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Abstract
In this article, based on Marino and Xu’s method, an iterative method which
combines the regularized gradient-projection algorithm (RGPA) and the averaged
mappings approach is proposed for finding a common solution of equilibrium and
constrained convex minimization problems. Under suitable conditions, it is proved
that the sequences generated by implicit and explicit schemes converge strongly.
The results of this paper extend and improve some existing results.
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1 Introduction
LetH be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let C
be a nonempty, closed and convex subset of H . We need some nonlinear operators which
are introduced below.
Let T ,A :H →H be nonlinear operators.
• T is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈H .
• T is Lipschitz continuous if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖ for all x, y ∈ H .
• A is a strongly positive bounded linear operator if there exists a constant γ̄ such that

〈Ax,x〉 ≥ γ̄ ‖x‖ for all x ∈H .
• A :H →H is monotone if 〈x – y,Ax –Ay〉 ≥  for all x, y ∈H .
• Given is a number η > , A :H →H is η-strongly monotone if

〈x – y,Ax –Ay〉 ≥ η‖x – y‖ for all x, y ∈H .
• Given is a number υ > . A :H →H is υ-inverse strongly monotone (υ-ism) if

〈x – y,Ax –Ay〉 ≥ υ‖Ax –Ay‖ for all x, y ∈ H .
It is known that inverse strongly monotone operators have been studied widely (see

[–]) and applied to solve practical problems in various fields; for instance, in traffic
assignment problems (see [, ]).

• T is firmly nonexpansive if and only if T – I is nonexpansive or, equivalently,
〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖ for all x, y ∈H .
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• T :H →H is said to be an averaged mapping if T = ( – α)I + αS, where α is a number
in (, ) and S :H →H is nonexpansive. In particular, projections are (/)-averaged
mappings.
Averaged mappings have received many investigations, see ([–]).

Let φ be a bifunction ofC×C intoR, whereR is the set of real numbers. The equilibrium
problem for φ : C ×C →R is to find x ∈ C such that

φ(x, y) ≥  for all y ∈ C. (.)

The set of solutions of (.) is denoted by EP(φ). Given a mapping T : C →H , let φ(x, y) =
〈Tx, y – x〉 for all x, y ∈ C. Then z ∈ EP(φ) if and only if 〈Tz, y – z〉 ≥  for all y ∈ C, i.e.,
z is a solution of the variational inequality. Numerous problems in physics, optimization
and economics reduce to finding a solution of (.). Somemethods have been proposed to
solve the equilibrium problem; see, for instance, [–].
In ,Moudafi [] introduced the viscosity approximationmethod for nonexpansive

mappings. Let h be a contraction on H , starting with an arbitrary initial x ∈ H , define a
sequence {xn} recursively by

xn+ = αnh(xn) + ( – αn)Txn, n≥ , (.)

where {αn} is a sequence in (, ). Xu [] proved that under certain conditions on {αn},
the sequence {xn} generated by (.) converges strongly to the unique solution x∗ ∈ F(T)
of the variational inequality

〈
(I – h)x∗,x – x∗〉 ≥  ∀x ∈ F(T).

We use F(T) to denote the set of fixed points of the mapping T ; that is, F(T) = {x ∈H : x =
Tx}.
In , Marino and Xu [] introduced a general iterative method for nonexpansive

mappings. Let h be a contraction on H with a coefficient ρ ∈ (, ), and let A be a strongly
positive bounded linear operator on H with a constant γ̄ > . Starting with an arbitrary
initial guess x ∈H , define a sequence {xn} recursively by

xn+ = αnγh(xn) + (I – αnA)Txn, n≥ , (.)

where {αn} is a sequence in (, ), and  < γ < γ̄ /ρ is a constant. It is proved that the se-
quence {xn} converges strongly to the unique solution x∗ ∈ F(T) of the variational inequal-
ity

〈
(γh –A)x∗,x – x∗〉 ≤  ∀x ∈ F(T).

For finding the common solution of EP(φ) and a fixed point problem, Takahashi and
Takahashi [] introduced the following iterative scheme by the viscosity approximation
method in a Hilbert space: x ∈H and

⎧⎨
⎩

φ(un, y) + 
rn 〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αnh(xn) + ( – αn)Sun
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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for all n ∈ N, where {αn} ⊂ (, ) and {rn} ⊂ (,∞) satisfy some appropriate condi-
tions. Further, they proved {xn} and {un} converge strongly to z ∈ F(S) ∩ EP(φ), where
z = PF(S)∩EP(φ)h(z).
On the other hand, let f : C → R be a convex function, and consider the following min-

imization problem:

min
x∈C f (x). (.)

Assume that the constrained convex minimization problem (.) is solvable, and letU de-
note the set of solutions of (.). Then the gradient-projection algorithm (GPA) generates
a sequence {xn}∞n= according to the recursive formula

xn+ = ProjC(I – γn∇f )xn,

where the parameters γn are real positive numbers, and ProjC is themetric projection from
H onto C. It is known that the convergence of the sequence {xn}∞n= depends on the behav-
ior of the gradient∇f . If the gradient∇f is only assumed to be inverse strongly monotone,
then {xn}∞n= can only be convergent weakly to a minimizer of (.). If the gradient ∇f is
Lipschitz continuous and stronglymonotone, then the sequence {xn}∞n= can be convergent
strongly to a minimizer of (.) provided the parameters γn satisfy appropriate conditions.
As everyone knows, Xu [] gave an averaged mapping approach to the gradient-

projection method, and he constructed a counterexample which shows that the sequence
generated by the gradient-projection method does not converge strongly in the infinite-
dimensional space. Moreover, he presented two modifications of the gradient-projection
method which are shown to have strong convergence.
In , motivated by Xu, Ceng [] proposed the following iterative algorithm:

xn+ = ProjC
[
snγVxn + (I – snμF)Tnxn

]
, n≥ , (.)

where V : C → H is an l-Lipschitzian mapping with a constant l > , and F : C → H is
a k-Lipschitzian and η-strongly monotone operator with constants k,η > . Let  < μ <
η/k,  ≤ γ l < τ , and τ =  –

√
 –μ(η –μk). Let Tn and sn satisfy sn = –λnL

 , ProjC(I –
λn∇f ) = snI + ( – sn)Tn. Under suitable conditions, it is proved that the sequence {xn}∞n=
generated by (.) converges strongly to a minimizer x∗ of (.).
In , Tian and Liu [] introduced the following iterative method in a Hilbert space:

x ∈ C and

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αnγVun + (I – αnA)Tnun ∀n ∈N,
(.)

where un =Qβnxn, ProjC(I–λn∇f ) = snI+(–sn)Tn, sn = –λnL
 and {λn} ⊂ (, /L), and {αn},

{βn}, {sn} satisfy appropriate conditions. Further, they proved the sequence {xn} converges
strongly to a point q ∈U ∩ EP(φ), which solves the variational inequality

〈
(A – γV )q,q – z

〉 ≤ , z ∈U ∩ EP(φ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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It is the first time that the equilibrium and constrained convex minimization problems
have been solved.
Since, in general, the minimization problem (.) has more than one solution, so regu-

larization is needed. Now we consider the following regularized minimization problem:

min
x∈C fα(x) := f (x) +

α


‖x‖,

where α >  is the regularization parameter, f is a convex function with a /L-ism continu-
ous gradient ∇f . Then the regularized GPA generates a sequence {xn}∞n= by the following
recursive formula:

xn+ = ProjC(I – γ∇fαn )xn = ProjC
[
xn – γ (∇f + αnI)(xn)

]
, (.)

where the parameter αn > , γ is a constant with  < γ < /L, and ProjC is the metric
projection from H onto C. We all know that the sequence {xn}∞n= generated by algorithm
(.) converges weakly to a minimizer of (.) in the setting of infinite-dimensional spaces
(see []).
In this paper, motivated and inspired by the above results, we introduce a new iterative

method: x ∈ H and

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αnrVun + (I – αnA)Tλnun ∀n ∈N,
(.)

for finding a element of U ∩EP(φ), where un =Qβnxn, ProjC(I – γ∇fλn ) = θnI + ( – θn)Tλn ,
θn = –γ (L+λn)

 , γ ∈ (, /L). Under appropriate conditions, it is proved that the sequence
{xn} generated by (.) converges strongly to a point z ∈U ∩EP(φ), which solves the vari-
ational inequality

〈
(A – rV )z, z – x

〉 ≤ , x ∈U ∩ EP(φ).

2 Preliminaries
In this section we introduce some useful properties and lemmas which will be used in the
proofs for the main results in the next section.
Some properties of averaged mappings are gathered in the proposition below.

Proposition . [, ] Let the operators S,T ,V :H →H be given:
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) The composition of finitely many averaged mappings is averaged. That is, if each of

the mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if
T is α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite
TT is α-averaged, where α = α + α – αα.

(iii) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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Here the notation Fix(T) denotes the set of fixed points of the mapping T ; that is,
Fix(T) := {x ∈H : Tx = x}.

The following proposition gathers some results on the relationship between averaged
mappings and inverse strongly monotone operators.

Proposition . [, ] Let T :H →H be given.We have:
(i) T is nonexpansive if and only if the complement I – T is (/)-ism;
(ii) If T is υ-ism, then for γ > , γT is (υ/γ )-ism;
(iii) T is averaged if and only if the complement I – T is υ-ism for some υ > /; indeed,

for α ∈ (, ), T is α-averaged if and only if I – T is (/α)-ism.

Lemma . [] Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n≥ ,

where {γn}∞n= and {βn}∞n= are sequences in (, ) and {δn}∞n= is a sequence in R such that
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞ δn ≤  or
∑∞

n= γn|δn| < ∞;
(iii)

∑∞
n= βn < ∞.

Then limn→∞ an = .

The so-called demiclosed principle for nonexpansive mappings will often be used.

Lemma . (Demiclosed principle []) Let C be a closed and convex subset of a Hilbert
space H and let T : C → C be a nonexpansive mapping with Fix(T) �= ∅. If {xn}∞n= is a
sequence in C weakly converging to x and if {(I – T)xn}∞n= converges strongly to y, then
(I – T)x = y. In particular, if y = , then x ∈ Fix(T).

Lemma . [] Let H be a Hilbert space, let C be a closed and convex subset of H , let
V : C → H be a Lipschitzian operator with a coefficient l > , and let A : C → H be a
strongly positive bounded linear operator with a coefficient γ̄ > . Then, for  < r < γ̄ /l,

〈
x – y, (A – rV )x – (A – rV )y

〉
≥ (γ̄ – rl)‖x – y‖ ∀x, y ∈ C.

That is, A – rV is strongly monotone with a coefficient γ̄ – rl.

Recall themetric (nearest point) projection ProjC from a real Hilbert spaceH to a closed
and convex subset C of H is defined as follows: given x ∈H , ProjC x is the unique point in
C with the property

‖x – ProjC x‖ = inf
{‖x – y‖ : y ∈ C

}
.

ProjC is characterized as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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Lemma . Let C be a closed and convex subset of a real Hilbert space H . Given x ∈ H
and y ∈ C. Then y = ProjC x if and only if the following inequality holds:

〈x – y, y – z〉 ≥  ∀z ∈ C.

Lemma . [] Assume that A is a strongly positive bounded linear operator on a Hilbert
space H with a coefficient γ̄ >  and  < t ≤ ‖A‖–. Then ‖I – tA‖ ≤  – tγ̄ .

For solving the equilibrium problem for a bifunction φ : C ×C →R, let us assume that
φ satisfies the following conditions:
(A) φ(x,x) =  for all x ∈ C;
(A) φ is monotone, i.e., φ(x, y) + φ(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ φ(tz + ( – t)x, y)≤ φ(x, y);
(A) for each x ∈ C, y �→ φ(x, y) is convex and lower semicontinuous.

Lemma . [] Let C be a nonempty, closed and convex subset of H and let φ be a bi-
function of C ×C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C
such that

φ(z, y) +

r
〈y – z, z – x〉 ≥  for all y ∈ C.

Lemma . [] Assume that φ : C × C → R satisfies (A)-(A). For r >  and x ∈ H ,
define a mapping Qr :H → C as follows:

Qr(x) =
{
z ∈ C : φ(z, y) +


r
〈y – z, z – x〉 ≥  ∀y ∈ C

}
.

Then the following hold:
() Qr is single-valued;
() Qr is firmly nonexpansive, i.e., ‖Qrx –Qry‖ ≤ 〈Qrx –Qry,x – y〉 for any x, y ∈H ;
() F(Qr) = EP(φ);
() EP(φ) is closed and convex.

We adopt the following notation:
• xn → xmeans that xn → x strongly;
• xn ⇀ xmeans that xn → x weakly.

3 Main results
Recall that throughout this paperwe always denoteU as the solution set of the constrained
convex minimization problem (.), and denote EP(φ) as the solution set of the equilib-
rium problem (.).
Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Let

V : C → H be Lipschitzian with a constant l > , and A : C → H be a strongly positive
bounded linear operator with a coefficient γ̄ > , and  < r < γ̄ /l. Suppose that ∇f is
/L-ism continuous. Let Qβn be a mapping defined as in Lemma .. We now consider
the following mapping Sn on H defined by

Sn(x) = αnrVQβn (x) + (I – αnA)TλnQβn (x) ∀x ∈H ,n ∈N,

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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where ProjC(I – γ∇fλn ) = θnI + ( – θn)Tλn , θn =
–γ (L+λn)

 , and γ ∈ (, /L), {αn} ⊂ (, ). It
is easy to see that Sn is a contraction. Indeed, by Lemma . and Lemma ., we have for
each x, y ∈H

‖Snx – Sny‖
=

∥∥(αnrVQβnx – αnrVQβny) + (I – αnA)TλnQβnx – (I – αnA)TλnQβny
∥∥

≤ αnrl‖x – y‖ + ( – αnγ̄ )‖x – y‖
=

(
 – αn(γ̄ – rl)

)‖x – y‖.

Since  <  – αn(γ̄ – rl) < , it follows that Sn is a contraction. Therefore, by the Banach
contraction principle, Sn has a unique fixed point xn ∈H such that

xn = αnrVQβn (xn) + (I – αnA)TλnQβn (xn).

Note that xn indeed depends on V as well, but we will suppress this dependence of xn on
V for simplicity of notation throughout the rest of this paper.
The following theorem summarizes the properties of the sequence {xn}.

Theorem . Let C be a nonempty, closed and convex subset of a Hilbert space H . Let φ

be a bifunction from C × C → R satisfying (A)-(A), and let f : C → R be a real-valued
convex function, and assume that the gradient∇f is /L-ism with a constant L > .Assume
that U ∩EP(φ) �= ∅. Let V : C →H be Lipschitzian with a constant l > , and let A : C →H
be a strongly positive bounded linear operator with a coefficient γ̄ > , and  < r < γ̄ /l. Let
the sequences {un} and {xn} be generated by

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn = αnrVun + (I – αnA)Tλnun ∀n ∈N,
(.)

where un = Qβnxn, ProjC(I – γ∇fλn ) = θnI + ( – θn)Tλn , θn =
–γ (L+λn)

 and γ ∈ (, /L). Let
{βn}, {αn} and {λn} satisfy the following conditions:

(i) {βn} ⊂ (,∞), lim infn→∞ βn > ;
(ii) {αn} ⊂ (, ), limn→∞ αn = ;
(iii) {λn} ⊂ (, /γ – L), λn = o(αn).

Then the sequence {xn} converges strongly to a point z ∈ U ∩ EP(φ), which solves the vari-
ational inequality

〈
(A – rV )z, z – x

〉 ≤ , x ∈U ∩ EP(φ). (.)

Equivalently, we have z = PU∩EP(φ)(I –A + rV )(z).

Proof It is well known that x̂ ∈ C solves the minimization problem (.) if and only if for
each fixed  < γ < /L, x̂ solves the fixed-point equation

x̂ = ProjC(I – γ∇f )x̂ =
 – γL


x̂ +

 + γL


Tx̂.

It is clear that x̂ = Tx̂, i.e., x̂ ∈U = Fix(T).

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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First, we assume that αn ∈ (,‖A‖–). By Lemma ., we obtain ‖I –αnA‖ ≤  –αnγ̄ . Let
p ∈ U ∩ EP(φ), then from un =Qβnxn, we have

‖un – p‖ = ‖Qβnxn –Qβnp‖ ≤ ‖xn – p‖ (.)

for all n ∈N. Thus, we have from (.)

‖xn – p‖
=

∥∥αnrVun + (I – αnA)Tλnun – p
∥∥

≤ ∥∥αnrVun – αnA(p)
∥∥ + ‖I – αnA‖ · ‖Tλnun – p‖

≤ ∥∥αnrVun – αnrV (p)
∥∥ +

∥∥αnrV (p) – αnA(p)
∥∥

+ ( – αnγ̄ )
∥∥Tλnun – Tλn (p) + Tλn (p) – Tp

∥∥
≤ αnrl‖un – p‖ + αn

∥∥rV (p) –A(p)
∥∥

+ ( – αnγ̄ )‖un – p‖ + ( – αnγ̄ )
∥∥Tλn (p) – Tp

∥∥
≤ (

 – αn(γ̄ – rl)
)‖xn – p‖ + αn

∥∥rV (p) –A(p)
∥∥ + ( – αnγ̄ )

∥∥Tλn (p) – Tp
∥∥.

It follows that

‖xn – p‖ ≤ 
γ̄ – rl

∥∥rV (p) –A(p)
∥∥ +

 – αnγ̄

αn(γ̄ – rl)
∥∥Tλn (p) – Tp

∥∥. (.)

For x ∈ C, note that

ProjC(I – γ∇fλn )x = θnx + ( – θn)Tλnx

and

ProjC(I – γ∇f )x = θx + ( – θ )Tx,

where θn = –γ (L+λn)
 and θ = –γL

 .
Then we get

∥∥(θn – θ )x + Tλnx – Tx + θTx – θnTλnx
∥∥ =

∥∥ProjC(I – γ∇fλn )x – ProjC(I – γ∇f )x
∥∥

≤ γ λn‖x‖.

Since θn = –γ (L+λn)
 and θ = –γL

 , there existsM(x) >  such that

‖Tλnx – Tx‖ ≤ λnγ (‖x‖ + ‖Tx‖)
 + γ (L + λn)

≤ λnM(x), (.)

whereM(x) = γ (‖x‖ + ‖Tx‖).
It follows from (.) and (.) that

‖xn – p‖ ≤ 
γ̄ – rl

∥∥rV (p) –A(p)
∥∥ +

M(p)
γ̄ – rl

· λn

αn
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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Since λn = o(αn), there exists a real numberM′ >  such that λn
αn

≤ M′, and

‖xn – p‖

≤ 
γ̄ – rl

∥∥rV (p) –A(p)
∥∥ +

M′M(p)
γ̄ – rl

=
‖rV (p) –A(p)‖ +M′M(p)

γ̄ – rl
.

Hence {xn} is bounded and we also obtain that {un} is bounded.
Next, we show that ‖xn – un‖ → .
Indeed, for any p ∈ U ∩ EP(φ), by Lemma ., we have

‖un – p‖

= ‖Qβnxn –Qβnp‖

≤ 〈xn – p,un – p〉

=


(‖xn – p‖ + ‖un – p‖ – ‖un – xn‖

)
.

This implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

Then from (.), we derive that

‖xn – p‖

=
∥∥αnrVun + (I – αnA)Tλnun – p

∥∥

=
∥∥(I – αnA)(Tλnun – p) + αnrVun – αnA(p)

∥∥

≤ ∥∥(I – αnA)(Tλnun – p)
∥∥

+ 
∥∥(I – αnA)(Tλnun – p)

∥∥ · ∥∥αnrVun – αnA(p)
∥∥ +

∥∥αnrVun – αnA(p)
∥∥

≤ ( – αnγ̄ )
∥∥Tλnun – Tλnp + Tλnp – Tp

∥∥

+ ( – αnγ̄ )‖Tλnun – p‖∥∥αnrVun – αnA(p)
∥∥ + α

n
∥∥rVun –A(p)

∥∥

≤ ( – αnγ̄ )
(‖un – p‖ + ‖Tλnp – Tp‖)

+ ( – αnγ̄ )
(‖un – p‖ + ‖Tλnp – Tp‖) · (αnrl‖un – p‖ + αn

∥∥rV (p) –A(p)
∥∥)

+ α
n
∥∥rVun –A(p)

∥∥

≤ (
( – αnγ̄ ) + ( – αnγ̄ )αnrl

)‖un – p‖

+ ( – αnγ̄ )λ
n · (M(p)) + ( – αnγ̄ )‖un – p‖λnM(p)

+ ( – αnγ̄ )‖un – p‖αn
∥∥rV (p) –A(p)

∥∥ + ( – αnγ̄ )λnM(p)αnrl‖un – p‖
+ ( – αnγ̄ )λnM(p)αn

∥∥rV (p) –A(p)
∥∥ + α

n
(
rl‖un – p‖ + ∥∥rV (p) –A(p)

∥∥).

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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It follows from (.) that

(
( – αnγ̄ ) + ( – αnγ̄ )αnrl

)‖un – xn‖

≤ (
( – αnγ̄ ) + ( – αnγ̄ )αnrl – 

)‖xn – p‖

+ λ
n · (M(p)) + ‖un – p‖(λnM(p) + αn

∥∥rV (p) –A(p)
∥∥)

+ αnλnM(p)
(
rl‖un – p‖ + ∥∥rV (p) –A(p)

∥∥)
+ α

n
(
rl‖un – p‖ + ∥∥rV (p) –A(p)

∥∥).
Since both {xn} and {un} are bounded and αn → , λn → , it follows that ‖un – xn‖ → .
We claim that ‖xn – Tλnxn‖ → . Indeed,

‖xn – Tλnxn‖
= ‖xn – Tλnun + Tλnun – Tλnxn‖
≤ ‖xn – Tλnun‖ + ‖Tλnun – Tλnxn‖
≤ αn‖rVun –ATλnun‖ + ‖un – xn‖.

Since αn →  and ‖un – xn‖ → , we obtain that

‖xn – Tλnxn‖ → .

Thus,

‖un – Tλnun‖
= ‖un – xn + xn – Tλnxn + Tλnxn – Tλnun‖
≤ ‖un – xn‖ + ‖xn – Tλnxn‖ + ‖Tλnxn – Tλnun‖
≤ ‖un – xn‖ + ‖xn – Tλnxn‖ + ‖xn – un‖

and

‖xn – Tλnun‖ ≤ ‖un – xn‖ + ‖Tλnun – un‖,

we have ‖un – Tλnun‖ →  and ‖xn – Tλnun‖ → .
Since {un} is bounded, without loss of generality, we can assume that uni ⇀ z. Next, we

show that z ∈U ∩ EP(φ).
By (.), we have

‖un – Tun‖
≤ ‖un – Tλnun‖ + ‖Tλnun – Tun‖
≤ ‖un – Tλnun‖ + λnM(un) → .

So, by Lemma ., we get z ∈ Fix(T) =U .
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Next, we show that z ∈ EP(φ). Since un =Qβnxn, for any y ∈ C, we obtain

φ(un, y) +

βn

〈y – un,un – xn〉 ≥ .

From (A), we have


βn

〈y – un,un – xn〉 ≥ φ(y,un)

and hence
〈
y – uni ,

uni – xni
βni

〉
≥ φ(y,uni ).

Since uni–xni
βni

→  and uni ⇀ z, it follows from (A) that φ(y, z) ≤  for any y ∈ C.
Let zt = ty + ( – t)z, ∀t ∈ (, ], y ∈ C, then we have zt ∈ C and hence φ(zt , z) ≤ .
Thus, from (A) and (A), we have

 = φ(zt , zt)

≤ tφ(zt , y) + ( – t)φ(zt , z)

≤ tφ(zt , y)

and hence φ(zt , y) ≥ . From (A), we have φ(z, y) ≥  for any y ∈ C, hence z ∈ EP(φ).
Therefore, z ∈U ∩ EP(φ).
On the other hand, we note that

xn – z = αnrVun + (I – αnA)Tλnun – z

= (I – αnA)(Tλnun – z) + αnrVun – αnA(z)

= (I – αnA)(Tλnun – z) + αnr(Vun –Vz) + αn
(
rV (z) –A(z)

)
.

Hence, we obtain from (.) and (.) that

‖xn – z‖ =
〈
(I – αnA)(Tλnun – z),xn – z

〉
+ αnr〈Vun –Vz,xn – z〉 + αn

〈
rV (z) –A(z),xn – z

〉
≤ ( – αnγ̄ )‖Tλnun – z‖‖xn – z‖ + αnrl‖un – z‖‖xn – z‖

+ αn
〈
rV (z) –A(z),xn – z

〉
≤ ( – αnγ̄ )

(‖Tλnun – Tλnz‖ + ‖Tλnz – Tz‖)‖xn – z‖
+ αnrl‖un – z‖‖xn – z‖ + αn

〈
rV (z) –A(z),xn – z

〉
≤ ( – αnγ̄ )‖xn – z‖ + ( – αnγ̄ )‖Tλnz – Tz‖‖xn – z‖

+ αnrl‖xn – z‖ + αn
〈
rV (z) –A(z),xn – z

〉
≤ (

 – αn(γ̄ – rl)
)‖xn – z‖

+ ( – αnγ̄ )λnM(z)‖xn – z‖ + αn
〈
rV (z) –A(z),xn – z

〉
.
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It follows that

‖xn – z‖ ≤ 
γ̄ – rl

λn

αn
M(z)‖xn – z‖ + 

γ̄ – rl
〈
rV (z) –A(z),xn – z

〉
.

In particular,

‖xni – z‖ ≤ 
γ̄ – rl

λni
αni

M(z)‖xni – z‖ + 
γ̄ – rl

〈
rV (z) –A(z),xni – z

〉
. (.)

Since xni ⇀ z and λn = o(αn), it follows from (.) that xni → z as i→ ∞.
Next, we show that z solves the variational inequality (.). Observe that xn = αnrVun +

(I – αnA)Tλnun.
Hence, we conclude that

(A – rV )xn = –

αn

(I – αnA)(I – TλnQβn )xn + r(Vun –Vxn).

Since TλnQβn is nonexpansive, we have I – TλnQβn is monotone. Note that for any given
x ∈U ∩ EP(φ),

〈
(A – rV )xn,xn – x

〉

= –

αn

〈
(I – αnA)(I – TλnQβn )xn,xn – x

〉
+ r〈Vun –Vxn,xn – x〉

= –

αn

〈
(I – TλnQβn )xn – (I – TλnQβn )x,xn – x

〉

–

αn

〈
(I – TλnQβn )x,xn – x

〉
+

〈
A(I – TλnQβn )xn,xn – x

〉

+ r〈Vun –Vxn,xn – x〉

≤ –

αn

〈
(I – TλnQβn )x,xn – x

〉
+

〈
A(I – TλnQβn )xn,xn – x

〉

+ r〈Vun –Vxn,xn – x〉

≤ 
αn

‖x – Tλnx‖‖xn – x‖ + ∥∥A(I – TλnQβn )xn
∥∥‖xn – x‖

+ rl‖un – xn‖‖xn – x‖

≤ λn

αn
M(x)‖xn – x‖ + ‖A‖‖xn – TλnQβnxn‖‖xn – x‖

+ rl‖un – xn‖‖xn – x‖.

Now, replacing n with ni in the above inequality, and letting i → ∞, since λn = o(αn),
‖xn – Tλnun‖ → , and ‖un – xn‖ → , we have

〈
(A – rV )z, z – x

〉 ≤ .

It follows that z ∈U ∩EP(φ) is a solution of the variational inequality (.). Further, by the
uniqueness of the solution of the variational inequality (.), we conclude that xn → z as
n→ ∞.
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The variational inequality (.) can be rewritten as

〈
(I –A + rV )z – z, z – x

〉 ≥  ∀x ∈U ∩ EP(φ).

By Lemma ., it is equivalent to the following fixed-point equation:

PU∩EP(φ)(I –A + rV )z = z.

This completes the proof. �

Theorem. Let C be a nonempty, closed and convex subset of Hilbert space H . Let φ be a
bifunction from C×C →R satisfying (A)-(A), and let f : C →R be a real-valued convex
function, and assume that the gradient ∇f is /L-ism with a constant L > . Assume that
U ∩ EP(φ) �= ∅. Let V : C → H be Lipschitzian with a constant l > , and let A : C → H be
a strongly positive bounded linear operator with a coefficient γ̄ > , and  < r < γ̄ /l. Let the
sequences {un} and {xn} be generated by x ∈H and

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αnrVun + (I – αnA)Tλnun ∀n ∈N,
(.)

where un = Qβnxn, ProjC(I – γ∇fλn ) = θnI + ( – θn)Tλn , θn =
–γ (L+λn)

 and γ ∈ (, /L). Let
{βn}, {αn} and {λn} satisfy the following conditions:
(C) {βn} ⊂ (,∞), lim infn→∞ βn > ,

∑∞
n= |βn+ – βn| < ∞;

(C) {αn} ⊂ (, ), limn→∞ αn = ,
∑∞

n= αn = ∞,
∑∞

n= |αn+ – αn| <∞;
(C) {λn} ⊂ (, /γ – L), λn = o(αn),

∑∞
n= |λn+ – λn| <∞.

Then the sequence {xn} converges strongly to a point z ∈ U ∩ EP(φ), which solves the vari-
ational inequality (.).

Proof It is well known that:
(a) x̂ ∈ C solves the minimization problem (.) if and only if for each fixed  < γ < /L,

x̂ solves the fixed-point equation

x̂ = ProjC(I – γ∇f )x̂ =
 – γL


x̂ +

 + γL


Tx̂.

It is clear that x̂ = Tx̂, i.e., x̂ ∈U = Fix(T).
(b) The gradient ∇f is /L-ism.
(c) ProjC(I – γ∇fλn ) is

+γ (L+λn)
 averaged for γ ∈ (, /L), in particular, the following

relation holds:

ProjC(I – γ∇fλn ) =
 – γ (L + λn)


I +

 + γ (L + λn)


Tλn = θnI + ( – θn)Tλn .

Sinceαn → ,wemay assume thatαn ∈ (,‖A‖–). Now,we first show that {xn} is bounded.
Indeed, pick p ∈U ∩ EP(φ), since un =Qβnxn, by Lemma ., we know that

‖un – p‖ = ‖Qβnxn –Qβnp‖ ≤ ‖xn – p‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/243
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Thus, we derive from (.) that

‖xn+ – p‖ =
∥∥αnrVun + (I – αnA)Tλnun – p

∥∥
=

∥∥(I – αnA)(Tλnun – p) + αnrVun – αnA(p)
∥∥

≤ ( – αnγ̄ )‖Tλnun – p‖ + αn
∥∥rVun –A(p)

∥∥
≤ ( – αnγ̄ )

(‖Tλnun – Tλnp‖ + ‖Tλnp – Tp‖)
+ αn

(∥∥rVun – rV (p)
∥∥ +

∥∥rV (p) –A(p)
∥∥)

≤ ( – αnγ̄ )
(‖un – p‖ + λnM(p)

)
+ αn

(
rl‖un – p‖ + ∥∥rV (p) –A(p)

∥∥)
=

(
 – αn(γ̄ – rl)

)‖un – p‖ + ( – αnγ̄ )λnM(p) + αn
∥∥rV (p) –A(p)

∥∥
≤ (

 – αn(γ̄ – rl)
)‖xn – p‖ + λnM(p) + αn

∥∥rV (p) –A(p)
∥∥

=
(
 – αn(γ̄ – rl)

)‖xn – p‖ + αn(γ̄ – rl)
[

λn

αn

M(p)
γ̄ – rl

+
‖rV (p) –A(p)‖

γ̄ – rl

]
.

Since λn = o(αn), there exists a real numberM′ >  such that λn
αn

≤ M′. Thus,

‖xn+ – p‖ ≤ (
 – αn(γ̄ – rl)

)‖xn – p‖ + αn(γ̄ – rl)
M′M(p) + ‖rV (p) –A(p)‖

γ̄ – rl
.

By induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, M

′M(p) + ‖rV (p) –A(p)‖
γ̄ – rl

}
, n≥ .

Hence {xn} is bounded. From (.), we also derive that {un} is bounded.
Next, we show that ‖xn+ – xn‖ → .
Indeed, since

ProjC(I – γ∇fλn ) =
 – γ (L + λn)


I +

 + γ (L + λn)


Tλn ,

we have

Tλn =
ProjC(I – γ∇fλn ) – [ – γ (L + λn)]I

 + γ (L + λn)
.

So, we obtain that

∥∥Tλn (un–) – Tλn– (un–)
∥∥

=
∥∥∥∥ProjC(I – γ∇fλn ) – [ – γ (L + λn)]I

 + γ (L + λn)
un–

–
ProjC(I – γ∇fλn– ) – [ – γ (L + λn–)]I

 + γ (L + λn–)
un–

∥∥∥∥
≤

∥∥∥∥ProjC(I – γ∇fλn )
 + γ (L + λn)

un– –
ProjC(I – γ∇fλn– )

 + γ (L + λn–)
un–

∥∥∥∥
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+
∥∥∥∥ [ – γ (L + λn)]I

 + γ (L + λn)
un– –

[ – γ (L + λn–)]I
 + γ (L + λn–)

un–
∥∥∥∥

=
∥∥∥∥[ + γ (L + λn–)]ProjC(I – γ∇fλn ) – [ + γ (L + λn)]ProjC(I – γ∇fλn– )

[ + γ (L + λn)][ + γ (L + λn–)]
un–

∥∥∥∥
+

γ |λn – λn–|
[ + γ (L + λn)][ + γ (L + λn–)]

‖un–‖

=
∥∥∥∥ γ (λn– – λn)ProjC(I – γ∇fλn )
[ + γ (L + λn)][ + γ (L + λn–)]

un–

+
[ + γ (L + λn)](ProjC(I – γ∇fλn ) – ProjC(I – γ∇fλn– ))

[ + γ (L + λn)][ + γ (L + λn–)]
un–

∥∥∥∥
+

γ |λn – λn–|
[ + γ (L + λn)][ + γ (L + λn–)]

‖un–‖

≤ γ |λn – λn–|‖ProjC(I – γ∇fλn )un–‖
[ + γ (L + λn)][ + γ (L + λn–)]

+
[ + γ (L + λn)]‖ProjC(I – γ∇fλn )un– – ProjC(I – γ∇fλn– )un–‖

[ + γ (L + λn)][ + γ (L + λn–)]

+
γ |λn – λn–|

[ + γ (L + λn)][ + γ (L + λn–)]
‖un–‖

≤ |λn – λn–|
[
γ
∥∥ProjC(I – γ∇fλn )un–

∥∥ + γ ‖un–‖ + γ ‖un–‖
]

≤ K |λn – λn–|

for some appropriate constant K >  such that

K ≥ γ
∥∥ProjC(I – γ∇fλn )un–

∥∥ + γ ‖un–‖.

Thus, we get

‖xn+ – xn‖
=

∥∥[
αnrVun + (I – αnA)Tλnun

]
–

[
αn–rVun– + (I – αn–A)Tλn–un–

]∥∥
≤ ‖αnrVun – αnrVun–‖ + ‖αnrVun– – αn–rVun–‖

+
∥∥(I – αnA)(Tλnun – Tλnun–)

∥∥
+

∥∥(I – αnA)Tλnun– – (I – αn–A)Tλn–un–
∥∥

≤ αnrl‖un – un–‖ + |αn – αn–|r‖Vun–‖ + ( – αnγ̄ )‖un – un–‖
+ ‖Tλnun– – Tλn–un–‖ + ‖αn–ATλn–un– – αnATλnun–‖

≤ (
 – αn(γ̄ – rl)

)‖un – un–‖ + |αn – αn–|r‖Vun–‖
+ ‖Tλnun– – Tλn–un–‖

(
 + αn–‖A‖) + |αn – αn–|‖ATλnun–‖

≤ (
 – αn(γ̄ – rl)

)‖un – un–‖
+ |αn – αn–|

(
r‖Vun–‖ + ‖ATλnun–‖

)
+ |λn – λn–|

(
K +K‖A‖).
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Since both {Vun–} and {ATλnun–} are bounded, we can take a constant E >  such that

E ≥ r‖Vun–‖ + ‖ATλnun–‖, n ≥ .

Consequently,

‖xn+ – xn‖ ≤ (
 – αn(γ̄ – rl)

)‖un – un–‖
+ E|αn – αn–| + |λn – λn–|

(
K + ‖A‖K)

. (.)

From un+ =Qβn+xn+ and un =Qβnxn, we note that

φ(un+, y) +


βn+
〈y – un+,un+ – xn+〉 ≥  ∀y ∈ C (.)

and

φ(un, y) +

βn

〈y – un,un – xn〉 ≥  ∀y ∈ C. (.)

Putting y = un in (.) and y = un+ in (.), we have

φ(un+,un) +


βn+
〈un – un+,un+ – xn+〉 ≥ 

and

φ(un,un+) +

βn

〈un+ – un,un – xn〉 ≥ .

So, from (A), we have
〈
un+ – un,

un – xn
βn

–
un+ – xn+

βn+

〉
≥ 

and hence
〈
un+ – un,un – un+ + un+ – xn –

βn

βn+
(un+ – xn+)

〉
≥ .

Since lim infn→∞ βn > , without loss of generality, let us assume that there exists a real
number a such that βn > a >  for all n ∈N. Thus, we have

‖un+ – un‖ ≤
〈
un+ – un,xn+ – xn +

(
 –

βn

βn+

)
(un+ – xn+)

〉

≤ ‖un+ – un‖
{
‖xn+ – xn‖ +

∣∣∣∣ – βn

βn+

∣∣∣∣‖un+ – xn+‖
}
,

thus,

‖un+ – un‖ ≤ ‖xn+ – xn‖ + 
a
|βn+ – βn|M, (.)

whereM = sup{‖un – xn‖ : n ∈N}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/243


Tian and Huang Journal of Inequalities and Applications 2013, 2013:243 Page 17 of 22
http://www.journalofinequalitiesandapplications.com/content/2013/1/243

From (.) and (.), we obtain

‖xn+ – xn‖ ≤ (
 – αn(γ̄ – rl)

)(‖xn – xn–‖ + 
a
|βn – βn–|M

)

+ E|αn – αn–| + |λn – λn–|
(
K + ‖A‖K)

≤ (
 – αn(γ̄ – rl)

)‖xn – xn–‖ + M

a
|βn – βn–|

+ E|αn – αn–| + |λn – λn–|
(
K + ‖A‖K)

≤ (
 – αn(γ̄ – rl)

)‖xn – xn–‖
+M

(|βn – βn–| + |αn – αn–| + |λn – λn–|
)
,

whereM =max{M
a ,E,K + ‖A‖K}. Hence, by Lemma ., we have

lim
n→∞‖xn+ – xn‖ = . (.)

Then, from (.), (.) and |βn+ – βn| → , we have

lim
n→∞‖un+ – un‖ = . (.)

For any p ∈U ∩ EP(φ), as the same proof of Theorem ., we have

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

Then, from (.) and (.), by the same argument as in the proof of Theorem ., we
derive that

‖xn+ – p‖ ≤ (
( – αnγ̄ ) + ( – αnγ̄ )αnrl

)(‖xn – p‖ – ‖un – xn‖
)

+ λ
n · (M(p)) + ‖un – p‖(λnM(p) + αn

∥∥rV (p) –A(p)
∥∥)

+ αnλnM(p)
(
rl‖un – p‖ + ∥∥rV (p) –A(p)

∥∥)
+ α

n
(
rl‖un – p‖ + ∥∥rV (p) –A(p)

∥∥).

Since both {xn} and {un} are bounded, αn → , λn → , and ‖xn+ – xn‖ → , we have

lim
n→∞‖xn – un‖ = . (.)

Next,

‖xn – Tλnxn‖
= ‖xn – xn+ + xn+ – Tλnun + Tλnun – Tλnxn‖
≤ ‖xn – xn+‖ + ‖xn+ – Tλnun‖ + ‖Tλnun – Tλnxn‖
≤ ‖xn – xn+‖ + αn‖rVun –ATλnun‖ + ‖un – xn‖
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and then

‖xn – Tλnxn‖ → . (.)

It follows that ‖un – Tλnun‖ → .
Now, we show that

lim sup
n→∞

〈
xn – z, (rV –A)z

〉 ≤ ,

where z ∈ U ∩ EP(φ) is a unique solution of the variational inequality (.).
Indeed, since {xn} is bounded, without loss of generality, we may assume that xnk ⇀ x̃

such that

lim sup
n→∞

〈
xn – z, (rV –A)z

〉
= lim

k→∞
〈
xnk – z, (rV –A)z

〉
. (.)

By (.) and xnk ⇀ x̃, we derive that unk ⇀ x̃.
Note that

‖un – Tun‖ ≤ ‖un – Tλnun‖ + ‖Tλnun – Tun‖
≤ ‖un – Tλnun‖ + λnM(un).

Hence, by ‖un – Tλnun‖ → , we get ‖un – Tun‖ → .
In terms of Lemma ., we get x̃ ∈ Fix(T) =U .
Then, by the same argument as in the proof of Theorem ., we have x̃ ∈U ∩ EP(φ).
Since z ∈ U ∩ EP(φ) is the solution of the variational inequality (.), we derive from

(.) that

lim sup
n→∞

〈
xn – z, (rV –A)z

〉 ≤ . (.)

Finally, we show that xn → z.
As a matter of fact,

xn+ – z = αnrVun + (I – αnA)Tλnun – z

= (I – αnA)(Tλnun – z) + αnrVun – αnA(z)

= (I – αnA)(Tλnun – z) + αnr(Vun –Vz) + αn
(
rV (z) –A(z)

)
.

So, from (.) and (.), we derive

‖xn+ – z‖ =
〈
(I – αnA)(Tλnun – z),xn+ – z

〉
+ αnr〈Vun –Vz,xn+ – z〉 + αn

〈
rV (z) –A(z),xn+ – z

〉
≤ ( – αnγ̄ )‖Tλnun – z‖‖xn+ – z‖ + αnrl‖un – z‖‖xn+ – z‖

+ αn
〈
rV (z) –A(z),xn+ – z

〉
≤ ( – αnγ̄ )

(‖Tλnun – Tλnz‖ + ‖Tλnz – Tz‖)‖xn+ – z‖
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+ αnrl‖un – z‖‖xn+ – z‖ + αn
〈
rV (z) –A(z),xn+ – z

〉
≤ ( – αnγ̄ )‖un – z‖‖xn+ – z‖ + ( – αnγ̄ )‖Tλnz – Tz‖‖xn+ – z‖

+ αnrl‖un – z‖‖xn+ – z‖ + αn
〈
rV (z) –A(z),xn+ – z

〉
≤ (

 – αn(γ̄ – rl)
)‖xn – z‖‖xn+ – z‖

+ ( – αnγ̄ )λnM(z)‖xn+ – z‖ + αn
〈
rV (z) –A(z),xn+ – z

〉

≤ (
 – αn(γ̄ – rl)

) 

(‖xn – z‖ + ‖xn+ – z‖)

+ αn

[〈
rV (z) –A(z),xn+ – z

〉
+

λn

αn
M(z)‖xn+ – z‖

]
.

It follows that

‖xn+ – z‖

≤  – αn(γ̄ – rl)
 + αn(γ̄ – rl)

‖xn – z‖

+
αn

 + αn(γ̄ – rl)

[〈
rV (z) –A(z),xn+ – z

〉
+

λn

αn
M(z)‖xn+ – z‖

]

≤ (
 – αn(γ̄ – rl)

)‖xn – z‖

+
αn

 + αn(γ̄ – rl)

[〈
rV (z) –A(z),xn+ – z

〉
+

λn

αn
M(z)‖xn+ – z‖

]
.

Since {xn} is bounded, we can take a constantM >  such that

M ≥ M(z)‖xn+ – z‖, n≥ .

Then, we obtain that

‖xn+ – z‖ ≤ (
 – αn(γ̄ – rl)

)‖xn – z‖ + αnδn, (.)

where δn = 
+αn(γ̄–rl) [〈rV (z) –A(z),xn+ – z〉 + λn

αn
M].

By (.) and λn = o(αn), we get lim supn→∞ δn ≤ . Now applying Lemma . to (.)
concludes that xn → z as n→ ∞. �

4 Application
In this section, we give an application of Theorem . to the split feasibility problem (SFP
for short) which was introduced by Censor and Elfving []. Since its inception in ,
the split feasibility problem (SFP) has received much attention (see [, , ]) due to
its applications in signal processing and image reconstruction, with particular progress in
intensity-modulated radiation therapy.
The SFP can mathematically be formulated as the problem of finding a point x with the

property

x ∈ C and Bx ∈Q, (.)
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where C and Q are nonempty closed convex subsets of Hilbert spaces H and H, respec-
tively. B :H →H is a bounded linear operator.
It is clear that x∗ is a solution to the split feasibility problem (.) if and only if x∗ ∈ C

and Bx∗ – ProjQ Bx∗ = . We define the proximity function f by

f (x) =


‖Bx – ProjQ Bx‖

and consider the constrained convex minimization problem

min
x∈C f (x) =min

x∈C


‖Bx – ProjQ Bx‖. (.)

Then x∗ solves the split feasibility problem (.) if and only if x∗ solves the minimization
problem (.) with the minimize equal to . Byrne [] introduced the so-called CQ algo-
rithm to solve the SFP.

xn+ = ProjC
(
I – γB∗(I – ProjQ)B

)
xn, n ≥ , (.)

where  < γ < /‖B‖. He obtained that the sequence {xn} generated by (.) converges
weakly to a solution of the SFP.
In order to obtain a strong convergence iterative sequence to solve the SFP, we propose

the following algorithm:
⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αnrVun + (I – αnA)Tλnun ∀n ∈N,
(.)

where un =Qβnxn. Let {Tλn} satisfy the following conditions:
(i) ProjC(I – γ (B∗(I – ProjQ)B + λnI)) = θnI + ( – θn)Tλn and γ ∈ (, /‖B‖);
(ii) θn = –γ (L+λn)

 for all n,
where V : C →H is Lipschitzian with a constant l >  and A : C →H is a strongly positive
bounded linear operator with a constant γ̄ > . Suppose that  < r < γ̄ /l. We can show
that the sequence {xn} generated by (.) converges strongly to a solution of SFP (.) if the
sequence {αn} ⊂ (, ) and the sequence {λn} of parameters satisfy appropriate conditions.
Applying Theorem ., we obtain the following result.

Theorem . Assume that the split feasibility problem (.) is consistent. Let the sequence
{xn} be generated by (.). Where the sequence {βn}, {αn} ⊂ (, ) and the sequence {λn}
satisfy the conditions (C)-(C). Then the sequence {xn} converges strongly to a solution of
the split feasibility problem (.).

Proof By the definition of the proximity function f , we have

∇f (x) = B∗(I – ProjQ)Bx

and ∇f is Lipschitz continuous, i.e.,

∥∥∇f (x) –∇f (y)
∥∥ ≤ L‖x – y‖,

where L = ‖B‖.
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Set fλn (x) = f (x) + λn
 ‖x‖; consequently,

∇fλn (x) = ∇f (x) + λnI(x)

= B∗(I – ProjQ)Bx + λnx.

Then the iterative scheme (.) is equivalent to

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥  ∀y ∈ C,

xn+ = αnrVun + (I – αnA)Tλnun ∀n ∈N,
(.)

where un =Qβnxn. {Tλn} satisfy the following conditions:
(i) ProjC(I – γ∇fλn ) = θnI + ( – θn)Tλn and γ ∈ (, /L);
(ii) θn = –γ (L+λn)

 for all n.
Due to Theorem ., we have the conclusion immediately. �

5 Conclusion
Methods for solving the equilibrium problem (EP) and the constrained convex minimiza-
tion problem have been extensively studied, respectively, in a Hilbert space. In , Tian
and Liu proposed an iterative method for finding a common solution of an EP and a con-
strained convex minimization problem. But, in this paper, it is the first time that we com-
bine the regularized gradient-projection algorithm and the averaged mappings approach
to propose implicit and explicit algorithms for finding the common solution of an EP and
a constrained convex minimization problem, which also solves a certain variational in-
equality.
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