. Let A : C — X be an accretive operator. Find a pointx* € C
such that

(Ax*,j(x —x*)) >0, VxeC. 1.2)

Problem (1.2) is very interesting as it is connected with the fixed point problem for a non-
linear mapping and the problem of finding a zero point of an accretive operator in Banach
spaces; see [10—13] and the references cited therein.

In 2010, Yao et al. [14] introduced the following system of general variational inequalities
in Banach spaces. For given two operators A, B: C — X, they considered the problem of
finding (x*,y*) € C x C such that

(Ay* +x* —y*,j(x —x*)) >0, VxeC, 13)
(Bx* +y* =%, j(x—y*)) >0, VxeC, .

which is called the system of general variational inequalities in a real Banach space and
the set of solutions of problem (1.3) denoted by £2;. Yao et al. proved the following strong

convergence theorem.

Theorem YNNLY Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous dual-
ity mapping. Let Qc be the sunny nonexpansive retraction from X onto C. Let the mappings
A,B: C — X be a-inverse-strongly accretive with o > K? and B-inverse-strongly accretive
with B > K2, respectively, with Q, # . For a given x, € C, let the sequence {x,} be generated
iteratively by

Yn = Qc(xy — Bxy),
Xp+l = Oyl + :ann + ynQC(yn _Ayn)r n= 0;

where {a,}, {B,} and {y,} are three sequences in (0,1). Suppose that the sequences {c,}, { B,.}
and {y,} satisfy the following conditions:
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@) an+Bu+yn=1,Yn=>0;
(i) lim,— o0, =0and y oo oy = 00;
(iii) 0 <liminf,_ o B, <limsup,_ . B, <1

Then {x,} converges strongly to Q'u where Q' is the sunny nonexpansive retraction of C
onto 2.

In 2011, Katchang and Kumam [15] introduced the following system of general varia-
tional inequalities in Banach spaces. For given two operators A, B : C — X, they consid-
ered the problem of finding (x*,y*) € C x C such that

(AAY* +x* —y*,j(x —x*)) >0, VxeC(C, 1.4)
(UBx* +y* —x*,j(x —y*)) >0, VxeC, '

which is called the system of general variational inequalities in a real Banach space and
the set of solutions of problem (1.4) denoted by £2,. Katchang and Kumam proved the
following strong convergence theorem.

Theorem KK Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous dual-
ity mapping. Let S : C — C be a nonexpansive mapping and Q¢ be a sunny nonexpansive
retraction from X onto C. Let the mappings A,B: C — X be B-inverse-strongly accretive
with B > AK? and y-inverse-strongly accretive with y > uK?, respectively, and let K be
the 2-uniformly smooth constant of X. Let f be a contraction of C into itself with coefficient
a € [0,1). Suppose that F := Q, N F(S) # (. For a given xy = x € C, let the sequence {x,} be
generated iteratively by

Yn = Qc(xy — uBx,),
Xntl = anf(xn) + Buxn + VVISQC()/H - )\Ayn): n>0,

where {a,}, {B,} and {y,} are three sequences in (0,1). Suppose that the sequences {a,,}, { B}
and {y,} satisfy the following conditions:
(i) ap+PBp+vu=1,Vn=>0;
(ii) limy—oo0t, =0and ) 2 ay = 00;
(iii) 0 <liminf,_. B, <limsup,_, . Bn <1
Then {x,} converges strongly to x = Qpf(x) and (x,y) is a solution of problem (1.4), where
¥y = Qc(x — uBx) and Qr is the sunny nonexpansive retraction of C onto F.

The problem of finding solutions of (1.4) by using iterative methods has been studied by
many others; see [16—19] and the references cited therein.
In this paper, we focus on the problem of finding (x*,y*,z*) € C x C x C such that

(MAY* +x* —y5,jx—x*)) >0, VxeC,
(ApAnZ* + " = 2", j(x —y*)) >0, VxeC, (L5)

(A3Asx™ + 2" —x*,j(x —2*)) >0, VxeC,

which is called a new general system of variational inequalities in Banach spaces, where
A;: C — X are three mappings, A; > 0 for all i = 1,2, 3. In particular, if A3 = 0 and z* = x™,
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then problem (1.5) reduces to problem (1.4). If we add up the requirement that A; = 1 for
i =1,2, then problem (1.5) reduces to problem (1.3).

In this paper, motivated and inspired by the idea of Katchang and Kumam [15] and Yao
et al. [14], we introduce a new iterative method for finding a common element of the set of
solutions of a new general system of variational inequalities in Banach spaces for two dif-
ferent relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in real 2-uniformly smooth and uniformly convex Banach spaces. We prove the strong
convergence of the proposed iterative algorithm without the condition of weakly sequen-
tially continuous duality mapping. Our result improves and extends the corresponding

results announced by many others.

2 Preliminaries
In this section, we recall the well-known results and give some useful lemmas that are used
in the next section.

Let X be a Banach space and let U = {x € X : ||x|| = 1} be a unit sphere of X. X is said
to be uniformly convex if for each € € (0, 2], there exists a constant § > 0 such that for any
x,yel,

lx—y|l > € implies H%Hfl—&

The norm on X is said to be Gdteaux differentiable if the limit

. X+ ty|| — [|x
e e

t—0 t (21)

exists for each x,y € U and in this case X is said to be smooth. X is said to have a uniformly
Frechet differentiable norm if the limit (2.1) is attained uniformly for x,y € U and in this
case X is said to be uniformly smooth. We define a function p : [0, 00) — [0, 00), called the

modulus of smoothness of X, as follows:

1
p(t) = sup{§(||x+y|| +lx—yll) -1:xy e X, Izl =1L [yl = T}.

It is known that X is uniformly smooth if and only if lim,_,¢ p(tr)/t = 0. Let g be a fixed
real number with 1 < ¢ < 2. Then a Banach space X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(tr) < ¢t? for all T > 0. For g > 1, the generalized
duality mapping J, : X — 2% is defined by

Jo@) = {f € X*: (. f) = %l 1 = Ix 77}, VxeX.

In particular, if g = 2, the mapping J; is called the normalized duality mapping (or duality
mapping), and usually we write J, = J. If X is a Hilbert space, then J = I. Further, we have
the following properties of the generalized duality mapping J,.

(1) J4(x) = [|lx]|77%J>(x) for all x € X with x # 0.

(2) J(tx) = t171,(x) for all x € X and ¢ € [0, 00).

(3) Jo(—x) = —J;(x) for all x € X.
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It is known that if X is smooth, then ] is a single-valued function, which is denoted by ;.
Recall that the duality mapping j is said to be weakly sequentially continuous if for each
{x,} C X with x,, — x, we have j(x,,) — j(x) weakly-*. We know that if X admits a weakly
sequentially continuous duality mapping, then X is smooth. For details, see [20].

Lemma 2.1 [21] Let X be a q-uniformly smooth Banach space with1 < g < 2. Then
e+ 117 < %17 + gy, T4 () + 201 Kp117
forall x,y € X, where K is the q-uniformly smooth constant of X.

Lemma 2.2 [22] In a Banach space X, the following inequality holds:
I+ 91> < llxl* + 2(y,j(x +9)),  Vx,yeX,

where j(x +y) € J(x + ¥).

Lemma 2.3 [23] Assume that {a,} is a sequence of nonnegative real numbers such that
anin == Yu)an + 8, n=1,

where {y,} is a sequence in (0,1) and {8,} is a sequence such that
(1) thil VYn = 005
(i) imsup,_, o 8,/yn <0 0r Y 21 |84 < 00.

Then lim,—, o a,, = 0.

Let C be a nonempty closed convex subset of a smooth Banach space X and let D be a
nonempty subset of C. A mapping Q : C — D is said to be sunny if

Q(Qx + t(x — Qw)) = Qx,

whenever Qx + t(x — Qx) € C forx € C and ¢ > 0. A mapping Q : C — D is called a retrac-
tion if Qx = x for all x € D. Furthermore, Q is a sunny nonexpansive retraction from C onto
D if Q is a retraction from C onto D, which is also sunny and nonexpansive. A subset D
of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D.

It is well known that if X is a Hilbert space, then a sunny nonexpansive retraction Qc is

coincident with the metric projection from X onto C.

Lemma 2.4 [24] Let C be a closed convex subset of a smooth Banach space X. Let D be a
nonempty subset of C and Q : C — D be a retraction. Then the following are equivalent:
(a) Q is sunny and nonexpansive.
(b) 1Qx - Qyl*> < {x—7,j(Qx - Qy)), Vx,y € C.
(© (x—Qx,jly—Qx))<0,Vxe C,yeD.

Lemma 2.5 [25] If X is strictly convex and uniformly smooth and if T : C — C is a non-
expansive mapping having a nonempty fixed point set F(T), then the set F(T) is a sunny
nonexpansive retraction of C.
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Lemma 2.6 [26] Let {x,} and {y,} be bounded sequences in a Banach space X and let
{b,} be a sequence in [0,1] with 0 < liminf,_. - b, <limsup,_, ., b, < 1. Suppose that x,,; =
(1= by)yu + bux, for all integers n > 1 and limsup,,_, o (1¥ie1 = Yull = %01 — %4 11) < 0. Then

lim,, oo "yn — x4l = 0.

Lemma 2.7 [27] Let C be a closed convex subset of a strictly convex Banach space X. Let
Ty and T, be two nonexpansive mappings from C into itself with F(T1) N F(T3) # . Define
a mapping S by

Sx=ATix+(1-N)Twx, VxeC,
where A is a constant in (0,1). Then S is nonexpansive and F(S) = F(T1) N F(T3).

Lemma 2.8 [28] Let X be a real smooth and uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,2r] — R such
that g(0) = 0 and g(||x - yll) < IlI|* = 2{x,j(») + > for all x,y € B,.

Lemma 2.9 [23] Let X be a uniformly smooth Banach space, let C be a closed convex subset
of X, let T : C — C be a nonexpansive mapping with F(T) # ) and let f € T¢c. Then the
sequence {x;} defined by x; = tf (x;) + (1 —t) Tx, converges strongly to a point in F(T) ast — 0.
If we define a mapping Q : Il — F(T) by Q(f) := lim_ ¢ x;, Vf € ¢, then Q(f) solves the
following variational inequality:

(T-HQN,j(QN -p)) <0, Vfelc,peF(T).

Lemma 2.10 [17] Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let the mapping A : C — X be relaxed (c,d)-cocoercive and L4-
Lipschitzian. Then we have

| (= 24)% = (1 = 2A4)y|” < 1= I + 2(heL - 2d + K222LY) % -y,

2
d—clLy

where 1. > 0 and K is the 2-uniformly smooth constant of X. In particular, if 0 <A < —75,
A

then I — LA is a nonexpansive mapping.

In order to prove our main result, the next lemma is crucial for proving the main theo-

rem.

Lemma 2.11 Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space X with the 2-uniformly smooth constant K. Let Qc be the sunny nonex-
pansive retraction from X onto C and let A; : C — X be a relaxed (c;,d;)-cocoercive and
L;-Lipschitzian mapping for i =1,2,3. Let G : C — C be a mapping defined by

G(®) = Qc[Qc(Qc(x — A3A3x) — A2A2Qc(x — A3A3x))

- 1A1Qc(Qc(x — A3A3x) — 1245 Qc(x — A3Asx))], VaeC.

Ifo<a; < d}gfﬁz foralli=1,2,3, then G: C — C is nonexpansive.
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Proof Forallx,y € C, by Lemma 2.10, we have

|G@) = GO = [Qc[Qc(Qel = A3A3)x = 1242Qc I - 3A3)x)
- MA1Qc(QcU = A3A3)x — 12A2Qc (I — A3A3)x) ]
- Qc[Qc(Qcll - A3A43)y — 224,Qc(I - A3A3)y)
—1A1Qc(Qc(l = A343)y = 22A2Qc(l — 23A3)y) ] |
< 1Qc(Qc = A3A3)x — 12 A2Qc( — A3A3)x)
- MA1Qc(Qcl — A3A3)x — AaA2Qc (I — A3As3)x)
= [Qc(Qcll = 2343)y — 22A42Qc (I — A3A3)y)
—1A1Qc(Qc(l = A343)y — 22A2Qcl — 23A3)y) ] |
= | (I = MADQcU - 2242)Qc - A3A3)x
— (I = MADQC - 12A2)Qc(l - A3As)y |

= ”x - )’”,
which implies that G is nonexpansive. O

Lemma 2.12 [29] Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let Qc be the sunny nonexpansive retraction from X onto C. Let A; : C — X be
three possibly nonlinear mappings. For given x*,y*,z* € C, (x*,y*,2*) is a solution of prob-
lem (1.5) if and only if x* € F(G), y* = Qc(z* — AyA2z*) and z* = Qc(x* — A3A3x™), where G
is the mapping defined as in Lemma 2.11.

3 Main results
We are now in a position to state and prove our main result.

Theorem 3.1 Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C be a nonempty closed convex subset of X and
Qc be a sunny nonexpansive retraction from X onto C. Let the mappings A;: C — X be
relaxed (c;, d;)-cocoercive and L;-Lipschitzian with 0 < A; < %52‘2 foralli=1,2,3. Let f
be a contractive mapping with the constant o € (0,1) and let S : C — C be a nonexpansive
mapping such that Q = F(S) N F(G) # 0, where G is the mapping defined as in Lemma 2.11.

For a given x, € C, let {x,}, {y,} and {z,} be the sequences generated by

zn = Qc(xy — A3Azx,),
In = Qc(zn — A2A22y), (3.1)
Xn+l = anf(xn) +bux, + (1 —ay — bn)SQC(yn - )\lAlyn)» n>1,

where {a,} and {b,} are two sequences in (0,1) such that
(C1) limyooa,=0andy . a, = o0;
(C2) 0<liminf, b, <limsup,_, . b, <1.
Then {x,} converges strongly to q € 2, which solves the following variational inequality:

([a-f@.jlg-p) <0, Yfelcpe.
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Proof Step 1. We show that {x,} is bounded.
Let x* € Q and t, = Qc(y, — 21A1Yy). It follows from Lemma 2.12 that

x" = Qc[Qc(Qc (¥ — A3A3x™) — 224, Qc (2" — A3A3x"))

- MA1Qc(Qc (" — A3Asx™) — 22A2Qc (" — A3A3x™))].
Put y* = Qc(z* — A2A5z*) and z* = Q¢ (x* — A3A3x™). Then x* = Qc(y* — 11A1y*) and
X1 = Anf () + bpxy + (1 - a, — b,)Sty,.
From Lemma 2.10, we have I — 1;A; (i =1,2,3) is nonexpansive. Therefore

l2n = %] = | Qe = MALYn) = Qe (v* = MAwy*)|| < |yn - 57|
= | Qclezn — 22422,) — Qc(2" — AaAr2")|| < |20 — 2°|

= | Qc(xn — A3A3x,) — Qc(x* — A3Azx™) || < [x, — 2" | (3.2)
and ||St,, — x*|| < ||t — x*||. It follows from (3.2) that

|1 = &* | = || @nf (n) + by + (1= @y — b) Sty — x* |
< £ (o) = 6| + b0 — 2| + (L= — )| 0 — 7
< au||[f () =& | + A = an) || %0 — x|
< ety = || + a|[f(6F) = 2| + (1 - @) — 7

) '] + (1=t - )5, -]
By induction, we have

IIf (x7) — x|
1 _ )

xl—x*”}.

||xn+1 —x* ” < max{

Therefore, {x,} is bounded. Hence {y,,}, {z,}, {£.}, {A1yn}, {A2z,}, (St} {f (x,,)} and {Asx,,}
are also bounded.

Step 2. We show that lim,,_, oo [|%,41 — %] = 0.

By nonexpansiveness of Q¢ and I — };4; (i = 1,2, 3), we have

i1 = tall = | QcWni1 = MAYn1) = Qcn — MAL) |
< Yne1 = yull
= | Qc(zni — 22422n41) — Qc(2n — A2A2z,) |
=< llzns1 = 2ull
= | Qe — A3As%1) — Qclotn — A3Azx,) |

= ||xn+l _xn”' (33)

Page 8 of 18
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Let w, = %, n e N. Then x,,,1 = b,x, + 1 - b,)w, for all n € N and

Xn+2 — bn+1xn+1 Xn+l — bnxn

Wyl — Wi = 1= by - 1-b,
anitf ®ne1) + (L= @pi1 = bpi1)Stun  anf (%) + (1 —a, — b,)St,
) 1= by ) 1-b,
Apsl

=12 p - @) = Stunr) + 77 (Stu = f(en)) + Stuns = St (3.4)

By (3.3), (3.4) and nonexpansiveness of S, we have

H Stn _f(xn) ” .

W1 = wall = %01 — %4l < 1- b Hf(xnﬂ) St ” +
By this together with (C1) and (C2), we obtain that

Limsup ([Wy1 — Wyl = %0 — %[l < 0.
n—0oQ0

Hence, by Lemma 2.6, we get |x,, — w,|| — 0 as n — oo. Consequently,
lim |[[%y41 — %, = lim (1= b,)[lwy, — x4 = 0. (3.5)
n—00 n—00

Step 3. We show that lim,,_, o, [|Sx;, — x| =0
Since

Xp+l —Xp = Ay (f(xn) - xn) + (1 —ay — bn)(Stn _xn);
therefore
||St, —x,|| > 0 asn— oo. (3.6)

Next, we prove that lim,,_, « [|%, — £,|| = 0. From Lemma 2.1 and nonexpansiveness of Qc,
we have

|20 =27 = | Qelon — AsAsx,) — Qc(x* — AsAsx®) ||
< |0 =" = A3 (A3, — Asa®) |
< Jln =% |* = 2x5(A5, — Asa®, (% —2*))
+2K202 | Agx, — Asx®|?
< o =~ 205 (s | s — Asa” | + s o0 =)
+2K%32|| Asx, — Asx*|)?

2\3d
< ||xn —x* “2 + 2)\3C3 HA?,xn —Agx* ||2 - 3 3

2 s, - |
+2K202 | Agx, — Asx®|?

d.
= =2 = 22 (L_g o _mg> | Assy - Ass® | (37)
3

Page9of 18


http://www.journalofinequalitiesandapplications.com/content/2013/1/249

Imnang Journal of Inequalities and Applications 2013, 2013:249
http://www.journalofinequalitiesandapplications.com/content/2013/1/249

and

|yn = y* ”2 = | Qclzn — 22422,) - Qc(2* — A2A12Y) ||2
< |lzn = 2" = 22 (A2zn — Asz") ||2
<|zu-2* ||2 —2X9(Aozy — Arz",j(zu — 2¥))
+ 2202 | sz — AnZ* |
BT P VY L T
+ 26203 [ Anzy — AnZ* |

2hrds
L

< HZ” -z ”2 + 2X9Cy ”Agzn —AzZ>k “2 - ”AzZn —A2Z* ”2

+2K22 || Az, — AsZ" |

d
= HZ”‘ - Z* ”2 - 2)\.2<L—§ —C2 —KZ)\.2> ||A2z,, —AzZ* ”2 (38)
2

Similarly, we have

£ — x* ||2 = | Qclyn — MA1yn) - Qc(¥* = MAYY) ”2
= o=y = (A - Ay") |
< =5 ” = 22{A13n - A1,y - 57)
+ 2602 Ay - Ay
< lyw=9"1” = 20 (=1 | Avy = Ary*||* + i |y - *)
+ 2202 Ay, - Ayt

2hd
< =y I + 2 | Ary Ay [F = =57 [ Awyn — Ay |
1
+ 2002 Ay - A
d
= yw 5" - 214 (L—; — —K%) 4w, - | (3.9)
1

Substituting (3.7) and (3.8) into (3.9), we have

ds

[ta =" < [0 -] - ”3(? o _mg) L
3

— 21 <d—§ -0 - 1<2x2> |Asz, — Anz* |
L2

d
-2 (L—§ - - 1(%) Ay — Ary*||”. (3.10)
1
By the convexity of | - ||?, we obtain
041 — x* ||2 = ||anf %n) + buxy + (1 = @y, — by)Sty — * ||2
<a, Hf(xn) —x* ||2 +b, ||x,, —x* ||2 +(1-a, - b,,)”St,, —x* ||2

<a, Hf(x,,) —x* ”2 +b, ||x,, —x* ||2 +(1-a,-b,) ||t,, —x* H2 (3.11)
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Substituting (3.10) into (3.11), we have
2 2 2
o =27 [” = @ ) = 27" + b - 27
® |2 d3 2 |2
+(1-a,-b,) ||xn —x || —2)3 P —c3—K°\3 ||A3x,, —Asx H
3
d 2
2 (L_; o m) [ A2 — Ao’
2

d
~ 2 (L—; —q —1<2A1) |A1yn — Ary* ||2)
1

= an[f () — 2" + (L= @) Jn -2

— (1 —a,; — bn)2A3 (j—i —C3 — ](2)»3> HAgxn —A3x* ”2
3

~ (L= ay—by)2s (i—j - - 1(%) | A2z, — Aa2*|?
2

2
’

d.
—(1-a,—b,)2h <L—§ —a - K%) | Ay, = Ay
1

which implies

(1—a, — by)223 (% —c3— 1<2x3) | Asx, — Asx*|?
3
d2 2 « |12
+ (1 —a,; — bn)2A2<L—2 —C -K )»2) HAZZ,, —A2Z ”
2

d
+ (1 —-a,; — bn)Z)q <L—; —-C — I(z)\q) ||A1yn —Aly* ||2
1
< a[fGea) =+ e =2 | = v =7
=ay |Lf(xn) -x* ”2 + 1% — x|l (”xn -x* ” + “xnﬂ —-x* ||)
By the conditions (C1), (C2), (3.5) and 0 < A; < % for each i = 1,2, 3, we obtain

lim ”Agx,, —Azx* H =0, lim ”A2z,, —Ayz" ” =0 and
n—0o0 n—0oQ

(3.12)
Jim [[Ary, - Ay = 0.

Let r = sup,,o {Ilxn = x*[I, 120 — 2*II, |y = ¥*|l, |t — x*[|}. By Lemma 2.4(b) and Lemma 2.8,
we obtain

2 — &* ||2 = | Qcyn — MA1yn) — Qc (v* — MAY*) ”2
< (n = MAyn = (v = MAYY), (8 - x¥))
=(yn =" j(tn — %)) = M{Aryn — Ary",j (- 7))
1 * *k * *
< U= 1"+ ltw =21 =gy = = (62 = 2))]

+ (A" = Ay j(tn — 7)),
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which implies

[t =" < Iy =" = gy = 7" = (& ="))
+20(A1y* — A j(ta — x"))
< yn =y I* =y =" = (ta =) )
+ 20 [Awy* = Avyu ||| 0 — 2. (3.13)

And

lyn =% = || Qclen - 22Azz,) — Qc(2* = AaAsz") |
<(zn = 2242z, — (2" = 12A22"),j(yu — "))
= (20— 2% j(yn = ¥")) - A2(A2zn — A2, j (3 — %))
1 * * * *
< Sllen =217+ [y =" - gllan =2 = Gu =) ])]

+ A.z(AZZ* —AzZn;j(yn _y*)>’

which implies

lpn =5 [1” < lzn = 2** ~g(l2n = 2" = (=) )
+ 2k2<A2z* —A22,j(yn —y*))
<z -21" - gz - 2" - (4 -5
+ 240 | A2z = Aoz | |y — ¥ |- (3.14)

Similarly, we have

|20 = 2] = | Qe — A3Asx,) — Qc(x* - AsAsx®) ||
< (wn = AaAsxy — (2 — A3Asx*),j(2, — 2¥))
o e~ ) A~ A e~ 2)
1
< Sl =" + e =2 ~ gl " = (2 = 2) )]

+ A3(Asx* — Asxp, j(20 — 2%))s
which implies

Jan =2 < o= - gl - - (e )
+ 2)\3(A3x* —Aanrj(zn - Z*)>
< %I &l % - (-2 )

+ 20| Asx™ — Asxy | || 20 — 2*. (3.15)
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From (3.11), (3.13), (3.14) and (3.15), we have

s =2 ” < @£ en) = |+ bl 27| + A= = ) | 00 =2
< @ [f ) = || + b0 — 5|
+W=an =) ([~ |" -l -7 - (ta = 2")])
+ 20 |Ary” = Avy| £ - [ ]
< @ |[f ) = || + b0 — 5|
+(W=an=b) |z -2 ~g(lz —2 = (u=5")])
+ 202 A2z — Aoz [y = 5" = ([ =" = (ta = 27) )
+ 20 | A" = Avy |60 - 27]]
< an|[fGon) = 2*|* + byl s - 5]
+ (U=a, = b,)[[xn =" = g0 = 2" = (= 2"))
+ 23] Asx”™ — Asw | |20 = 27| = g ([ 2n — 2" = (3 = ") [)
+ 2] Aoz” = Aoz [y = || ~ & ([lyn = " = (tn = 27) [)
+ 20 Ay = Avya || 60 - 27 ]
= a, |[f ) =& |° + (1= @) | — |
+ (U= ay = by) (20 [ Ary” = Avy | [0 - 27)
+ (L= ay = by) (202 A2z” ~ Aoz [y - y*[)
+ (1= a, — by) (223 | Asx™ — Asx,| |20 — 2*||)
~ (U =an=b)g(|yn =" = (b —2")])
-(-a,-b, g(llzn-Z*-(yn—y*)ll)
( ),

(A =an-b)g(||xn -5 = (24— 2%)
which implies

(U =an=b)g(|yn " = (6 =) [) + A =@y = bug([|2n = 2" = (ru - 57)[))

(L= an = b)g(%n %" = (20 - 2)|)

< a||f (%) - x* H2 + |2 — x* H2 — |1 — x* HZ
+ (L= ay = by) (271 | A1y = Avy | || 80 — ¥
+ (L= ay = by) (222 A2z” — Aoz [ - 7))
b (L - b) (20| A = Agi | |20 - 2°])

< @ |[fGen) = 2| + 11560 = i | (0 =% | + |1 — %)
== B2 A - Al o)
+ (L= ay = by) (222 A2z” — Aoz [ - 7))
b (L - by) (20| A = As | [ 20 - 2'])-
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By the conditions (C1), (C2), (3.5) and (3.12), we obtain

Jim g(|yn-y" = (& =#)[) =0, lim g(lzu-2"= (u=y7)[) =0 and

n—00

lim g(||%, —a* - (2. - 2*)||) = 0.

n—00

It follows from the properties of g that

Jim [y, =y* = (& =#7)[ =0, lim [z, - 2"~ (3 =y")[ =0 and
Jim [, - 5 = (20 - 2°) | = 0.

Therefore

6 = tall = =20 = (" = 2%) [ + 2w =20 = (=" =57

+ |y —ta=(y =5*)| >0 asn— oo (3.16)
By (3.6) and (3.16), we have

5% = xnll < 1152 = Stll + 1St — %l

< |l%y = tull + ISt —x4]l — 0 asn— oo. (3.17)
Define a mapping W: C — C as
Wx=nSx+(1-n)Gx, VxeC,

where 7 is a constant in (0,1). Then it follows from Lemma 2.7 that F(W) = F(G) N F(S)

and W is nonexpansive. From (3.16) and (3.17), we have

%, — Wa|l = ”xn - (ﬂan +(1- n)Gxn) ”
= [ n(n = Sx) + (1= ) (% — Gax,) |
< nllxn = Sxull + (1 =)l — Gyl

= nllxy — Sxull + L= n)llxy — £l > 0 asn — oo. (3.18)
Step 4. We claim that

limsup(f (q) - q,j(x, — q)) < 0, (3.19)

n—0o0

where g = lim;_, ¢ x; with x; being the fixed point of the contraction
x> tf(x) + (1 —£) Wa.
From Lemma 2.9, we have g € F(W) = F(G) N F(S) = 2 and

(d-Haj@-p) =<0, Yfelcpe.
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Since x; = tf (x;) + (1 — £) Wx;, we have

lloe — 2l = | (o) + (1 = £) Wax, — 2,

= || Q-8 (W, —x,) + t(f(xt) —xn) ||

It follows from (3.18) and Lemma 2.2 that

e = all® = || (L= £)(Woxe — ) + £(F () — %) |

< (1= )| Wiy — l|® + 26{f (%) — 2, (3% — %)

< (L= £ (1| Wat, — Watyl| + 1| Wat, — 6,11)°
+ 26{f (%) — %r (%0 — %))

= (1= 0)* (| Wity = Wa ||” + 2] Wat, — Wi ||| Wk — %] + [| Wiy, — %)
+ 2t(f(xt) — X, (e — x,,)) + Zt(xt — Xy (2 — x,,))

< (1= 26+ ) [l — ) * + A= £ (2010 = % [[1| Wt — | + || Wit — ]|?)
+ 2t(f(xt) — X, (e — xy,)) + 2t — x4

= (14 22)lloe = x> + fu(8) + 28(f (x2) — 2, (% — %))y (3.20)

where f,,(£) = (1 — £)2(2]|%; — % || + || Wi, — %, [1) || Wax, — %, ]| — 0 as n — oo. It follows from

(3.20) that
. t (1)
(xt —f (), j (o _xn)) = 5 [t — %1 +f2 (3.21)
t
Let n — oo in (3.21), we obtain that
t
lim sup(xt —f(xe), j(x — xn)> < EM’ (3.22)
n—o0

where M > 0 is a constant such that M > ||x; — x,,||? for all £ € (0,1) and # > 1. Let t — 0
in (3.22), we obtain

lim sup lim sup<xt — fxe), jlxs — xn)> <0. (3.23)

t—0 n—o0

On the other hand, we have

(f@)-ajx.—a)={f(q) - -9)-{f() %))
+ (f(q — %)) - (f(q — %2, j (% — X¢))
+{f (@) = %0, (% — %)) = {f (%) — %0, jo6n — )

+{f (%) = e, jo6n — 25))
= (f((/I) = q,j(n = q) = j(xn _xt)> + (xt —q,j(%n _xt)>
+{f(q) = f(0e), joen — x0)) + (f (%) = %2, j (% — %))
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It follows that

limsuplf (q) - q,j(x, — q)) < limsup(f(q) — q,j(x, — q) — j(x, — %,))

+ [l — gl lim sup [lx, — x| + e[|, — g | lim sup [|xc, — x|
n— 00 n—oo

+ lim sup{f (%) — %4, (% — %))

n—0o00

Noticing that j is norm-to-norm uniformly continuous on a bounded subset of C, it follows

from (3.23) and lim,_, g %; = g that
limsup(f(q) - ,j(x, — q)) = lim sup lim sup{f(q) — q,j(x — q)) < 0.
n—00 t—0 n—00

Hence (3.19) holds.
Step 5. Finally, we show that x,, — g as n — oo.

From (3.2), we have

%41 — Q||2 = <xn+1 ~ @ j(Xns1 — 61))
= {an(f ®n) = q) + bu(xn — @) + (1 = @y — by)(Stu — 9),j(Xn1 — q))
= an(f (%n) = (@)} (ens1 — @)) + buloon — 4, j (i1 — 7))
+ (L= an = b)(Stu — 4,j(%n1 — @) + anlf (@) = 4,/ (%ni1 — 7))
< ana|l%n = gllliXns1 = qll + bullxn — qllllxp1 — 4|l
+ (L= an —b)|ISty — qll %1 — gl + anlf (@) — 4,j(oni1 — )
< anetllxy = glllI%n1 = gll + bullxn = gl 1%541 = gl
+ (L= an = bo)1%n = qll1%ns1 — qll + anlf (@) = @, j(ni1 — )

= (1 —a,(1- Ol)) %2 = gl 1% —qll + ﬂn(f(q) = qj (%1 — 61))

l1-a,1-a) .

= +(||xn - 61||2 + ||xn+l - Q||2) + ﬂn<f(61) - q’](xn+1 - q))
1-a,01-a) 1 .

< + o, —qll* + 5 ln = ql* + aulf (@) — @, j%ns1 — )

which implies

)Z(f (@) — 4,jxni1 — 9)) .

”xn+1_q”2§ (1_ﬂn(1_a))”xn_q”2+ﬂn(1_a -«

It follows from Lemma 2.3, (3.19) and condition (C1) that {x,} converges strongly to q.
This completes the proof. O

Example 3.2 Let X =R and C = [0,1]. Define the mappings S,f : C — C and A;, A3, A3 :
C — X as follows:

S(x) = g, fx)= ;—C +3, Ailx) = x, As(x) =2x and As(x) = 3x.
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1
51
Ay is relaxed (%,1)—Cocoercive and 1-Lipschitzian, A, is relaxed (i,2)-cocoercive and

Then it is obvious that S is nonexpansive, f is contractive with a constant o =

2-Lipschitzian and Aj is relaxed (%,3)—Cocoercive and 3-Lipschitzian. In this case, we
have Q = F(S) N F(G) = {0}. In the terms of Theorem 3.1, we choose the parameters A,
A2, A3. Then the sequence {x,} generated by (3.1) converges to g = 0 € 2, which solves the
following variational inequality:

(¢-/@.ja-p)=<0, Vpeq.
Let A3 = 0 in Theorem 3.1, we obtain the following result.

Corollary 3.3 Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C be a nonempty closed convex subset of X and Q¢
a sunny nonexpansive retraction from X onto C. Let the mappings A; : C — X be relaxed
d;;é’z Joralli=1,2. Let f be a contrac-
tive mapping with the constant o € (0,1) and let S : C — C be a nonexpansive mapping
such that F = F(S) N Qy # ), where Q2 is the set of solutions of problem (1.4). For a given

x1 € C, let {x,} and {y,} be the sequences generated by

(¢, d;)-cocoercive and L;-Lipschitzian with 0 < A; <

Yn = Qc(xn — AaAaxy),
Xn+l = ar(f(xn) + bnxn + (1 —ay — bn)SQC(yn - )\lAlyn); n= 1;

where {a,} and {b,} are two sequences in (0,1) such that
(C1) limyooa,=0andy - a, = oc;
(C2) 0<liminf,, b, <limsup,_, . b, <1.
Then {x,} converges strongly to q € F, which solves the following variational inequality:

(a-f@,jlq-p) <0, VfeMcpeF.

Remark 3.4 (i) Since L? for all p > 2 is uniformly convex and 2-uniformly smooth, we see
that Theorem 3.1 is applicable to L? for all p > 2.

(ii) The problem of finding solutions for a finite number of variational inequalities can
use the same idea of a new general system of variational inequalities in Banach spaces.
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